

Automatic Derivation of Software Test-Cases Code from Formal Models

Ilan Rosenfeld1 and Claudia Pons1,2

(1) Facultad de Informática, Universidad Nacional de La Plata (UNLP)
Calle 50 esq. 120, La Plata, Buenos Aires

(2) Universidad Abierta Interamericana (UAI)
cpons@info.unlp.edu.ar

Abstract

Model-Driven Testing or MDT is a new and
promising approach for software testing automation that
can significantly reduce the efforts in the testing cycle of
every software development. It consists in a black box
test that uses structural and behavioral models to
automate the tests generation process. In this context, we
developed a tool which allows developers to translate a
data model with formal constraints to its corresponding
Java code, automating the generation of strong test-cases
codes and specifying them not only in java language but
also in two formal languages, such as OCL and Alloy.
This tool gives a trustworthy and verifiable support with
different techniques. In this way, the test-cases code
generation process is improved and its quality enhanced..

1. Introduction
In the last few years, model-driven development [1]

(MDD) has become very popular in the software
engineering environment. The development of new
technologies and innovations which aim to give models
the main and active role in the software development
process, against traditional approaches, let the design and
software be independent from the architecture and
platform, with system portability. Through a series of
transformations, a platform independent model is
translated into source code, dependent on a specific
platform. As a consequence, the system productivity is
enhanced, its quality enriched, and its comprehension,
evolution, maintenance and reutilization are improved.

The success of any MDD project depends heavily on
the quality of the source models. They must be accurate,
consistent and complete.

When thinking about models, we use to consider
graphic notations such as UML [3]. Usually, UML
models consist of diagrams completed with natural
language descriptions. The problem of these descriptions

is that even though they are easy to write and understand,
they are ambiguous. To overcome this problem, OCL
(Object Constraint Language) [4] was born. It is a textual
language with a formal foundation, based on the Set
Theory and First-order Logic, but with an object-oriented
nature that facilitates its understanding. OCL is the
standard language to define integrity constraints on UML
models. In this way, the combination UML/OCL is
considered a formal language.

One of the branches of MDD is the Model-Driven
Testing (MDT) [2], a new approach for software testing
automation, which can significantly reduce the efforts in
the tedious testing cycle of software development. It
consists in a black box testing technique that uses
structural and behavioral models to automate the
generation of test-cases code.

After analyzing several automatic code generation
tools from software models, we conclude that they are
not taking full advantage of what formal modeling
languages offer to testing automation. For this reason our
work consisted in building a new software tool for
automating the generation of the code of test-cases, but
with strong formal foundation.

The tool allows developers to automatically generate
Java code from a UML/OCL model, including both the
model classes and their test-cases code. The generated
test-cases code is written in Java but it is enhanced with
formal specifications which allow the static and dynamic
formal analysis of the system. In this way, the test-cases
code generation process is improved and its quality
enhanced.

The rest of the paper is organized as follows. Section
2 describes the basic features of a new software tool for
test-cases code generation. Section 3 presents an
extension of the tool which improves the tests through
the application of a richer formalism. Section 4 discusses
a set of related works. Finally, conclusions are presented
in section 5.

5to Congreso Nacional de Ingeniería Informática / Sistemas de Información
 Ing. de Sistemas, Ing. de Software y Gestión de Proyectos

ISSN: 2347-0372 © CONAIISI 2017 538

2. A Tool for Test-cases Code Generation
In this section we describe the characteristics of a new
software tool for automating the generation of test-cases
code. The tool was developed taking advantage of the
Eclipse Modeling Project (https://eclipse.org/modeling)
that focuses on the evolution and promotion of model-
based development technologies within the Eclipse
community by providing a unified set of modeling
frameworks, tooling, and standards implementations.
First, we briefly describe the main elements of Eclipse
that we included in our development. Then, we explain
the construction process and features of the tool.

2.1. Eclipse Modeling Tools

The Eclipse Modeling Framework (EMF) [6]
represents a set of plugins that can be used to model a
data model and generate code or other kind of output
based on that model. There is a difference between the
metamodel and the concrete model: the metamodel
describes the model structure, whereas the model is a
concrete instance of it. It provides a framework that can
be included to store the model information, which uses a
default data format called XMI (XML metadata
interchange) to persist model data. It allows the
developer to create metamodels by different means, for
example: XMI, Java annotations, XML schemas, etc.

