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1 In tro d u c tio n

Set problems comprising set covering, set partitioning, and set packing have at-
tracted attention for many years and have applications in airline crew schedul-
ing, bus crew scheduling, plant location, circuit switching, information retrieval,
assembly line balancing, political districting and truck delivery [6] .

Let M=f1, 2, . . . ,mg be the set of m integers and let S denote a set of n
subsets of M. Thus
N = f1 , 2, . . . , ng
S = fs 1 ;s 2 ;:::;s n g where s j µ M ; j 2 N :
Let

½
a ij = 1 if i 2 s j

a ij = 0 if i =2 s j

¾
(i = 1;:::;m ; j = 1;:::;n )

The set covering problem (SCP) can be de¯ned as follows:

M in im iz e
nX

j= 1

cj x j

st
nX

j= 1

a ij x j ¸ 1; i = 1;:::;m

x j 2 f0;1g ; j = 1;:::;n :

The decision variable x j indicates whether s j is selected or not and cj is the
cost associated with selecting s j . The problem can be interpreted as ¯nding the
minimum cost selection of subsets of S such that each member of M is covered
by at least one member of the selected subset of S.

If we replace the " ¸ " by " = " in each of the constraints of the above
model, the modi¯ed problem is called the set partitioning problem (SPP) . If
" ¸ " is replaced by " · " and the objective function is to be maximized, the
resulting model is the set packing problem (SPK) .

During the past 30-35 years a number of procedures have been developed
which can deal with set problems. They can be found in Lemke, Salkin, and
Spielberg [15] , Salkin, and Koncal [19] , and Salkin [20] , Gerbracht, [13] , and
so on. They used either cutting plane algorithm and/or branch algorithm and
then found that these algorithms are showed exponential and data dependent
computing time Nemhauser, G.L. [16] . Beasley [3] has developed a tree search
method to solve the SCP. Christo¯ed and Paixao [17] reported good computa-
tional results with a steady state relaxation method. Fisher and Kedia [10] have
developed a fast algorithm for a mixed set covering/partitioning problem. Of
recent interest is the work of Thomson and Harcheand [14] who have developed
a new exact method called column subtraction.

Among the heuristic methods, Beasley [5] has developed a Lagrangian heuris-
t ic which is reported to produce good quality results. A¯f and el a l have de-
veloped a new heuristic based on the °ow algorithm of Ford and Fulkerson.
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Beasley and Chu [4] have done several modi¯cation to genetic procedures which
produces high quality solutions. In recent years, there has been some advance-
ments in solving NP-complete problems Xie J. and Xing W. [21 ] .

Set problems are categorized as NP-complete, which means that no polyno-
mial time algorithm is known that guarantees to solve every instance of these
problems. This increases the importance of relaxations which yield sharp lower
and upper bounds as quickly as possible to be used in a tree search procedure.
The set covering problem can be relaxed to form an assignment problem, a min-
imal spanning tree problem, a shortest route problem [8] . The shortest route
relaxation is considered in this paper.

2 S h o rte st ro u te re la x a tio n o f S C P a n d S P P

Referring to the set covering model (SCP) notation, let h j = js j j be the number
of unit entries in column j and let h 0

j = f i j a ij > a i¡ 1 ;j ;i 2 s j g , where a 0 j = 0
and s j is the set of row indices which contain a unit entry in column j of the A
matrix. Therefore k j = jh 0

j j denotes the number of segments of ones in column
j .

A network (E,V) can be constructed such that V = f v 1 ;:::;v m ;v m + 1 g is
the set of vertices. For each column j of A associate a set of k j arcs E j =
f (v i1 ;v i1 + l1 );:::;(v ik j

;v ikj + lk j
)g j = 1;:::;n such that arc (v ir ;v ir + lr ) corre-

sponds to rth segment in column j containing lr unit entries running from row
ir up to row ir + lr ¡ 1 . We can de¯ne E such that E =

Sj= n
j= 1 E j . The

two sets E and V as described above specify the structure of the shortest route
relaxation of the set partitioning problem (SPP) . Let the cost of an arc from
node p to node q be the nonnegative real number d j

p q . A valid relaxation is
obtained provided that

X

(v p ;v q )2 E j

d j
p q = cj ; j = 1;:::;n :

It can be veri¯ed that the shortest route relaxation of set problems (SRR) is a
proper relaxation [8] .

