
Strategy Patterns and Quality Views for Evaluating and

Improving Usability

Belen Rivera1, Pablo Becker1, Philip Lew2 and Luis Olsina1

1GIDIS_Web, Web Engineering School at Universidad Nacional de La Pampa, Argentina
2School of Computer Science and Engineering, Beihang University, China

[riveramb, beckerp, olsinal]@ing.unlpam.edu.ar, philiplew@gmail.com

Abstract. For those software organizations that frequently perform quality

assurance activities devoted to measurement, evaluation (ME) and

change/improvement (MEC) projects, a well-founded quality evaluation and

improvement approach may be useful. In this direction, we have developed a

holistic quality evaluation and improvement approach whose architecture is

based on two pillars, namely: a quality multi-view modeling framework, and

ME/MEC integrated strategies. In order to bolster the former pillar, in this work

we specify an ontology for quality views. Quality views and their ‘influences’

and ‘depends on’ relationships between them, are paramount for defining and

selecting evaluation and improvement strategy patterns to be used in ME/MEC

projects. A strategy pattern is a reusable solution to recurrent problems in MEC

projects. For a specific project goal, the selected strategy pattern allows one to

instantiate a concrete strategy, which embraces a set of tailored activities and

methods for measurement, evaluation, analysis and change. In this paper, we

also discuss a set of strategy patterns and document a concrete strategy pattern

applied in one case study, which is aimed at understanding and improving

Usability of a social network.

1 Introduction

Developing and managing successful software and web applications with economic

and quality issues in mind is not an easy job. Software organizations that perform

quality assurance activities should have a well-established quality evaluation and

improvement approach to fulfill measurement, evaluation (ME) and change (MEC)

project goals in a systematic and disciplined way. For instance, the quality evaluation

approach should clearly establish ME/MEC strategies –which include a set of

principles, activities, methods and tools- to specify quality characteristics and

attributes, and collect, store, and use metrics and indicators and their values in a

trustworthy manner. Furthermore, in order to make the analysis and decision-making

process more robust, it is necessary to ensure that measures and indicators values are

repeatable and comparable among the organization's projects [18].

For a given ME/MEC project, firstly, a concrete project goal should be established,

for example: ‘Understand the Usability of the XYZ system’. Then, for achieving this

goal, one specific ME strategy with well-established activities and methods should be

selected. Strategy is a frequently used and broad term, so for our purposes, we have

defined the strategy concept as: “principles, patterns, and particular domain concepts

and framework that may be specified by a set of tailored processes, in addition to a

set of appropriate methods and tools as core resources for helping to achieve a

project goal” [5]. In order to choose the suitable strategy from a set of ME/MEC

strategies, the target quality view must be taken into account. A quality view relates

accordingly an entity super-category such as product, system, system in use, with a

quality focus such as internal quality (IQ), external quality (EQ), and quality in use

(QinU). For the above example, the underlying quality view is the System Quality

View, where System is the entity super-category to be evaluated regarding the EQ

focus and the Usability characteristic. In turn, Usability is represented in an EQ

model, which may combine sub-characteristics and attributes. Lastly, the ME strategy

should allow selecting metrics for quantifying attributes and indicators for

interpreting these quality requirements, with the aim to analyze, recommend and

propose change actions on the basis of the yielded outcomes (i.e., measures and

indicators values).

In recent years, we have developed a holistic quality evaluation and improvement

approach [26] whose architecture is based on two pillars, namely:

(1) a quality multi-view modeling framework; and,

(2) ME/MEC integrated strategies.

In turn, an integrated strategy embraces three capabilities: (2.i) the ME/MEC

domain conceptual base and framework; (2.ii) the process perspective specifications;

and, (2.iii) the method specifications. These capabilities support the principle of being

integrated [29] since the same terms are consistently used for activities and methods.