Papyrus [7] is a subproject component that aims to
provide an integrated environment and usable by the user
to edit any type of EMF model, supporting UML and
related modeling languages such as MARTE. Papyrus
provides diagrams editors for EMF based modeling
languages such as UML2 and the chance of integrating
these editors (which might be GMF based or not) with
other tools. It also offers an advanced support for UML
profiles, allowing the user to define standard UML2
based DSL editors and their extension mechanism. Its
main feature, related to what was mentioned above, is a
very powerful set of personalization mechanisms that can
be used to create user defined Papyrus perspectives,
having the same appearance and simulating a domain
specific language (DSL) editor.

Acceleo [8] is an open source project, licensed under
EPL (Eclipse public license), available for free. It was
designed for MDA technologies developers to increment
their software development productivity. It allows the
generation of files using UML, MOF and EMF modules.
It has a complete integration both with Eclipse and the
EMF framework, code and model synchronization,
incremental generation, easy updating and templates
handling, syntax coloring, auto-complete and errors
detection. It requires having a previous knowledge both
in Java and modeling.

2.2. Test Code Generation Process

Starting from an OCL/UML data model, the Java code

will be automatically generated, creating the classes with

their corresponding test-cases code and an OCL file

which will contain all the formal constraints in a

centralized form. The process is carried out in three steps,

as described below.

2.2.1. Creating the data model with Papyrus
When creating a Papyrus project with the Eclipse IDE, a

default UML class diagram will be created in three

formats: traditional model view (.di), XML annotations

(.notation) and Directories tree (.uml). The focus of the

tool is on the .di file, from where we can create a

traditional class diagram, such as the one displayed in

figure 1. The model in the figure represents a university

institution, containing Students, Teachers, Subjects,

Careers and Careers Plans, among others. The diagram

also includes a set of OCL restrictions (the palette

Constraint elements) representing invariants and being

associated with specific classes. For example, Student are

not allow to be enrolled in more than one career, being

reflected in the following OCL invariant,

Context Student inv:

self.careers -> size() = 1

We can also see a more complex invariant, defining that

in order to teach a subject, a teacher must have a

specialty on its area, being written as follows,

Context Subject inv:

 self.teachers->forAll(o | o.specialtie->includes(self.area))

In Papyrus, the OCL invariants are associated to a

model class through a pointing arrow, as we can see in
the figure 1.

There are other OCL constraints at the model, not
visible at first sight, which represent the pre and post
conditions of its defined operations. For example, for the
enrolSubject(subject) operation of the Student class,
which enrolls the student to a subject, there is an OCL
pre condition specifying that in order to enroll in a
subject a student must have already passed all its
correlatives, as follows,

context Student::enrolSubject(subject)
pre: self.passedSubjects->includesAll(subject.correlatives)

Also, another precondition which checks that the
subject inscription is enabled is defined as follows,

context Student::enrolSubject(subject)
pre:subject.inscriptionAllowed=true

5to Congreso Nacional de Ingeniería Informática / Sistemas de Información
 Ing. de Sistemas, Ing. de Software y Gestión de Proyectos

ISSN: 2347-0372 © CONAIISI 2017 539

Figure 1. Class diagram

Then, we define two post conditions for the method. The

first one is called isEnrolledInSubject and checks that the

specified subject has been actually added to the

collection, with the following body,

post: self.subjectsIsEnrolledIn-> includes(subject)

The second one, named adds1Subject, specifies that,

post: self.subjectsIsEnrolledIn->size() =

self.subjectsIsEnrolledIn@pre->size()+1

This last one checks that the collection size is
incremented in one. The expression
self.subjectsIsEnrolledIn@pre represents the objects
collection before its modification.

The implementation code should check that all the pre
and the post conditions are valid when executing the
methods.

The tool we implemented also allows us to define the
body of each class method in a different range of
languages and formats. In the case study of this paper we
define methods bodies using OCL; since this format is
quite similar to the Java syntax, its later translation (from
the model class into the Java .class file) will be almost
direct.

2.2.2. Acceleo translation code
For this case study, we choose the UML metamodel type

(the tool give us the chance of using other types). When

generating the acceleo file, the following elements will

be generated:

 Two java classes, Activator.java and

Generate.java: configuration files, specifying

the included libraries among other things. In this

case, we will leave their default values.