The shortest route relaxation for the set covering problem (SCP) can be
obtained by a similar procedure. To provide for possible overcovers let E, the
arc set , be increased by adding m backward arcs f (v i+ 1 ;v i) j i = 1;2;:::;m g
with costs d n + i

(i+ 1 )(i) = 0 f o r i = 1;2;:::;m . The introduction of these arcs
creates cycles which allow rows to be overcovered.

3 C o st a llo c a tio n stra te g ie s

In order to produce a lower bound or an upper bound to the set problem a
strategy should be undertaken to allocate the full cost cj among all segments
associated with column j . Although there is no limitation to the number of
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ways in which a cost allocation can be made, some potentially useful ones are
described below in detail:

S tra teg y 1 : The ¯rst strategy for cost allocation is to distribute the full
cost proportional to the cardinality of each segment. In other words, if a par-
ticular arc associated with column j starts at node v p and ends at v q then the
cardinality of the associated segment is (q-p) . If we allocate the cost cj = jh j j to
each row with a unit entry in column j , the cost for the segment becomes
d j

p q = (q ¡ p )cj = jh j j where h j is the cardinality of column j .

S tra teg y 2 : Let (v p ;v q ) be an arbitrary arc in column j and let (r co u n t) i

be the row count of nonzeros in row i 2 f p ;(p + 1);:::;(q ¡ 1) g and let
(m in cn t) p q = m in f (r co u n t) p ;(r co u n t) p + 1 ;:::;(r co u n t) q ¡ 1 g . In this strategy
the cost allocation is made by scaling down the cj in such a way that the cost
allocated to the arc (v p ;v q ) is equal to

d j
p q =

1
(m in cn t)pqP

(v p ;v q )2 E j

1
(m in cn t)pq

cj

One reason for considering (m in cn t) p q is that this number is equal to the
number of multiple arcs from v p to v q and in order to increase the optimal
value of the SRR solution we should allocate a greater cost to arcs having fewer
multiple arcs.

S tra teg y 3 : In this strategy the cost is allocated equally among all k j

segments, in column j , regardless of the segment cardinalities, that is, d j
p q =

cj

k j
8 (v p ;v q ) 2 E j . Since, it is assumed that each column of the SCP has, at

least , one nonzero, therefore, k j > 0 for j = 1;¢¢¢;n .

S tra teg y 4 : Here the full cost is allocated to the ¯rst segment of each column
and zero to the other segments in the column. For each column j

d j
p q =

½
cj if p = i1
0 if p 6= i1

¾

A modi¯cation of this strategy is to allocate the full cost to a randomly selected
segment and zero to other segments.

S tra teg y 5 : In this strategy the cost is allocated randomly, that is, for each
column j we ¯nd k j nonnegative random numbers p 1 ;p 2 ;:::;p k j such that
P i= k j

i= 1 p i = 1. The cost allocated to segment i is equal to p i £ cj . This strategy
may be repeated with di®erent sets of random numbers many times and the
most desirable one chosen.

S tra teg y 6 : For each segment of column j running from row p to row q-1
the following summation is calculated:
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i= q ¡ 1X

i= p

1
r co u n ti

;

where r co u n ti is the row count of row i. The cost cj is then allocated to the
segments in proportion to the above quantity. In other words, the cost allocated
to the segment (p,q-1) of column j is calculated as :

d j
p q =

P i= q ¡ 1
i= p

1
r co u n tiP i= m

i= 1 a ij
1

r co u n ti

cj

The rationale behind strategy 6 is as follows. If, for a given row l ; r co u n tl is
large, that row can be covered by many columns and the probability of select-
ing the arc corresponding to a given segment , covering row l is low. Let the
segment ( p , q - 1 ) of column j contain row l. The cost allocated to the seg-
ment, d j

p q , may be considered as the sum of " row costs" of rows included in the
segment. If a given row is covered by many segments then the row cost may be
viewed as 1 divided over the number of such segments, that is, 1

r co u n ti
. In this

cost allocation strategy the row cost is inversely proportional to the number of
segments containing that row. Therefore, the cost is scaled down in proportion
to the sum of row costs of rows included in each segment.