Looking at the (2.i) capability of a strategy, we have built a conceptual framework

so-called C-INCAMI (Contextual-Information Need, Concept Model, Attribute,

Metric and Indicator) [27], which explicitly and formally specifies the ME concepts,

properties, relationships and constraints, in addition to their grouping into

components. This domain ontology for ME was also enriched with terms of a process

generic ontology [5]. For example, a ‘measurement’ -from the ME domain ontology-

has the semantic of ‘task’ -from the process generic ontology. Likewise, the ‘metric’

term has the semantic of ‘method’; the ‘measure’ has the semantic of ‘outcome’, and

so forth. In light of having a more complete conceptual base for the holistic quality

evaluation and improvement approach, we sought the opportunity of developing an

ontology for the quality multi-view modeling framework, i.e., for the above-mentioned

(1) pillar. It is worth mentioning that quality views and their ‘influences’ and

‘depends on’ relationships are also considered by the ISO 25010 standard [16].

However, the definition of the quality view term and other related terms, are missing

in this standard. Also, other works mix up the quality view concept with the quality

focus concept, as we see later on. Consequently, developing an ontology of quality

views can be helpful to provide an explicit semantic for this domain, in addition to

strengthening our holistic quality evaluation and improvement approach.

On the other hand, quality views and their relationships are paramount for defining

ME and MEC strategies. Some known ME/MEC strategies for software are: Goal

Question Metric (GQM) [3], Continuous Quality Assessment Methodology (CQA-

Meth) [32], Practical Software Measurement (PSM) [22], and Quality Improvement

Paradigm (QIP) [4]. However, most of these strategies have not well specified some

of the three capabilities, i.e., the ME domain conceptual base and framework (2.i), the

process perspective specifications (2.ii), or the method specifications (2.iii). Nor are

these capabilities often considered simultaneously, in an integrated way. Moreover, in

the quoted ME/MEC strategies quality views and their relationships are also often

neglected.

In the last decade, we have earned experience in developing a couple of specific

ME/MEC strategies. For instance, we have developed the GOCAME (Goal-Oriented

Context-Aware Measurement and Evaluation) and SIQinU (Strategy for Improving

Quality in Use) strategies, which were applied in several concrete evaluation and

improvement projects [20, 26, 27, 28, 29]. For these ME/MEC projects, one or two

quality views were considered. Also, both strategies have the three above-mentioned

capabilities, which are supported in an integrated way.

Recently, we have envisioned the idea of packaging the earned experience into

strategy patterns. It is recognized that patterns have had and continue to have a

significant impact in software and web engineering [10, 12]. In a nutshell, the

pattern’s main aim is to provide a general and reusable solution to a recurrent

problem. We have observed that strategy patterns can be applied to recurrent ME or

MEC problems of any project. As a result, we specify a set of strategy patterns that

offers flexible and tailorable solutions for evaluating and improving the quality

focuses for different entities in ME/MEC projects. To the best of our knowledge, this

specific contribution fills a gap in the current literature.

Therefore, the major contributions of this research are: (i) Specify an ontology of

quality views; (ii) Discuss the quality views ontology applicability for defining and

selecting strategy patterns in ME/MEC projects; (iii) Analyze strategy patterns for

different quality views and project goals; and (iv) Specify a concrete strategy pattern

and perform its instantiation for the evaluation and improvement of the Facebook’s

mobileapp Usability.

Following this Introduction, Section 2 describes related work addressing research

that deals with quality views and strategy patterns. Section 3 specifies the ontology of

quality views, in the context of our holistic evaluation and improvement approach.

Also, quality views and EQ and QinU focuses are illustrated considering the Usability

and User Experience (UX) characteristics. Section 4 stresses the practical impact of

the quality multi-view framework when defining and selecting strategy patterns for

specific ME/MEC project goals. Also, this section documents thoroughly one strategy

pattern. Section 5 discusses other strategy patterns and their usefulness. Finally,

Section 6 draws our main conclusions and outlines future work.

2 Related Work

In this work, we present a holistic quality evaluation and improvement approach

whose architecture is based on two pillars, namely: (1) a quality multi-view modeling

framework; and, (2) ME/MEC integrated strategies. Firstly, regarding the state-of-the-

art literature we analyze the research work related to ontologies of quality views.

Secondly, we review those works that deal with ME/MEC strategies and ultimately

with strategy patterns. Also, we discuss if the existing research about a holistic quality

evaluation approach takes into account these two concerns (pillars) in an intertwined

and integrated manner.

