
Contribution to the study and the design of reinforcement functions

by Juan Miguel Santos
Directed by Dr. Hugo Scolnik and Norbert Giambiasi

April, 12nd, 1999, Universidad de Buenos Aires

The underlying concept in Reinforcement Learning is as simple as it is attractive: to
learn by trial and error from the interaction with the environment. This approach allows
us to deal with problems where a learning technique  searches to improve the
performance of the agent (the learner) over time. Reinforcement Learning groups a set
of such techniques, and it uses a performance measure based on two types of signals
given by a Critic or Reinforcement Function: penalty and reward.
The use of these techniques is closely related to the conditions imposed on each type of
problem. In the easiest case, a problem is provided with a world model (Reinforcement
and Transition Functions) and can be modeled by means of a Markovian Decision
Process. In more difficult cases, the Transition Function is unknown and, today, two
widely known algorithms based on the Temporal Differences Method: Adaptive
Heuristic Critic [Sutton, 1988] and Q-Learning [Watkins, 1989] are able to deal with the
situation of an unknown model.
If the state-action space of the system is so large that it forbids an explicit representation
of the agent’s internal structure (i.e. tables, tuples, etc.), it is mandatory to consider
strategies that generalize. Today, the state of the art positions Artificial Neural
Networks as an obvious tool to implement generalization. Moreover, large spaces
complicate the exploratory process. In particular, the exploration-exploitation dilemma
becomes especially delicate. Therefore, it is necessary to develop exploration strategies
closely related to those of memorization and generalization.
Over the last ten years, the evolution of the Reinforcement Learning techniques has
impacted on a closely related field: Robot Learning. In Robot Learning, a robot must
improve its performance over time; and the RL paradigm suits this definition well in
that the performance measure can be used to achieve the goal: In fact, the Discount
Reinforcement Infinite Sum is used due to its useful convergence property.
However whatever criterion is used, in all cases it depends of the Reinforcement
Function definition. Unfortunately, it is not simple to define such a function, especially
in many applications with physical systems (i.e., robots) whose states are represented by
means of the sensor activity (numerical values) where humans are more at ease with
symbolical values. Thus, the definition of the Reinforcement Function constitutes a
critical point for the implementation of RL.
The objective of this thesis is to study the design of the Reinforcement Function and
introduce an approach to undertaking this task. Additionally, we study the feasibility
and consequences of adapting the Reinforcement Function during the learning process
so as to improve the performance of the system.
As a first step, we propose a general expression for the RF. It is expressed in terms of
constraints, which depend of a set of values: the Reinforcement Function Parameters.
We also suggest a Reinforcement Function Design Process, with two main stages. The
first one translates a natural language description into an instance of the Reinforcement
Function General Expression. The second one tunes parameters of constraints for
obtaining the optimal definition of the function (relative to exploration).
Based on a particular (but generic) case of the Reinforcement Function with two
constraints (one associated with positive reinforcement and the other with negative
ones), we propose an analytic method and an algorithm (Update Parameters Algorithm,
or UPA) to obtain the value of the Reinforcement Function Parameters.



As a second step, we studied the possibility and utility of changing the definition of the
Reinforcement Function (parameter tuning) in a dynamic way during the Learning
Phase, and we show the consequences on the exploration- exploitation dilemma.
A rule for tuning the RF parameters during UPA execution involves changing the
function to obtain an ideal ratio of positive and negative reinforcements defined in
advance. Before learning, UPA guarantees a balanced proportion of reinforcements
during exploration. During learning, UPA modulates the exploration-exploitation
relation. In both cases, the results are improvements of the learning performance
(quality and time).
The idea of using the variations of the performance as an evaluation criterion has been
partially explored by some authors. For example, [Schmidhuber et al., 1997] use as a
criterion acceptance (or rejection) of previously imposed changes on a Policy, the
evolution of the Reinforcements Sum received from the last change. [Mataric, 1994],
and [Millán, 1996] use progress estimators to measure the evolution of the system in
achieving sub-objectives (for simple behaviors with an associated metric) expressed in
the RF. On the other hand, [Ackley and Littman, 1991] introduce an Evolutionary
Reinforcement Learning scheme where RL allows individuals to improve their
performance along their life. Thus, the performance of the complete system is indirectly
used for accepting, or not, changes of the RF definition of each individual. However, it
is our opinion that these attempts failed to achieve a rigorous development in regards to
the exploration-exploitation dilemma, and its related matter: learning speed,
convergence, etc.
The neural implementation of the RL used in the experimental parts of this thesis, is
based on the clustering properties of the Radial Basis Function Artificial Neural
Networks [Moody and Darken, 1989]. The need to achieve an appropriate discretization
of the situation-action space through clustering has lead us to add to the update rule of
the neural network a growing strategy.
In this dissertation we will review the Reinforcement Learning and the associated open
issues. After that,  we will describe our contribution to the study and development of the
Reinforcement Function. Then, we will illustrate, with several experiments involving
robots (mobile and manipulator), the efficiency of our proposed method. Results will be
analyzed and discussed. Finally, we will emphasize the main conclusions of this work
and present some future directions of research.
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