S tra teg y 7 : Let h j be the number of nonzeros in column j . In this strategy
the cost cj is allocated in proportion to the following quantity.

i= q ¡ 1X

i= p

f
1

r co u n ti

j 0= nX

j 0= 1

a ij 0
cj0

h j0
g

In other words, the cost allocated to the above segment is calculated as follows:

d j
p q =

P i= q ¡ 1
i= p f 1

r co u n ti

P j0= n
j0= 1 a ij0

cj0

h j0
g

P i= m
i= 1 a ij f 1

r co u n ti

P j0= n
j0= 1 a ij 0

cj0

h j0
g
cj

In order to justify the above formula we can view the costs as being allocated
in two stages. Let the costs be allocated initially using strategy 1. According
to this strategy the cost cj0

h j0
is allocated to each nonzero entry in column j 0.

In this manner each unit entry in the A matrix is assigned an initial cost. In
the second cost allocation stage we try to attach a ¯xed pseudo cost to each
row , like the cost cj attached to column j , by using the initial costs assigned
to nonzeros of the A matrix. A reasonable cost for this purpose is the aver-
age cost of a unit entry in each row, that is, a v er g i = 1

r co u n ti

P j 0= n
j 0= 1 a ij 0

cj0

h 0
j

is the cost associated with row i. Another way of thinking of a v er g i is the
cost or a proportion of the column cost to be paid by any route crossing row i
through a segment of that column containing row i . We consider the quantity
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P i= q¡ 1

i= p
a v e r g iP i= m

i= 1
a v e r g i

as a proportion of the column cost to be allocated for crossing

rows p to q - 1 via that column. Therefore, once this quantity is associated with
row i it is not changed throughout the cost allocation process and any cost is
allocated in proportion to such a quantity for each segment.

S tra teg y 8 : This strategy is a modi¯cation of strategy 6 as follows: Let
A3 be the set of columns whose costs are among the ¯rst one-third lowest cost
columns. In other words, if columns are sorted in the increasing order of the
costs, A 3 = fj jj · [n =3] g . Let r cn ti be the row count of row i in a matrix
comprised of all columns in A3. In this strategy the cost cj is distributed be-
tween arcs associated with column j in proportion to the following quantity:

i= q ¡ 1X

i= p

1
(r cn ti + 1) 1 :5

In other words, the cost allocated to the above segment is calculated as follows:

d j
p q =

P i= q ¡ 1
i= p

1
(r cn ti+ 1 )1:5

P i= m
i= 1 a ij

1
(r cn ti+ 1 )1:5

cj

The reason for considering the ¯rst one-third lowest cost columns is because,
for non-unicost SCP, the optimal columns generally consists of columns which
have low costs. [4]
The following theorem can help us to create new cost allocation strategies.
T h eo re m : Any weighted average of a number of cost allocation strategies for
a column is a valid cost allocation strategy for that column.
P ro o f: Let s tn o be the number of cost allocation strategies combined and
cit i = 1;2;:::;k j a n d t = 1;:::;stn o be the cost allocated to segment i in the
cost allocation strategy t. Let ® t ;t = 1;:::;l be positive real numbers such thatP t= s tn o

t= 1 ® t = 1 . It is enough to show that this weighted average of the cost
allocation strategies are a valid cost allocation strategy. This can be carried out
by showing that they add up to the full cost cj as follows:

P i= k j
i= 1

P t= s tn o
t= 1 ® tcit =

P t= s tn o
t= 1

P i= k j
i= 1 ® tcit =

P t= s tn o
t= 1 ® t

P i= k j
i= 1 cit =P t= s tn o

t= 1 ® tcj = cj
P t= s tn o

t= 1 ® tcj £ 1 = cj :