 An Acceleo module called generate.mtl: we will

write our translation code into this module. Its

default code can be seen in figure 2 (to

comprehend its syntax you can check the

official documentation in [8]).

Figure 2. Default generate.mtl file

The first step we must do is to choose an UML model

from which generate the corresponding classes, so we
will attach the recently created model as the source
model in the Acceleo configuration.

Since this code is extensive and the main objective of
the work is not to analyze it in detail, we will just focus
on its most relevant parts. The code loops over every
class of the UML source model, and for each one it
creates a .java class with its name, and another one

5to Congreso Nacional de Ingeniería Informática / Sistemas de Información
 Ing. de Sistemas, Ing. de Software y Gestión de Proyectos

ISSN: 2347-0372 © CONAIISI 2017 540

TestClassToTest.java which tests it. Also, it creates the
integration test, which runs every other generated test in
only one step and returns its verdict, and the file
University.ocl, that will have every OCL constraint
defined associated to its context and centralized. We can
see the beginning of the final Acceleo code in figure 3.

Figure 3. Acceleo code

The generateElement template is executed for each

class of the model. An abstract class, a subclass or a
regular class are created on each of them, also invoking
the method generarDefAtributos that, representing
another template, defines the class attributes, always with
protected as the access modifier to make them accessible
from the whole package and from their tests.

For each class, an internal class representing a checker
is also generated (see figure 4). This checker consists in
two methods, respectInvariants(classInstance) and
respectCondition(condition). Its main objective is to use
it whenever a class instance needs to be updated to
ensure its invariants keep respected.

At the same time, the class constructor is generated,
which checks through the checker that an instance
respects its invariants when assigning its attributes. If
not, it returns an instance with all its default values.

Generated getters are regular getters, returning the
desired attribute. Instead, setters follow this procedure:

1. Save the current instance state through the

saveState generated method

2. Set the attribute value based on the received

parameter.

3. Check the instance still respects its invariants. If

not, goes to step 4

4. Return the instance with its previous status,

using the returnState generated method.

When defining each class method (figure 5), a copy of
the object is generated with the name previous. Then, the
method preconditions are checked. If they fail, the
method execution terminates without modifying the
instance. If they succeed, the method is executed and

then the instance invariants are checked; if they are not
being respected, the instance is returned to its previous
status using the created copy, having the method no
effect on the instance.

Generated tests for each class extend from the special
class TestCase in order to test their methods through the
JUnit[9] library.

Figure 4. Checker generation

Figure 5. Generation of each class methods

The main idea is to associate a checker mock
(simulated object to which a specific behavior is set using
Mockito [10] library) to the class instance and then verify
for each method to test that, if we set that the object
passes the method preconditions and the invariants are
always respected (which includes after executing the
method body) through its checker, then method post
conditions must hold as well. Any other case (passing
preconditions but not the invariants or not passing

5to Congreso Nacional de Ingeniería Informática / Sistemas de Información
 Ing. de Sistemas, Ing. de Software y Gestión de Proyectos

ISSN: 2347-0372 © CONAIISI 2017 541

preconditions) may lead to pass post conditions or not,
but we do not consider this.

Now that we have defined and analyzed our code, the
next step is its execution. Running the generate.mtl file
as an Acceleo application, the classes and test cases code
defined before will be generated.

2.2.3. Analyzing the results
After executing the generate.mtl file, the corresponding

.java classes and the .ocl le are generated (see in figure

6). Integration test can be run in order to check in just

one step that every generated test passes, as shown in

figure 7. Regarding to the generated code for each class,

we can see a part of the Student class code in figures 8

and 9, and an example Test in figure 10, in which, after

validating invariants and pre conditions, it must be

assured that post conditions hold as well.

Methods that include OCLToJava on their names
translate OCL bodies to its corresponding Java code.

Figure 6. Created files after executing the Acceleo
code

Figure 7. Integration Test code and its execution
result in JUnit

Figure 8. Student class and its internal checker

Figure 9. Student class generated methods

5to Congreso Nacional de Ingeniería Informática / Sistemas de Información
 Ing. de Sistemas, Ing. de Software y Gestión de Proyectos

ISSN: 2347-0372 © CONAIISI 2017 542

Figure 10. Example test: Student class method

3. Improving Tests with a Richer Formalism
The translation described above allows us to
automatically obtain the code of the test cases. These
tests will be executed dynamically.