Regarding the first pillar, there exist works that deal with quality views and quality

models. But as far as we know there is no research defining and specifying an

ontology of quality views, nor an explicit glossary of terms. One of the most relevant

documents previously cited is the ISO 25010 standard, in which different quality

views and their ‘influences’ and ‘depends on’ (or ‘is determined by’) relationships are

represented informally in its Annex C. It illustrates that the software lifecycle

processes (such as the quality requirements process, design process and testing

process) influence the quality of the software product and the system; the quality of

resources, such as human resources, software tools and techniques used for the

process, influence the process quality, and consequently, influence the product

quality; among other influence relationships between quality views. However, the

explicit meaning of the quality view concept in [16] is missing. Moreover, there is no

clear association between a quality focus and an entity category, nor explicit

definitions of the different entity categories as we do in Table 1. Rather, it outlines

views in the context of a system quality lifecycle model, where some views can be

evaluated by means of the quality model that the standard provides.

Another initiative related to quality views is analyzed in [23] in which just the

‘influences’ relationship between EQ and QinU characteristics is determined by

means of Bayesians networks, taking as reference the ISO 9126-1 [17] standard.

However, it does not discuss a holistic quality evaluation approach that links quality

views with ME/MEC strategies, as we propose. Finally, in [26] the 2Q2U

(internal/external Quality, Quality in use, actual Usability, and User experience)

quality framework is proposed. This framework extends the quality models defined in

[16] adding new sub-characteristics for EQ and QinU, and considers the ‘influences’

and ‘depends on’ relationships for three quality views, namely: Software Product,

System and System-in-Use Quality Views. But the explicit quality view component

and the included terms as we propose in this paper are missing. Also, the 2Q2U

quality models were instantiated using an integrated strategy called SIQinU [20]. This

strategy allows improving QinU incrementally, from the EQ improvement viewpoint.

SIQinU is an instance of one of the strategy patterns that we discuss in Section 5.

Regarding the second concern, i.e., ME and MEC integrated strategies, there exists

a couple of related works such as [2, 4, 22, 32]. Specifically, [2] presents

GQM+Strategies, which is built on top of the so-called GQM strategy [3]. Both

strategies include the principle of the three integrated capabilities [29]. But none

consider the quality views’ concepts and the ‘influences’ and ‘depends on’

relationships, nor the ME/MEC strategy pattern idea. In [21], measurement patterns

are defined to establish objectives, sub-objectives and metrics for an organizational

goal starting from the GQM approach. The intention of these patterns is to give

reusable solutions to similar problems found in the creation of measurement

programs. Additionally, authors state that the idea of measurement patterns was taken

from [12], but the specification of the illustrated patterns follows no recommended

style such as name, intention, problem, solution/structure, known uses, etc.

Many researches that deal with patterns are very often intended for early stages of

development and change, focusing for instance on usability patterns and user interface

designs, or architectural designs. But, they are seldom intended for evaluation and

improvement stages in which quality views and MEC strategy patterns should be used

appropriately. For example, authors in [10, 11] define a framework that expresses

relationships between Software Architecture and Usability. The proposal consists of

an integrated set of design solutions that have been identified in various cases in

industry, but in our opinion, a clear separation of concerns among quality views,

quality models, ME/MEC integrated strategies and strategy patterns is missing.

In summary, there is no related work for the definition and specification of an

ontology of quality views. Additionally, there is no research that relates quality

views’ terms with non-functional requirements' terms as we document in Section

3.1.1. Our approach ties together quality views (entity super-categories and quality

focuses) and their relationships, in addition to tailor-able strategies for measurement,

evaluation, analysis and improvement, which can be packaged into strategy patterns.

Strategy patterns are aimed at easing the strategy instantiation for common and

recurrent ME/MEC projects’ goals.

3 Foundations for the Holistic Quality Evaluation Approach

As indicated above, the architecture of the holistic quality evaluation and

improvement approach is built on two pillars. Sub-section 3.1, discusses the first

pillar, that is, the quality multi-view modeling framework, which specifies the

proposed ontology of quality views and the grouping of its concepts into the

quality_view component. This ontology allows specifying for instance Software

Product, System, and System-in-Use Quality Views, which are paramount for

defining strategy patterns. Sub-section 3.2, analyzes what is an integrated strategy for

the purpose of evaluation and improvement.