4 C o m p u ta tio n a l e v a lu a tio n o f S R R

4 .1 G e n e ra tio n o f 2 p a rt d u ty c re w sc h e d u lin g p ro b le m s

Two part duty crew scheduling is a problem which occurs in bus crew scheduling.
In this problem, each column of the A matrix comprises two separate segments
of ones and represents a possible driver schedule. An important feature of this
problem is that, each driver is required to work only on one bus in each of
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his two duty periods. That is, each driver spends his ¯rst duty period on one
bus and his second duty period on one, usually di®erent, bus. An algorithm
(CSGEN), described below, has been developed to generate a set of 2 part duty
crew scheduling problems.
The number of rows ( rowmax ) and the number of columns ( nvar ) are input
to the algorithm. For the sake of simplicity and because the costs will be sorted
by the optimizer in ascending order it was decided that the ¯rst 10 columns
be assigned the cost of 1 , and the second 10 columns are assigned the cost of
2 and after each group of 10 columns the cost is increased by 1. The number
10 can be changed to any other number ( ¯x ) , as it is also an input to the
problem. Let the ¯rst segment be (p 1 ;q 1 ) and the second segment be named
(p 2 ;q 2 ) . p 1 and p 2 are taken as two independent integer random numbers in
the interval [1;r o w m a x ¡ 2] and another pair of integer random numbers in
[ 2 , 6 ] are made as the cardinalities of the two segments. A check is carried
out for each column of the A matrix to make sure that the segments do not
overlap each other. If segments overlap each other this column is ignored and
another column is generated. This procedure is repeated until a feasible column
is produced. Let the ¯rst segment start from row p 1 to row q 1 and the second
segment start from row p 2 to row q2 such that q1 < p 2 then the nonzeros of
the column are printed. The row counts are calculated and if a row count of
zero occurs the problem is declared as infeasible and ignored and the procedure
CSGEN is repeated until a feasible problem is produced. In general, 6 problems
of this type were generated with sizes ranging from 200 by 1000 to 300 by 2000.
In order to generate SCP problems in which LP and IP solutions are di®erent
the procedure CSGEN has to be executed many times.

4 .2 T h e c o lle c tio n o f te st p ro b le m s

The characteristics of 15 problems which are used as test problems in this paper
are presented in Table 1. Problem AIR1 belongs to a set of 6 problems generated
by Powers [18] and used by El-Darzi [8] . Problems RDM3, RDM4, RDM6, and
RDM7 are taken from a set of 14 randomly generated problems supplied by
Paixao [17] . Problem SCP51 is taken from a set of 25 problems from Balas
and Ho [2] , and Problems SCPA1, SCPB1, and SCPE1 are taken from a set of
OR test problems provided by Beasley [3] . DUTY problems are two part duty
crew scheduling problems generated randomly using the algorithm CSGEN. The
data ¯les for these models were converted to both MPSX format and a special
purpose format for the SRR procedure. Columns 6 and 7 are optimal LP and
IP found by FORTMP [11 ] . Since this optimizer solves test problems by an
exact procedure, in which a message is sent to the user in case, optimality is
not reached, the IP found for the last 6 problems, are assumed to be optimal.

4 .3 L o w e r b o u n d s a n d u p p e r b o u n d s

This ¯rst experiment involved the application of the eight cost allocation strate-
gies in the shortest route relaxation algorithm. The lower bounds obtained by
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Problem Characteristics
Prob. No. of No. of No. of Av.Nonzero LP IP
name rows cols Nonzero per column solution solution
AIR1 159 416 2203 5 16600 16610
RDM3 101 109 784 7 95.06 96
RDM4 100 106 742 7 93.57 97
RDM6 100 130 884 6 98.06 99
RDM7 98 98 704 7 86 87
SCP51 200 2000 11955 4 251 .23 253
SCPA1 300 3000 18000 6 246.84 253
SCPB1 300 3000 47921 15 64.54 69
SCPE1 50 500 5414 10 3.48 5
DUTY1 200 1000 8944 8 245 245
DUTY2 200 1000 8906 8 245.5 246
DUTY3 200 2000 17839 8 259 260
DUTY4 200 2000 17700 8 310 311
DUTY5 300 2000 17862 8 521.5 523
DUTY6 300 2000 17896 8 507 508

Table 1 : Test problems

each strategy for each problem is presented in Table 2.
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Problem Cost allocation strategy
Name 1 2 3 4 5 6 7 8
AIR01 12188.7 5629.94 11996.75 4390.0 8918.76 13362.8 13631.4 12830.0
RDM3 35.68 31.03 35.59 10.0 24.53 38.85 48.92 66.04
RDM4 38.72 35.51 38.51 5.0 24.67 42.31 48.72 61 .11
RDM6 47.26 38.0 46.3 12.0 18.83 50.21 55.51 64.61
RDM7 38.72 30.28 34.09 9.0 24.53 42.31 48.72 56.4
SCP51 113.62 106.64 109.98 7.0 78.9 115.08 116.24 129.05
SCPA1 97.72 96.6 96.6 7.0 62.27 98.53 100.2 105.2
SCPB1 22.17 21.19 21 .46 2.0 5.41 22.35 22.38 22.97
SCPE1 2.97 1 .34 1.45 1 .0 0.23 2.97 2.99 2.95
DUTY1 145 136 170 59 149.55 177.7 167 187.32
DUTY2 132.67 117.77 154 62 141.2 164.54 163.46 187.32
DUTY3 159.4 146.57 184 15 98.9 190.4 192.34 201 .11
DUTY4 171.87 157.9 199 34 75.18 208.15 215.79 233.44
DUTY5 270.9 257.8 335 74 178.35 345.9 322 388.28
DUTY6 276.8 264.6 323.5 74 183.97 332.92 346.89 398.51

