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Abstract Highly accurate 2-body reduced density matrices of atoms and molecules
have been directly determined without calculation of their wave functions with the
use of the G-particle-hole hypervirial (GHV) equation method (Alcoba et al. in Int. J.
Quantum Chem. 109:3178, 2009). Very recently, the computational efficiency of the
GHV method has been significantly enhanced through the use of sum factorization
and matrix-matrix multiplication (Alcoba et al. in Int. J. Quantum Chem 111:937,
2011). In this paper, a detailed analysis of the matrix contractions involved in GHV
calculations is carried out. The analysis leads to a convenient strategy for exploiting
point group symmetry, by which the computational efficiency of the GHV method is
further improved. Implementation of the symmetry-adapted formulation of the method
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is reported. Computer timings and hardware requirements are illustrated for several
representative chemical systems. Finally, the method is applied to the well-known
challenging calculation of the torsional potential in ethylene.

Keywords Correlation matrix · G-particle-hole matrix · Electronic correlation
effects · Hypervirial of the G-particle-hole operator · Point group symmetry

1 Introduction

It is well-known that all the fundamental electronic properties including the energy can
be expressed as expectation values of one- and two-electron operators. Hence, they
can be determined from a mathematical object which only depends on the variables of
two electrons, the second-order reduced density matrix (2-RDM) [1–5]. The quest for
a method of studying the structure of electronic systems by directly determining the
2-RDM without any use of the wave function dates from the fifties [6–9]. A difficulty in
this approach is that the N-representability conditions [10,11] enforced on the RDMs
by the antisymmetry principle for fermions are still not completely known [1–5,12].
While this problem has greatly hindered the progress on the field, recent advances,
however, beginning with calculations with the second-order contracted Schrödinger
equation (CSE), [13–17] have achieved the direct determination of the 2-RDM for
electronic systems [18–30], thus reopening this line of research [2–5].

An important advance in the CSE route to RDMs calculation was recently made
by Mazziotti [31,32], who proposed an iterative method for solving only the anti-her-
mitian part of the CSE, the anti-Hermitian contracted Schrödinger equation (ACSE),
which yielded very accurate 2-RDMs and electronic energies [29–40]. Two important
advantages of this approach are that, contrary to the CSE, the ACSE may be evaluated
with no more information than that contained in the 3-RDM and that the N-represent-
ability properties of the 2-RDM are practically preserved during the iterative process.
Following an analogous way of reasoning, Alcoba et al. [40–45] have recently studied
the hypervirial of the G-particle-hole operator, the G-particle-hole hypervirial (GHV)
equation, which is a more demanding condition than the ACSE [40,41,43]. In order
to solve the GHV equation, the ideas reported by Kutzelnigg for the solution of the
hypervirials of density operators [47–49] and by Mazziotti for the solution of the
ACSE [31,32] has been conveniently adapted and optimized [43]. The accuracy of
the results obtained with this method when studying the ground-state of a set of both
closed- and open-shell atoms and molecules was excellent when compared with the
equivalent Full Configuration Interaction (FCI) quantities [40–45]. Furthermore, the
time and storage cost of these calculations was proportional to K 6 and K 4 respectively,
where K is the number of orbitals forming the basis set [43], which shows the high
efficiency of the GHV method.

The purpose of the current work is to further enhance the efficiency of the GHV
method by exploitation of molecular point group symmetry. If the molecules have
point group symmetry, each of the density and electron integral matrices entering in
the GHV equation may be split into diagonal blocks according to classification of
the symmetry of the orbitals in the irreducible representations of the point group.
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The sparsity of these matrices due to symmetry can be exploited by carrying out a
detailed analysis of the matrix contractions involved in the GHV method. This anal-
ysis, which is carried out here only for Abelian groups, leads to a symmetry-adapted
formulation of the GHV algorithm which generates significant computational savings
in both floating-point operations and memory storage.