3.1 Quality Multi-View Modeling Framework

A ME/MEC project can involve one or more entity super-categories, e.g., Software

Product, System, System in use. Each entity super-category is evaluated considering

its corresponding quality focus such as IQ, EQ, and QinU. The relationship between

an entity super-category and its quality focus is called Quality View. For example, the

‘System’ entity super-category and the ‘EQ’ focus conform the ‘System Quality

View’. Additionally, for each quality view an appropriate quality model must be

instantiated, as part of the definition and evaluation of non-functional requirements

for a ME project. A quality model has a quality focus (the root characteristic such as

EQ) in addition to characteristics and sub-characteristics (such as Usability and

Operability) to be evaluated which combine measurable attributes. So the quality

multi-view modeling framework embraces concepts such as quality views, quality

models, relationships between quality views, among other issues.

Next, sub-section 3.1.1 shows the ontology of quality views and the linking of the

quality_view component with the previously developed C-INCAMI conceptual

framework [5, 27]. Then, sub-section 3.1.2 discusses, for the sake of exemplification,

how Usability and UX characteristics can be related with quality views.

3.1.1 Ontology of Quality Views
The ISO 25010 standard deals with quality models and to a lesser extent with

quality views. It establishes ‘influences’ and ‘depends on’ relationships between

quality views, but, as commented in Section 2 the explicit meaning of the quality

view term among other related terms, as well as the linking with non-functional

requirement terms are missing. In order to improve these weaknesses, we have

recently defined in [31] an ontology of quality views.

use the same ontology with some revised

An ontology is a way of structuring a conceptual base by specifying its terms,

properties, relationships and axioms or constraints. A well

ontology says that “an ontology is an explicit specification of a conceptualization

[13]. On the other hand, van Heijst

regarding the subject of the conceptualization, e.g., domain ontologies, which express

conceptualizations that are intended for particular domains; and generic ontologies,

which include concepts that are considered to be generic across many domains.

Regarding the above classification, the quality views ontology can be considered

rather a domain ontology since its terms, properties and relationships are specific to

the quality area. However, some terms like entity super

generic. Fig. 1 depicts th

representation and communication p

defined in tables 1 and 2 respectively. For the construction of the ontology, we have

followed the stages proposed in the METHONTOLOGY [

it is not the aim of this paper addressing the

Instead, we present the ontology representation and a possible instantiation of it

Fig. 1. Terms and some instances

requirement terms are missing. In order to improve these weaknesses, we have

an ontology of quality views. In the present manuscript, we

se the same ontology with some revised definitions of terms and relationships.

An ontology is a way of structuring a conceptual base by specifying its terms,

properties, relationships and axioms or constraints. A well-known definition of

an ontology is an explicit specification of a conceptualization

]. On the other hand, van Heijst et al. [33] distinguish different types of ontologies

regarding the subject of the conceptualization, e.g., domain ontologies, which express

ations that are intended for particular domains; and generic ontologies,

which include concepts that are considered to be generic across many domains.

Regarding the above classification, the quality views ontology can be considered

y since its terms, properties and relationships are specific to

the quality area. However, some terms like entity super-category can be considered

1 depicts this ontology using the UML class diagram [24] for

representation and communication purposes. Also, its terms and relationships are

1 and 2 respectively. For the construction of the ontology, we have

followed the stages proposed in the METHONTOLOGY [9] approach. Nevertheless,

it is not the aim of this paper addressing the ontology construction process itself.

Instead, we present the ontology representation and a possible instantiation of it.

Terms and some instances for the ontology of Quality Views.

requirement terms are missing. In order to improve these weaknesses, we have

In the present manuscript, we

An ontology is a way of structuring a conceptual base by specifying its terms,

known definition of

an ontology is an explicit specification of a conceptualization”

] distinguish different types of ontologies

regarding the subject of the conceptualization, e.g., domain ontologies, which express

ations that are intended for particular domains; and generic ontologies,

Regarding the above classification, the quality views ontology can be considered

y since its terms, properties and relationships are specific to

category can be considered

] for

, its terms and relationships are

1 and 2 respectively. For the construction of the ontology, we have

] approach. Nevertheless,

ontology construction process itself.

Table 1. Ontology of quality views: Term definitions.