At the same time we will offer another level of
verification, in order to improve the coverage of the tests.

We will use the formal language Alloy [5] that allows
the static verification of models.

Alloy is a formal modeling language, with formal
syntax and semantics, based on first-order relational
logic. Its main target is the formal specification of object-
oriented models. At a glance, Alloy is similar to UML
class diagrams and OCL, but having simpler and cleaner
semantics, and being also supported by a rich verification
tool named Alloy Analyzer [12]. The Alloy Analyzer
analyzes model properties automatically. It applies a
delimited verification, limiting the number of objects in
each class to a fixed number and checking assertions over
the specification within that limit. It uses a SAT-solver to
answer verification queries, converting them to logic
Boolean formulas.

3.1. Translating from OCL to Alloy

As described in previous section, our translation
generates the Java code plus an .ocl file with every OCL
constraint that appeared on the source UML model (see
figure 11). Since Java handles OCL in its libraries, using
EMF let us check the model consistency at an OCL level.

Then, we will use the AlloyMDA[11] tool to translate
the OCL code we have generated to its correspondent
Alloy code, from which we will be able to use the Alloy
Analyzer to check its consistency.

In our case study, by executing the following
command:

 $runghc OCL2Alloy < University.ocl University.uml

 We obtain the Alloy code, printed by console, as we
can see in figure 12. We must copy this code and paste it
in an .als file called University.als. In the Alloy code, the
expression sig, abbreviation for signature, represents a
set of objects (similar to a Java class). These signatures
may or not have a set of attributes. For example, the class
Career has the expression some Subject, where some
means “at least one” (there are other expressions such as
lone or at most one, one or exactly one, etc.). Another
relevant expression in the code is subjectsIsEnrolledIn :
Subject some ->Time. This is translated as a set of
subjects in which the student is enrolled at a certain
moment. Time appears here since the collection can be
modified by some method, having to access it in its
different states over the variable time.

After defining the signatures, another kind of
expressions are introduced, which are headed by the key
word pred (abbreviation for predicate). They represent
the definition of properties, returning the analyzer true or
false if it can find instances that satisfy the predicate or
not. It is a way of verifying that our original methods are
executed successfully.

Figure 11. Generated OCL Centralized Code

Then, we can see the key word fact, which represents
a restriction assumed to always hold (in other words, an
invariant). For example, we see the following fact
expressing that a subject can never have more than 99
students,

fact {all t:Time | all self:Subject | #self.enrolledStudents <100}

5to Congreso Nacional de Ingeniería Informática / Sistemas de Información
 Ing. de Sistemas, Ing. de Software y Gestión de Proyectos

ISSN: 2347-0372 © CONAIISI 2017 543

The expression all t:Time gives the fact its invariant
character, holding over the time.

Figure 12. Alloy code generated by AlloyMDA

3.2. Using the Alloy Analyzer

After generating the Alloy code, we can take advantage
of its formal analyzer to verify the source UML/OCL
model. This analyzer was developed to support
lightweight formal methods. As such, its main objective
is to provide a complete automatic analysis, unlike the
theorem testing techniques usually used in similar
specification languages. It works through a reduction to
SAT, using first order logic to translate Alloy
specifications to very long boolean expressions that can
be automatically analyzed by a SAT solver (explaining
why from an Alloy logic expression, its analyzer can try
to find a satisfying model).

Clearly, the best feature of this tool is finding at least
one model which does not satisfy it, revealing the
presence of errors. The analyzer can be freely
downloaded from [5] in .jar format, being portable and its
main screen is displayed in figure 13.

Figure 13. Alloy Analyzer main screen

After opening our .als file, in order to run it, we must
specify with the special command run the predicates to
run with their scope (setting boundaries). The errors we
might find or not will occur inside this scope, being
possible to have more/other errors outside.

That is to say, if an example is found, the predicate
can be satisfied. On the other hand, if no examples are
found, the predicate will be invalid (false for every
possible example), or maybe valid but outside the
specified scope. We now specify our command to
execute the .als file:

run enrolSubject for 4 but exactly 1 Student, exactly 1 Time

In this case, we test the predicate enrolSubject with a
scope that will limit our search to those instances that
have at least 4 instances of each signature, except from
Student, which will have just one object. Also, for the
sake of simplicity we execute it for just one time
instance.