The paper is organized as follows: In the next section the notation, definitions
and general theoretical background of the GHV methodology are given. Section 3 is
devoted to report the symmetry-adapted formulation of the GHV. The efficiency of
this formulation and the results obtained in a set of applications of the method are
reported and analyzed in Sect. 4. Finally, the conclusions of this work are given in the
last section.

2 Theoretical outline

2.1 General notation

In what follows we will consider a many-electron system having a fixed and well-
defined number of particles, N . We will also consider that the one-electron space is
spanned by a finite basis set of 2K orthonormal spin-orbitals. Under these conditions
the many-body Hamiltonian may be written in second quantization language [46] as:

Ĥ = 1

2

∑

p,q,r,s

0Hrs
pq a p † aq † as ar (1)

where the operators a p † and as refer to the fermion creator and annihilator operators
respectively, and 0H is a second-order matrix which collects the one- and two-electron
integrals over the basis set.

In this formalism a p-RDM, pD, corresponding to an N-electron state � may be
defined as:

pD
i1...i p
m1...m p = 1

p!
〈
�| ai1 † . . . ai p † am p . . . am1 |�

〉
≡ 1

p!
〈
�| p�̂

i1...i p
m1...m p |�

〉
(2)

where p�̂ is a p-electron density operator.
The anticommuting rules satisfied by the fermion operators, together with the res-

olution of the identity operator, render possible the decomposition of a p-RDM ele-
ment into a sum of terms involving lower-order RDM elements and additional terms
describing q-body correlation effects [3,27,28,30,40–43,50–59]. Let us consider the
decomposition of the 2-RDM which provides the simplest example. Thus, it can easily
be shown that

2! 2Di j
ml =1Di

m
1D j

l − 1Di
l δ

j
m +

∑

� ′ �=�

〈�| 1�̂i
m |� ′〉〈� ′| 1�̂

j
l |�〉 (3)
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The last term of this equation defines the elements of the second-order correlation
matrix (CM), 2C, or equivalently, of the G-particle-hole matrix, 2G, which have the
form:

2Ci j
ml =

∑

� ′ �=�

〈�| 1�̂i
m |� ′〉〈� ′| 1�̂

j
l |�〉 ≡ 2Gim

l j (4)

As can be seen, both matrices have the same elements but these elements occupy
different positions in both matrices; hence, they are different matrices with different
properties [56,59]. The corresponding operator definitions are therefore:

2Ĉi j
ml =

∑

� ′ �=�

1�̂i
m |� ′〉〈� ′| 1�̂

j
l ≡ 2Ĝim

l j (5)

These operators, which are very different from the 2-electron density operator, are at
the center of the G-particle-hole hypervirial equation methodology.

2.2 The GHV methodology

By applying a matrix-contracting mapping involving the G-particle-hole operator to
the matrix representation of the hypervirial of the N-electron density operator, one
obtains the G-particle-hole hypervirial (GHV) equation [40–45], whose compact form
is:

〈�|[Ĥ, 2Ĝim
l j ]|�〉 = 0 ∀ i, j, l, m (6)

As shown explicitly in ref. [40], using the second-quantized definition of the Hamilto-
nian in Eq. (6) and rearranging the creation and annihilation operators, we can express
the GHV equation in terms of only third- and lower-order matrices:

∑

p,q,r,s

0Hrs
pq

(3;2,1)Cpq j
rsl

1Di
m −

∑

p,q,r,s

0Hpq
rs

(3;2,1)Crsm
pqi

1Dl
j

+ 2
∑

p,r,s

0Hrs
pm

(3;2,1)Ci pj
rsl + 2

∑

p,q,r

0Hpq
jr

(3;2,1)Clrm
pqi (7)

+ 2
∑

p,q,r

0Hir
pq

(3;2,1)Cpq j
mrl + 2

∑

q,r,s

0Hql
rs

(3;2,1)Crsm
jqi = 0

where (3;2,1)C is a third-order CM, which is interrelated to the 3-RDM as follows [60]:

(3;2,1)Ci jl
pqr = 2! 2Di j

pr δl
q − 2! 2Di j

qr δl
p − 2! 2Di j

pq
1Dl

r + 3! 3Di jl
pqr (8)

When � is not a Hamiltonian eigenstate, the residual of the GHV equation, r.h.s
of Eq. (7), does not generally vanish. Instead of looking for the wave-function that
solves this equation, in the GHV method one looks directly for the corresponding
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CMs, or equivalently, and for computational convenience, for the RDMs. This can be
achieved by solving the following system of differential equations for the 2-RDM in
a transformation parameter λ [42]:

d 2Di j
ml

dλ
=

〈
�| [Ŝ, 2�̂

i j
ml ] |�

〉

λ
(9)

where the operator Ŝ, which depends on the residual of the GHV equation, is chosen
at each λ to minimize the energy along its gradient

Ŝ =
∑

p,q,r,s

〈�| [Ĥ, 2Ĝpr
sq ] |�〉λ 2Ĝsq

pr (10)

Equation (9) only determines the changes in the 2-RDM with λ, and hence, without
a knowledge of the 3-RDM, the differential equations are indeterminate. To remove
this indeterminacy, the 3-RDM elements are approximated with a modified version
of Nakatsuji–Yasuda’s algorithm [19,42,44]. With this approximation algorithm, the
system of differential equations can be propagated in λ until either (i) the least-squares
error of the GHV equation, or (ii) the least-squares error of its contraction into the
1-electron space [40] ceases to decrease [42,44]. Computationally, this is achieved
by integrating the differential equations with an adaptive variable step method due to
Fehlberg [42,44,61].

3 Symmetry-adaptation of the GHV method

Evaluations of the GHV method have very recently been implemented using sum
factorization and matrix-matrix multiplication at computational costs of K 6 in float-
ing-point operations and K 4 in memory storage [42]. In this section it is shown that
all intermediate arrays resulting from sum factorization can be defined by covariant
equations. Therefore, these arrays retain symmetry properties of the ordinary density
and electron integral matrices. The sparsity of all these (ordinary and intermediate)
matrices due to symmetry can be exploited to further enhance the efficiency of the
GHV method.

3.1 Analysis of the matrix contractions involved in the GHV equation method

As previously mentioned, the present version of our computational code implements
Eq. (7) in the form which explicitly depends on the RDMs. When replacing in Eq. (7)
the approximation algorithm for the 3-RDM elements, the structure of the terms show-
ing the most time-consuming operations, which are of the type

∑

r,s,p

0Hrs
pm

3Di pj
rsl , (11)
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is transformed into a sum of terms which are themselves formed by a triple or quadruple
product of matrix elements [42]

∑

r,s,p

0Hrs
pm

3Di pj
rsl =

∑

r,s,p

0Hrs
pm

[
3! Â ( 1Di

r
2Dpj

sl ) − 2 Â ( 1Di
r

1Dp
s

1D j
l )

+ 3! Â
∑

t,u

2�
i p
r t

(
1Dt (∗)

u − 1D̄t (∗)
u

)
2�

u j
sl

]
(12)

where Â is the antisymmetrizer operator, 1D(∗) and 1D̄(∗) are the 1-RDM and the
first-order hole reduced density matrix (1-HRDM) corresponding to a Hartree–Fock
reference calculation, and 2� is the second-order cumulant matrix, which is defined
as:

2�
i j
ml = 2! 2Di j

ml − Â
(

1Di
m

1D j
l

)
(13)

In order to render the construction time of the r.h.s. of this equation proportional to
K 6, each nest of loops appearing in the equation is sum factorized [42,62–64]. As an
example, let us just consider in detail the sum factorization of one of the elementary
products occurring in this expression:

∑

r,s,p

0Hrs
pm

2Di p
sl

1D j
r =

∑

r

[
∑

s,p

0Hrs
pm

2Di p
sl

]
1D j

r ≡
∑

r

2Xri
ml

1D j
r ≡ 2Ri j

ml

(14)

This procedure allows one to perform the operation efficiently in two stages starting
from the inner brackets outwards, with the auxiliary matrices defined by:

2Xri
ml =

∑

s,p

0Hrs
pm

2Di p
sl (15)

2Ri j
ml =

∑

r

2Xri
ml

1D j
r (16)

A detailed analysis of the mathematical operations involved in calculation of the
auxiliary matrices resulting from sum factorization reveals that all these intermediate
matrices are defined by covariant equations. For instance, matrices 2X and 2R can be
expressed in terms of elementary tensorial operations as follows:

2Xri
ml =

[ (((
0H ⊗ 2D

)(1,3,2,4)→(1,3,2,4)

(1,3,2,4)→(4,1,3,2)

)

con

)

con

]ri

ml

(17)

2Ri j
ml =

[ ((
2X ⊗ 1D

)(1,3,2)→(2,1,3)

(1,3,2)→(1,2,3)

)

con

]i j

ml
(18)
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where

(U ⊗ V)
i1...iu+v
m1...mu+v

= Ui1...iu
m1...mu

× Viu+1...iu+v
mu+1...mu+v

(19)

(Ucon)
i1...iu−1
m1...mu−1 =

∑

x

Ui1...iu−1x
m1...mu−1x (20)

(
U(1,...,u)→(τ (1),...,τ (u))

(1,...,u)→(σ (1),...,σ (u))

)i1...iu

m1...mu
= U

iτ (1)...iτ (u)
mσ(1)...mσ(u)

(21)

The covariance of these equations is very important since it implies that all the aux-
iliary matrices involved in GHV method retain symmetry properties of the ordinary
density and electron integral matrices which can be exploited to further enhance the
efficiency of the methodology. This is done in the following paragraphs.

3.2 Symmetry-adapted formulation of the GHV equation method

It is well-known that the operations in the symmetry group of a molecule, group F ,
leave the coefficients of the second-order matrix 0H unchanged, and therefore 0H is
an invariant (2,2)-tensor for the group F [65]. Analogously, if the N -electron state �

is a non degenerate one (or more generally belongs to a 1-dimensional representation
of F), then the p-RDMs are invariant (p,p)-tensors for F [65]. Therefore, when the
spin-orbitals are symmetry-adapted and ordered according to their irreducible repre-
sentations, the 1-RDM is block diagonal [65]. Moreover, the 2-RDM and 0H are sparse
and when F is Abelian they are also block diagonal, after an appropriate reordering.
As the auxiliary arrays resulting from sum factorization in the GHV methodology are
defined in terms of covariant equations, they are also invariant tensors for the group
F and has the same block structure as the density and electron integral matrices.
The structure of the symmetry forbidden coefficients in all these first- and second-
order matrices is easier to analyze when the group F is Abelian, and hence only this
kind of groups will be considered hereafter. When the studied electronic system has
non-Abelian symmetry group, an Abelian subgroup will be considered.

In order to show how the sparsity of all the ordinary and intermediate matrices due to
symmetry can be exploited to further enhance the efficiency of the GHV calculations,
let us just discuss in detail how to apply the block structure of the tensors to perform
the evaluation of the GHV operations for each of the auxiliary operations resulting
from sum factorization of Eq. (14). The auxiliary matrix 2Xri

ml defined in Eq. (17) is
a (2, 2)-tensor for the group F , and therefore the non null blocks are associated to
irreducible representations πr , πi , πm, πl of F such that πr ⊗ πi = πm ⊗ πl . Hence,
one could avoid the evaluation of the symmetry forbidden elements, and calculate the
remaining elements as follows:

2Xri
ml =

∑

πs ,πp
πr ⊗πs=πp⊗πm
πi ⊗πp=πs⊗πl

∑

s∈πs ,p∈πp

0Hrs
pm

2Di p
sl (∀ r ∈ πr , i ∈ πi , m ∈ πm, l ∈ πl)

(22)
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In a similar way, the non null blocks of elements 2Ri j
ml in Eq. (18) are associated to

irreducible representations πi , π j , πm, πl of the group F such that πi ⊗π j = πm ⊗πl ,
and for each of these blocks one evaluates

2Ri j
ml =

∑

r∈π j

2Xri
ml

1D j
r (∀ i ∈ πi , j ∈ π j , m ∈ πm, l ∈ πl) (23)

At this point, it is important to note that these constrained nested loops may be
efficiently implemented with the help of auxiliary matrices that signal when the direct
product of the irreducible representations of orbitals contains the totally symmetric
representation of the molecular point group. Using these matrices it is possible both
to avoid matrix reordering as well as to skip whole symmetry forbidden blocks of
spin-orbitals in one single step.

The remaining matrix operations involved in the GHV methodology, which have
been described in [42], can be analysed and evaluated in a similar way. Hence, if
ordinary density and electron integral matrices entering in the GHV equation are
invariant tensors for the group F , then at each iteration of the GHV methodology both
the residual of the GHV equation and the intermediate auxiliary matrices used to evalu-
ate it are invariant tensors for F . Therefore, it is possible to exploit their block structure
to improve the efficiency of the GHV computations and reduce the memory require-
ments. In the next Section the computational advantages of this symmetry-adapted
formulation of the GHV (sa-GHV) approach will be discussed and illustrated.

4 Efficiency of the sa-GHV equation method and its application to a relevant
calculation

4.1 Efficiency of the sa-GHV equation method

While the exact number of matrix operations involved in the sa-GHV method is dif-
ficult to obtain in general, it is possible to develop a rough estimation. Thus, let us
consider that the group F has f irreducible representations. If we assume that the par-
titioning of molecular spin-orbitals according to irreducible representation is strictly
regular, then a straightforward calculation shows that (2, 2)-tensors have f blocks
of size K 2/ f × K 2/ f , so they have K 4/ f non-null coefficients, and the operations
in Eq. (22), which is one of the terms showing the most time-consuming operations,
have a time proportional to f × (

K 2/ f
)3 = K 6/ f 2. These estimates show that the

computational costs of the GHV method can be reduced by as much as a factor of f
in storage and f 2 in floating-point operations. It must be noted that there are other
kind of operations of lower complexity involved in the sa-GHV method, and therefore
these relations are, as mentioned, rough estimations of the efficiency.

In order to compare these estimates with those actually achieved, we have carried
out a number of calculations on a series of selected small to medium sized systems in
their ground states at equilibrium experimental geometries [66]. These systems, which
have different point groups, have been chosen in order to explore the efficiency of the
sa-GHV method and to compare the improvements implemented by the algorithm in
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each group. The PSI3 quantum chemistry package [67] has been used to calculate
the one- and two-electron integrals, the orthonormal molecular orbitals and the initial
values, at the HF level of approximation, of all the matrices required for initiating the
iterative GHV process. In order to fairly assess the performance improvement due to
symmetry, two sets of calculations have been carried out using the same algorithms.
Thus, in one set of calculations we have assumed the largest Abelian subgroup of the
point group describing the full symmetry of the system determined by PSI3 package
and in another set the group assumed corresponds to C1 symmetry. Consequently, the
gains due to symmetry do not arise from spurious reasons but rather directly reflect
the savings inherent in the symmetry-adapted method.