Term Definition

Calculable Concept

(synonym:

Characteristic,

Dimension, Factor,

Feature)

(from ME ontology)

A characteristic that represents a combination of measurable

attributes. Note 1: A calculable concept can be evaluated but

cannot be measured as an attribute. Note 2: A characteristic can

have sub-characteristics.

Calculable-Concept

Focus

It is a calculable concept which represents the root of a calculable-

concept model. Note 1: A calculable-concept focus is associated to

one entity super-category to be evaluated.

Calculable-Concept

Model

(from ME ontology)

The set of calculable concepts and the relationships between them,

which provide the basis for specifying the non-functional

requirements and their further evaluation. Note 1: A possible

instance of a Calculable-Concept Model is the ISO 25010 Quality-

in-use Model.

Calculable-Concept

View

Abstract relationship between one calculable-concept focus and

one entity super-category. Note 1: Names of calculable-concept

views are Quality View, Cost View, among others.

Entity Category

(synonym: Object

Category)

(from ME ontology)

Object category that is to be characterized by measuring its

attributes.

Entity Super-

Category

Highest abstraction level of an entity category of value to be

characterized and assessed in Software Engineering organizations.

Note 1: Names of entity super-categories are Resource, Process,

Software Product, System, System in use, among others.

External Quality It is the quality focus associated to the system entity super-category

to be evaluated.

Internal Quality It is the quality focus associated to the software product entity

super-category to be evaluated.

Process It is the entity super-category which embraces work definitions.

Process Quality It is the quality focus associated to the process entity super-

category to be evaluated.

Process Quality

View

It is the quality view that relates the process quality focus with the

process entity super-category.

Quality Focus It is a calculable-concept focus for quality.

Quality in Use It is the quality focus associated to the system-in-use entity super-

category to be evaluated.

Quality View It is a calculable-concept view for quality.

Resource It is the entity super-category which embraces assets that can be

assigned to processes, activities and tasks. Note 1: Examples of

assets are Tool, Strategy, Software team, etc.

Resource Quality It is the quality focus associated to the resource entity super-

category to be evaluated.

Resource Quality

View

It is the quality view that relates the resource quality focus with the

resource entity super-category.

Software Product It is the entity super-category which embraces software programs

(i.e., source codes), specifications (i.e., requirements specifications,

architectural specifications, data specifications, testing

specifications, etc.), and other associated documentation.

Software Product

Quality View

It is the quality view that relates the internal quality focus with the

software product entity super-category.

System It is the entity super-category which embraces software programs

(i.e., applications) running in a computer environment, but not

necessarily in the final environment of execution and usage.

System in Use It is the entity super-category which embraces operative software

applications used by real users in real contexts of use.

System-in-Use

Quality View

It is the quality view that relates the quality in use focus with the

system-in-use entity super-category.

System Quality View It is the quality view that relates the external quality focus with the

system entity super-category.

Table 2. Ontology of quality views: Relationship definitions.

Relationship Definition

dependsOn A calculable-concept view depends on other calculable-concept view.

describes A ME information need describes a calculable-concept focus

influences A calculable-concept view influences other calculable-concept view.

isRepresentedBy A calculable-concept focus can be represented by one or several

calculable-concept models.

pertains An entity category can be classified into an entity super-category.

One core term in this ontology is Calculable-Concept View. This term relates the

Entity Super-Category term with the Calculable-Concept Focus term. An Entity

Super-Category is the highest abstraction level of an Entity Category to be

characterized for measurement and evaluation purposes. On the other hand, a

Calculable-Concept Focus is a Calculable Concept that represents the root of a

Calculable-Concept Model.

Fig. 1 shows that instances of Entity Super-Category are Software Product, System,

and Process, amongst others. On the other hand, a Calculable-Concept Focus can be

for example a Quality Focus or a Cost Focus. Note that Cost Focus and Cost View are

not directly related with the quality domain, so they are gray-colored terms in Fig. 1

and are not defined in Table 1. Some instances of Quality Focus are for example

Internal Quality, External Quality and Quality in Use. In Table 1 we define Internal

Quality as “the quality focus associated to the software product entity super-category

to be evaluated”. Also, External Quality is defined as “the quality focus associated to

the system entity super-category to be evaluated”, and Quality in Use as “the quality

focus associated to the system-in-use entity super-category to be evaluated”.

