
Program Flow Analysis for Reducing and

Estimating the Cost of Test Coverage

Criteria

Martina Marr�e

Departamento de Computaci�on

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Advisor: Antonia Bertolino

November 1997

Abstract

Testing a software system consists of executing it over a suitable sample

of input data and then checking if the output produced matches what was

expected. Testing is widely used to enhance software quality, and, speci�cally,

to uncover bugs that are inevitably introduced during the software development

process.

One of the most di�cult problems in testing is knowing when to stop the

testing process. On the one hand, it is not possible in general to give an answer

to whether a test suite guarantees the absence of faults. On the other hand,

we need a way to limit the cost of testing. Therefore, it is useful to have

criteria to determine when a program has been tested \enough". Ideally, the

testing process should be planned in advance. However, in practice the tests

are incorporated little by little, until some adequacy criterion is satis�ed. In

particular, di�erent coverages can be used to determine when the program has

been tested enough. The idea is to guarantee that each statement, decision or

other feature of the program has been executed at least once under some test.

A major problem is that testing takes a considerable amount of the time

and resources spent on producing software [?]. Therefore, it would be useful to

have ways



1. to reduce the cost of testing, and

2. to estimate this cost.

In particular, the number of tests to be executed impacts heavily on the cost

of testing. In fact, the time and resources needed for testing increase as the

number of test cases increases. Hence, to reduce the cost of testing, the number

of test cases generated to satisfy a selected test criterion should be as small as

possible. Moreover, a bound on the number of tests that have to be performed to

satisfy a selected test strategy can be used by managers and testers to estimate

the e�ort needed to carry out the tests.

A test criterion in practice sets a collection of requirements to be ful�lled. For

structural coverage criteria, these requirements are mapped onto a set of entities

in the program owgraph that must be covered when the tests are executed.

In this work we present a method for reducing and estimating the number of

tests needed to satisfy structural coverage criteria, based on the new concept of

spanning sets of entities. This concept is based on the observation that one test

generally covers more than one entity. However, this fact is not traditionally

considered when coverage is measured and not covered entities are identi�ed,

or when more tests have to be selected in order to augment coverage. Meth-

ods for selecting tests generate a test datum for covering one entity selected

arbitrarily and considered in isolation from the other entities. If the generated

test datum also exercises other entities, these will then be considered as covered

a-posteriori. But no e�ort is made to generate a-priori test data that satisfy

multiple requirements.

Our method overcomes these drawbacks by identifying with static analysis

a minimum subset of entities with the property that any set of tests covering

this subset covers every entity in the program. We call this minimum subset a

\spanning set of entities". In this work, we �rst de�ne the sets of entities that

are associated with a whole family of popular test coverage criteria. Then we

present a generalized method of identifying a spanning set of entities for the

criteria considered.

Our method can be automated. Once it has been included in the software

testing process, this information can be used for

� evaluating test adequacy more e�ectively;

� reducing the cost of testing;

� estimating the cost of testing;

� generating test suites.

In this thesis we present our study of the use of spanning sets of entities in

coverage testing.