Tables 1 and 2 report the statistics pertaining to the computational cost and hard-
ware requirements of GHV calculations for a number of molecules using three different
basis sets. Instead of giving absolute values, which are strongly dependent on hardware

Table 1 Comparison of floating-point operations requirements of the GHV computational algorithms:
ratios of the non-symmetry-adapted to the symmetry-adapted formulations

System Group Irr. Rep. Basis set

STO-3G 6-31G 6-31G(d)

NH3 Cs 2 2.3 2.7 3.1

H2O2 C2 2 2.9 4.2 3.7

FH C2v 4 1.5 3.9 5.8

H2O C2v 4 4.0 5.0 6.5

CH4 D2 4 4.4 7.8 9.8

C2H6 C2h 4 6.7 10.1 11.1

Li2 D2h 8 5.1 13.1 19.8

C2H2 D2h 8 6.4 14.3 20.0

C2H4 D2h 8 8.1 16.3 24.2

Table 2 Comparison of memory requirements of the GHV computational algorithms: ratios of the non-
symmetry-adapted to the symmetry-adapted formulations

System Group Irr. Rep. Basis set

STO-3G 6-31G 6-31G(d)

NH3 Cs 2 1.88 1.91 1.93

H2O2 C2 2 2.00 2.00 2.00

FH C2v 4 2.84 3.00 3.43

H2O C2v 4 3.09 3.20 3.54

CH4 D2 4 4.00 4.00 4.00

C2H6 C2h 4 3.76 3.82 3.87

Li2 D2h 8 6.35 6.72 7.30

C2H2 D2h 8 5.68 6.00 6.87

C2H4 D2h 8 6.18 6.39 7.07
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facilities, the tables document the ratios of the computer time and memory require-
ments between the calculations performed in the largest Abelian subgroup of the point
group describing the full symmetry of the system determined by PSI3 and those per-
formed in C1 symmetry. As can be appreciated from the documented data presented in
Tables 1 and 2, the improvement increases not only with the order of the group but also
with the size of the basis set considered, because the orbitals forming the larger basis
sets are usually more evenly distributed among the representations of the group. The
results show that computational efficiency ranges from 1.5 to 24.2 in floating-points
operations rates and from 1.88 to 7.30 in memory allocation. These computed factors
of reduction due to symmetry are indeed close to the theoretical estimates in most of
the cases. This asymptotic limit is only actually achieved when the symmetry block-
ing of the orbitals is optimum. However, values of ∼ 0.3 f 2 in computer times and
∼ 0.9 f in memory are achieved in cases where the partitioning of molecular orbitals
according to irreducible representation is far from regular, such as in 6-31G(d) acety-
lene which has 10, 1, 3, 3, 1, 10, 3 and 3 orbitals of ag, b1g, b2g, b3g, au, b1u, b2u , and
b3u symmetries, respectively.

4.2 Application of the sa-GHV equation method to the torsional potential
in ethylene

Finally, as an application of the newly developed program, we have studied the chal-
lenging torsional potential in ethylene. This calculation, which is computationally
very costly without the symmetry adaptation, is accurately carried out as will now be
shown.

While at its equilibrium (D2h) geometry ethylene is a well-behaved closed-shell
molecule whose π -valence ground state can be described accurately by single-refer-
ence methods, it becomes a diradical at the barrier, when the π -bond is completely
broken. Thus, at the twisted (C2v at 90◦, and D2 otherwise) geometry the ethylene’s
ground state is two-configurational. The tortional potential has been calculated by
freezing all degrees of freedom except the torsional angle, and using experimental
geometrical parameters [66]. Total energies and unoptimized barrier height calculated
by the GHV method using a minimal (STO-3G) basis set are presented in Table 3. For
comparison, we also report usual ab initio spin-restricted single-reference HF, MP2,
CISD, and CCSD model results, and FCI ones, which is why a minimal basis set has
been considered. Corresponding potential energy curves are shown in Fig. 1. As can be
appreciated, HF, MP2 and CISD methods lead to severe unbalanced treatment of (π)2