The relationship between an Entity Super-Category and its associated Quality

Focus is the Quality View key concept of our ontology. A Quality View is a

Calculable-Concept View for quality. Instances of the Quality View term are

Software Product Quality View, System Quality View, System-in-Use Quality View,

Resource Quality View and Process Quality View terms, as shown in Fig. 1. It is

worth mentioning that in the figure not all instances of quality views are shown, e.g.,

the Service Quality View, amongst others.

Fig. 2 shows the influences and depends on relationships between instances of

quality views which are commonly present in development, evaluation and

maintenance projects.

Fig. 2. An instantiation of typical quality views

Fig. 3. The quality_view

framework. (Note that many C

visualization. In Fig. 7,

Thus, the Resource Quality View influences the Process

example, if a development team uses a new tool or method

entities of the Resource Entity Super

quality of the development process they are performing.

Quality View influences the Software Product Quality View. The Product Quality

View influences the System Quality, and this in turn influences the System

Quality View. On the other hand, the depends on relationship has the opposite

semantic.

As commented above, the relationship between two quality views are labeled as

influences and depends on.

and independent view roles for this r

the Resource Quality View is the

the dependent view. On the other hand, the

instantiation of typical quality views in software development projects.

quality_view component which extends the C-INCAMI conceptual

framework. (Note that many C-INCAMI components are drawn without terms for better

7, the measurement and evaluation components are expanded).

Thus, the Resource Quality View influences the Process Quality View. For

example, if a development team uses a new tool or method –both considered as

entities of the Resource Entity Super-Category- this fact impacts directly in the

quality of the development process they are performing. Likewise, the Process

uality View influences the Software Product Quality View. The Product Quality

View influences the System Quality, and this in turn influences the System-in-Use

Quality View. On the other hand, the depends on relationship has the opposite

As commented above, the relationship between two quality views are labeled as

depends on. Additionally, Fig. 3 shows the corresponding dependent

roles for this relation as well. Looking at Fig. 2, for example,

the Resource Quality View is the independent view while the Process Quality View is

. On the other hand, the influences and depends on relationships

INCAMI components are drawn without terms for better

Quality View. For

both considered as

this fact impacts directly in the

Likewise, the Process

uality View influences the Software Product Quality View. The Product Quality

Use

Quality View. On the other hand, the depends on relationship has the opposite

As commented above, the relationship between two quality views are labeled as

dependent

2, for example,

while the Process Quality View is

relationships

are transitive. Hence, it can be stated that the Resource Quality View influences the

Software Product Quality View, as also suggested in the ISO 25010 standard.

Lastly, note that the quality views ontology shares some terms with the ME

ontology presented in [27]. Particularly, in Fig. 3, an Entity Super-Category is an

Entity Category, which is a term from the non-functional requirements

component. Entity Category is defined in Table 1 as “the object category that is to be

characterized by measuring its attributes”. Also, a Calculable-Concept Focus is a

Calculable Concept and represents the root of a Calculable-Concept Model. In Table

1 a Calculable-Concept Model is defined as “the set of calculable concepts and the

relationships between them, which provide the basis for specifying non-functional

requirements and their further evaluation”.

As result, in Fig. 3, the new terms are grouped into the quality_view

component which are linked with the former C-INCAMI non-functional

requirements component.

3.1.2 Exemplifying Quality Views with EQ and QinU Focuses
When evaluating Usability and UX for mobile and web entities, suitable quality

views should be considered [15, 25] regarding the project goal. For this aim, potential

quality views are those yellow-colored in Fig. 2, namely: Software Product, System

and System-in-Use Quality Views. For each quality view's focus, a quality model

should be selected. A quality model specifies non-functional requirements in the form

of characteristics, sub-characteristics and attributes.

For the sake of illustration, a question that a reader may ask is: to which quality

focus can Usability and UX characteristics be related? The right answer to this

question is that Usability can be related to the IQ and EQ focuses, while UX to the

QinU focus.