Table 2: SRR lower bounds for 8 strategies
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Strategy 8 produces the strongest lower bound in 13 problems strategy 7 is best
for the remaining two problems. Strategy 4 produces the weakest lower bounds
in 8 problems. In general strategy 8 is the best strategy to produce lower bounds.
These results are not surprising because in strategy 4 which is the weakest, the
only item of information used in the cost allocation of column j is the column
cost cj which is allocated to the ¯rst segment in each column. In strategies
3, and 5 f cj g plus the number of segments in each column k j are used. In
strategy 1 the column cost fcj g , the number of segments k j , and the segment
cardinalities are used. In strategy 2 the column cost and the number of multi-
ple arcs are involved. In strategy 6 all items of strategy 1 plus the row counts
(rco u n t) are used. In strategy 7 all information of strategy 6 plus the costs and
number of nonzeros of other columns are utilized. In strategy 8 which produces
the strongest bounds in 13 problems, all information of strategy 6 and problem
speci¯c knowledge that the optimal columns of SCP problems are usually among
the least cost columns[4] , is utilized. It turns out from the computational results
and the above comment that when more information about the structure of the
columns and rows of the A matrix are used in allocating the cost, the lower
bound produced is likely to be stronger.
In order to get an idea about the performance of this procedure, the lower
bounds produced by strategies 6, 7 and 8 are compared with the ones obtained
by the Assignment Relaxation version 1 (ASP1) , and Assignment Relaxation
version 2 (ASP2) . The lower bounds on problems AIR01, RDM4, RDM6, and
RDM7 obtained by ASP1 and ASP2 relaxations are directly extracted from El-
Darzi [8] . Of the problems considered in this paper, only these four problems
were considered by El-Darzi. The ASP1 and ASP2 codes used by El-Darzi are
not available and it was therefore impossible to apply them to other problems.
These lower bounds and the ones produced by strategies 6, 7,and 8 are sum-
marized in Table 3. Based on the ¯gures of Table 3, in terms of the quality of

P.Name. ST6 ST7 ST8 ASP1 ASP2
AIR01 13362.8 13631 .5 12830.0 13424 14488.2
RDM4 42.31 48.21 61 .11 47.8 53.26
RDM6 50.55 55.54 64.61 47.3 51 .14
RDM7 42.31 48.72 56.4 47.2 50.66

Table 3: Lower bounds obtained by 2 network relaxations

the bounds, shortest route relaxation using strategy 8 is better than ASP1 and,
ASP2 for 3 problems and ASP2 is better than both strategies 6 and it is also
better than strategy 7 for 3 problems. The execution times corresponding to
Table 3 are provided in Table 4. ASP1 and ASP2 runs were originally carried
out on a Honeywell Multics DP68. This machine is estimated to be 1 .7 times
slower than a Pentium PC operating at 90 Mhz. Thus the execution times for
ASP1 and ASP2 have been converted to be comparable with Pentium execution
times. According to Table 4 SRR is quicker than both ASP1 and ASP2.
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P.Name. ST6 ST7 ST8 ASP1¤ ASP2¤

AIR01 1.672 1 .603 1.618 7.866 38.592
RDM4 0.851 0.838 0.841 1 .214 7.628
RDM6 0.914 0.919 0.900 1 .807 5.793
RDM7 0.833 0.817 0.813 0.847 6.443

Table 4: Execution times (secs) on a (Pentium 90MHz) Machine
* Converted from Honeywell Multic DP68 times

C o n c lu sio n s
The computational results presented in this paper shows that the shortest route
relaxation (SRR) of the set covering problem can produce better and quicker
lower bounds than the assignment relaxation (ASP) of the set covering problem
established by Elia El-Darzi [8] . Computational result reveals that the more
speci¯c knowledge of the problem is used in the cost allocation strategy, the
stronger is the lower bound obtained by that strategy. The lower bounds ob-
tained for two part duty crew scheduling problems are better in comparison to
other problems. More investigations may lead to sharper lower bounds for the
SCP.
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