and (π∗)2 configurations, which results in unphysical shapes of the PES, i.e., a sharp
cusp at 90◦ and large errors in barrier heights. In contrast, the CCSD and GHV models
perform well, producing very similar cuspless PESs which closely follow the FCI one,
the GHV barrier height being slightly overestimated due to a degraded treatment of
both the untwisted ethylene at 0◦ and twisted ethylene at 90◦. Predictions of total ener-
gies and unoptimized barrier height calculated using a non-minimal (6-31G) basis set
are also reported in Table 3. The results show that in this case HF, MP2, CISD, CCSD
and GHV models lead to unphysical shapes of the PES when compared with the best
available variational one (CISDTQQ within a frozen core approximation where inner
core spin-orbitals have been assumed to be fully occupied in every configuration).

123



J Math Chem (2012) 50:2155–2167 2165

Table 3 Total energies (hartree) for ethylene torsional potential using minimal (STO-3G) and non-minimal
(6-31G) basis sets

Angle (deg) HF MP2 CISD CCSD GHV FCI/CISDTQQ

STO-3G
0 −77.072087 −77.195686 −77.222830 −77.234132 −77.237479 −77.235361
15 −77.065863 −77.189859 −77.217388 −77.228905 −77.232329 −77.230147
30 −77.047245 −77.172451 −77.201228 −77.213458 −77.216933 −77.214742
45 −77.016406 −77.143695 −77.174949 −77.188652 −77.192030 −77.190031
60 −76.973693 −77.104058 −77.139988 −77.156698 −77.159606 −77.158314
75 −76.919692 −77.054365 −77.099969 −77.123690 −77.124146 −77.125967
80 −76.899332 −77.035786 −77.086926 −77.114938 −77.113377 −77.117583
85 −76.877865 −77.016311 −77.075030 −77.108935 −77.104073 −77.111926
88 −76.864474 −77.004232 −77.068826 −77.107146 −77.099375 −77.110240
90 −76.855342 −76.995153 −77.065221 −77.106128 −77.098790 −77.109913
�E (eV) 5.90 5.46 4.29 3.48 3.77 3.41

6-31G
0 −78.003573 −78.183866 −78.197996 −78.211307 −78.221353 −78.216720
45 −77.957844 −78.141763 −78.157080 −78.172159 −78.177310 −78.178299
84 −77.847617 −78.039796 −78.062343 −78.090750 −78.108686 −78.105232
86 −77.840379 −78.033129 −78.056660 −78.087359 −78.104492 −78.103334
88 −77.833002 −78.026343 −78.051006 −78.084445 −78.100528 −78.102080
90 −77.825490 −78.019440 −78.045416 −78.082124 −78.096562 −78.101530
�E (eV) 4.85 4.47 4.15 3.52 3.40 3.13

Unoptimized barrier heights, �E = E(90◦)−E(0◦) (eV), are also shown. Geometry used: rCC = 1.339 Å,
rC H = 1.086 Å, α(HC H) = 117.6◦
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Fig. 1 Ethylene torsion, minimal basis set. In contrast to HF, MP2 and CISD, CCSD and GHV curves do
not exhibit an unphysical cusp and closely follow the reference FCI curve
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In spite of this, CCSD and GHV still represents a definite quantitative advantage over
both the HF, MP2 and CISD results.

5 Conclusions

In this paper, we have outlined a powerful scheme for including point group sym-
metry in GHV calculations. The method provides a means for exploiting sparsity in
the density, integral and sum factorization intermediate matrices due to symmetry and
is amenable to an efficient computational implementation. Highly symmetric mole-
cules containing a few tens of atoms no longer represent a formidable computational
obstacle since the cpu and memory requirements of calculations using this approach
are not limited by the total number of spin-orbitals forming the basis set but rather
by the maximum number of spin-orbitals belonging to the irreducible representations
of the point group describing the full symmetry of the system. Finally, let us remark
that the reported strategy for exploiting symmetry within the GHV method may also
greatly accelerate other approaches for computing directly the 2-RDM such as the
solution of the second-order contracted Schrödinger equation and related equations.
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