In Figures 4 and 5, the Usability, Actual Usability (Usability in use, as synonym),

and UX characteristics are defined. These characteristics are included in the 2Q2U

v2.0 quality models [25, 26], which are basically an extension of the ISO 25010

models [16]. Usability is defined in Fig. 4 as “degree to which the product or system

has attributes that enable it to be understood, learned, operated, error protected,

attractive and accessible to the user, when used under specified conditions”. This

definition considers Software Product and System entity super-categories, so

Usability and its sub-characteristics (i.e. Understandability, Learnability, Operability,

User error protection, UI aesthetics and Accessibility) are related to the IQ and EQ

focuses respectively.

In addition, we have defined Actual UX in Fig. 5 as “degree to which a system in

use enable specified users to meet their needs to achieve specific goals with

satisfaction, actual usability, and freedom from risk in specified contexts of use” [25].

This definition considers the System-in-Use entity super-category so UX and its sub-

characteristics (e.g., Satisfaction, and Actual Usability) are related to the QinU focus.

As a consequence, Usability and UX are linked mainly to the three yellow-colored

quality views represented in Fig. 2. That is, Usability is a characteristic related to both

Software Product Quality View and System Quality View. Instead, UX is a

characteristic related just to the System-in-Use Quality View. This clear separation of

concerns between Usability concepts and quality views and their relationships foster a

more robust evaluation and improvement approach, as we discuss later on.

Fig. 4. Definitions of sub-characteristics related to the Usability characteristic for the EQ focus.

Fig. 5. Definitions of some characteristics and sub-characteristics for the QinU focus.

Fig. 6 illustrates two target entity super-categories (System and System in Use) and

their corresponding quality focuses (EQ and QinU) with some quality characteristics.

This rough schema is derived from some components of Fig. 3. For the ‘System’

entity super-category (System box in Fig. 6) other sub-entity categories are identified

such as ‘Mobile/Web Application’ which in turn, from the GUI (Graphical User

Interface) standpoint, can be subdivided in ‘Basic/Advanced GUI objects’, ‘Task-

based GUI objects’, and so forth.

Fig. 6. Rough schema derived from Fig. 3, which relates the main building blocks for Target

Entity (mainly related to GUI objects for System) and Context Entity Categories, Quality

Focuses (just for EQ and QinU), Measurable Properties, Measurement and Evaluation.

It is important to remark that an entity cannot be measured directly, but by means

of its attributes. Attributes are quantified using metrics during the measurement

process and are interpreted using indicators during the evaluation process. Fig. 6

illustrates the link between Measurable Properties –attributes-, Measurement (light-

blue box) and Evaluation (pink box). Therefore, ‘Usability’, a characteristic for the

‘EQ focus’, combines a set of attributes for evaluating GUI objects. For the EQ focus

other characteristics (and attributes associated to other System sub-entities) such as

‘Information Quality’, ‘Security’, among others, can be used for ME purposes.

Fig. 6 also depicts the ‘System in Use’ box (i.e., the target entity super-category)

with the corresponding ‘QinU’ box (i.e., the quality focus and the UX characteristic

and sub-characteristics). Looking at the first box, two main sub-entity categories are

identified viz., ‘Task-based App in use’, and ‘Perception-based App in use’. Concrete

task-based app-in-use entities can be evaluated using attributes combined to

‘Effectiveness’, ‘Efficiency in use’ and ‘Learnability in use’ sub-characteristics (see

definitions in Fig. 5), which can be measured objectively. Conversely, perception-

based app-in-use entities involve those subjective measures for ‘Satisfaction’ sub-

characteristics such as ‘Usefulness’, ‘Trust’, ‘Pleasure’, ‘Comfort’, and so on.

Hence, Usability deals with the specification and evaluation of interface-based sub-

characteristics and attributes of a system or product, while Actual Usability deals with

the specification and evaluation of task-based sub-characteristics and attributes of an

app in use, and Satisfaction with perception-based sub-characteristics and attributes.

Taking into account the influences and depends on relationships between quality

views, Fig. 6 shows that the QinU focus (System-in-Use Quality View) depends on

the EQ focus (System Quality View). Considering some empirical observations made

in [20], we can indicate for instance that Actual Usability depends not only on EQ

Usability, but also on other sub-characteristics such as Information Quality and

Efficiency.