Figure 14 displays the messages returned by the tool
console after running the Alloy analyzer. Messages
include some irrelevant warnings, the analyzer
configuration data, if some instances were found or not,
the time it took to execute the analysis and its verdict. In
this example the analyzer reported that the model is
consistent and let us visualize the generated instance
(figure 15).

Figure 14. Alloy Analyzer results

5to Congreso Nacional de Ingeniería Informática / Sistemas de Información
 Ing. de Sistemas, Ing. de Software y Gestión de Proyectos

ISSN: 2347-0372 © CONAIISI 2017 544

Figure 15. model instance found by the analyzer

To exemplify what happen when the analyzer deals with
an inconsistent model, we add an inconsistency in the
case study. Knowing that we have the following
constraint in the class Subject,

self.enrolledStudents->size() < 100

We will add a new constraint to the same class,

self.enrolledStudents ->size() > 100

Straightforwardly we can see that the model is going to
be inconsistent, since there is no subject that can have
less than 100 students and at the same time more than
100. Nevertheless, our Java code will be generated as
before and its test will still be successful (since we will
use mock objects that will always/never pass their
invariants). But after translating the OCL code to its
correspondent Alloy code, the situation will be different.
If we execute the Alloy analyzer, we will get the answer
in figure 16, without finding model instances, and
warning us that our model might be inconsistent.

Figure 16. No model instances to show

 To find concrete evidence of the violation of the model

specification, we can use the Alloy command check

which, given an assertion, looks for counterexamples that

let us observe how certain facts are violated. In this case,
the facts will be the two previously mentioned invariants,

and the assertion will be created with the name

noCollapsedSubjects, specifying that no subject will

count with more than 100 students:

assert noCollapsedSubjects { no s:Subject —

#s.enrolledStudents < 100}

Now we must execute the check command, invoking the

assertion: check noCollapsedSubjects for 101 but exactly

1 Subjec.t After executing the analyzer (for this example

we used 5 students instead of 100 to have a better

response time), we get the answer showed in figure 17,

having found a counterexample. Then we can visualize it

as shown in figure 18.

Figure 17. The analyzer has found a counterexample

5to Congreso Nacional de Ingeniería Informática / Sistemas de Información
 Ing. de Sistemas, Ing. de Software y Gestión de Proyectos

ISSN: 2347-0372 © CONAIISI 2017 545

Figure 18. Generated counterexample

4. Related Work
Several tools provide support for automatic test code
generation from software models. We summarize here
the most relevant ones:

 TestEra[12] is a testing framework based on Java
programs specification. To test a method, it uses the
specification of the methods pre conditions to generate
tests inputs and the post conditions to check the output
correctness. This framework introduced the black box
systematic testing in Java programs using Alloy as a
technology that allows a limited and exhaustive testing,
where a program is tested against every non-equivalent
entry within a specific input space. It was very effective
when trying to find bugs in several applications which
take structured tests in a complex way.

UML base model and OCL verification: Modeling
languages such as UML and OCL are increasingly used
in early stages of the system design, offering a huge set
of constructions. As a result, existent verification engines
just support a small part of them. In [13] a new approach
is proposed, using model transformations to unify
different descriptions meanings in a base model. Along
the transformation, constructions are expressed in a
complex language with a small group of what are called
core elements. This simplification allows interacting with
a wide range of verification engines with different
advantages and weaknesses.

 Model-based tests generation for web applications: In
[14] a tool to filter/setup test code within the project is
introduced, based on PGBT models. These models are
written in a DSL called PARADIGM and consist in UI

test patterns (UITP), describing the test objectives. To
generate test cases code, the tester must provide test input
data to each UITP model. Nevertheless, without a test
case generation algorithm filter/configuration, the test
cases quantity may be so big that it turns unmanageable.
So, the approach in [14] introduces a technique to define
test cases code generation parameters to generate a
reasonable number of them, comparing the different test
strategies and measuring the model tool performance
against a capture-replay tool which is used for web
testing.

UML modeling environments for tests creation are
usually uncomfortable and force users to know many
UML details. The Fokus!MBT tool [15] is a
multiparadigm test modeling environment based on the
UML testing profile and an industry notation adopted by
the OMG for model-based testing. Fokus!MBT simplifies
the creation and authorship of test models with a specific
methodology support.

5. Conclusion and Future Works
We developed a tool which allows translating a data

model with formal constraints to its corresponding Java

code, automating the generation of strong test cases

codes and specifying them not only in the Java language

but also in two formal languages, such as OCL and

Alloy. In a few steps a regular UML and Java user with

some OCL knowledge can define a data model and count

with the needed tools to verify whether that model is

consistent and to automatically generate the system code

with associated test-cases code. This gives developers a

trustworthy and verifiable support with different

techniques.

5to Congreso Nacional de Ingeniería Informática / Sistemas de Información
 Ing. de Sistemas, Ing. de Software y Gestión de Proyectos

ISSN: 2347-0372 © CONAIISI 2017 546

 Comparing it with the related works we described

before, we can point the following advantages:

 Dual verification: we achieve both static and dynamic

verification.

 UML-Alloy connection: generally, the proposed tools

associate UML/OCL with MDT or OCL with Alloy. In

this case, we consistently integrate the three of them.

 Better Tools: we made use of stronger and newer tools

such as Acceleo, Papyrus and Mockito against

MOFScript and EasyMock.

 Complete process: generally, only one part of the

software development process is optimized/automated.

In this case, we provide a code ready for production

and which is verifiable, adaptable and usable for a wide

range of users.

To extend the proposed solution, we are working on the

following lines:

 After modifying the code we got in the first instance

and also modifying the original model, regenerate the

code with the Acceleo tool without altering the updates

we have made or the text which was delimited by

special markers.

 Have less abstract tests and try not to use mocks, in

order to generate more specific tests and more related

with each method to make them more trustworthy.

 When finding an inconsistence in the source model,

generate counterexamples in the natural/Java language,

so that users who do not understand formal verification

can understand and help to fix them.

 Allowing the developer to select the programming

language for the generated code (additionally to Java).

6. References
[1] Claudia Pons, Roxana Giandini, Gabriela Perez. Desarrollo
de Software Dirigdo por Modelos. Universidad Nacional de La
Plata. Editorial: McGraw-Hill Educacion y Edulp. Marzo 2010

[2] Mark Utting and Bruno Legeard. Practical Model Based
Testing: A tools approach. 2007

[3] Unified Modeling LanguageTM (UML)
http://www.omg.org/spec/UML/

[4] Mandana Vaziri and Daniel Jackson. Some Shortcomings
of OCL, the Object Constraint Languag e of UML. MIT
Laboratory for Computer science . December, 1999

[5] Alloy: http://alloy.mit.edu/alloy/

[6] Eclipse Modeling Framework EMF:
http://eclipse.org/modeling/emf/

[7] Papyrus: http://eclipse.org/papyrus

[8] Acceleo: http://wiki.eclipse.org/Acceleo

[9] JUnit: http://junit.org/junit4/ [10 Mockito:
http://site.mockito.org/

[11] AlloyMDA: http://sourceforge.net/p/alloymda/wiki/Home/

[12] Shadi Abdul Khalek, Guowei Yank, Lingmin g Zhang,
Darko Marinovt, Sarfraz Khurshid. TestEra: A tool for testing
Java Programs using Alloy speci cations. Electrical and
Computer Engineering , University of Texas at Austin.

[13] Frank Hilken, Philipp Niemann, Robert Wille and Martin
Gogolla. Towards a Base Model for UML and OCL Veri
cation. University of Bremen, Computer Science Department

[14] Miguel Nabuco, Ana C.R. Paiva. Model-based test case
generation for Web Applications. Department of Informatics
Engineering. Faculty of Engineering of University of Porto

[15] Marc-Florian Wendland, Andreas Homann, Multi-
Paradigmatic Test Modeling Environment. Fraunhofer, Ina
Schieferdecker. Fokus!MBT – A multiparadigm test modeling
environment.

5to Congreso Nacional de Ingeniería Informática / Sistemas de Información
 Ing. de Sistemas, Ing. de Software y Gestión de Proyectos

ISSN: 2347-0372 © CONAIISI 2017 547