Lastly, Fig. 6 depicts two Context boxes, and Fig. 3 represents Context as an Entity

Category. Context is a special kind of entity category representing the state of the

situation of a target entity to be assessed, which is relevant for a particular ME

information need. We discussed in [25] that Context is paramount, as instantiation of

QinU requirements must be done consistently in the same context so that evaluations

and improvements can be accurately assessed and compared. Also context is

somewhat important regarding the System Quality View. For instance, System in Use

is characterized by a ‘Context-in-Use’ entity, which in turn can aggregate

‘Environment’, ‘User’ and ‘Task’ sub-entities, while ‘Context’ for System can be

characterized by sub-entities such as ‘Device’, ‘Screen’, ‘Operating System’, etc. To

describe the Context, Context Properties (Fig. 3) are used which are also Attributes.

3.2 Integrated Strategies for Measurement, Evaluation and Improvement

As described in the Introduction Section, integrated ME/MEC strategies are the

second pillar of our holistic quality evaluation and improvement approach. The fact

of modeling quality views and their relationships is crucial for the aim of this pillar,

since strategies are chosen considering quality views to be evaluated according to the

ME/MEC project goal.

In our approach, an integrated strategy simultaneously supports three capabilities

[29]: a domain conceptual base and framework, process perspective specifications,

and method specifications. Regarding the first capability, Fig. 3 shows the C-INCAMI

conceptual base and framework, which explicitly specifies the ME/MEC terms,

properties, relationships and constraints, in addition to their grouping into

components. The second capability, the process specifications, usually describes a set

of activities, tasks, inputs and outputs, interdependencies, artifacts, roles, and so forth.

Additionally, process specifications can consider different process perspectives such

as functional, behavioral, informational and organizational [8]. Usually, process

specifications primarily state what to do rather than indicate the particular methods

and tools (resources) used by specific activity descriptions. The third capability

provides the ability to specify methods, which ultimately represent the particular ways

to perform the ME and MEC tasks.

So far, we have developed a couple of specific ME/MEC strategies, such as

GOCAME and SIQinU. GOCAME is a strategy useful for ME project goals that

embraces one quality view. That is, a project goal related to understand the current

situation of an entity belonging to an entity category with regard to the corresponding

quality focus.

On the other hand, SIQinU supports the QinU/EQ/QinU evaluation and

improvement cycles, starting evaluations from Task-based and/or Perception-based

App-in-use entities –both illustrated in Fig. 6-, and their corresponding characteristics

and attributes. So SIQinU embraces two quality views (System-in-Use Quality View

and System Quality View) and explores the aforementioned relationships between

views.

Due to the experience gained in the last decade in the development and use of the

above strategies [19, 20, 25, 28, 29], we have recently observed that different

strategies can be applied to recurrent problems within given measurement, evaluation

and change/improvement situations for specific projects' goals. Thus, we have

envisioned to develop a set of strategy patterns that offer reusable and instantiable

solutions. They are essentially “experience in a can” ready to be opened and used by

evaluators. In the next section, we thoroughly specify one strategy pattern.

To summarize, our holistic quality evaluation and improvement approach can help

software organizations to reach the planning and performing of measurement,

evaluation and change project goals in a systematic and disciplined way. The

approach allows embracing different quality focuses and entity categories in a flexible

yet structured manner by means of quality views with the final aim of defining and

instantiating specific strategies to achieve a project goal.

4 Documenting the GoMEC_1QV Strategy Pattern

In Software Engineering, a well-known definition for design patterns is “each pattern

describes a problem which occurs over and over again in our environment, and then

describes the core of the solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same way twice” [12]. The idea

was taken from Alexander [1] who was the first in introducing patterns for the urban

domain, but the core concept was later applied to software and web domains. In other

words, the idea of patterns is to provide a reusable and customizable solution to a

recurrent problem in similar situations.

Regarding this, we see different situations when establishing evaluation projects.

Project goals can be aimed toward different types of evaluation purposes so a suitable

strategy to achieve a given goal should be selected. That is, the strategy should be the

most suitable one for the intended goal. Strategy patterns arise as a way for providing

a solution in the instantiation of ME/MEC strategies considering the project goal and

the number of included quality views.

We have specified a set of strategy patterns [30], following to some extent the

pattern specification template used in [12]. Our template includes the following items:

(1) name: A descriptive and unique name, usually expressed in English; (2) alias:

Acronym or other names for the pattern; (3) intent: Main objective for the pattern; (4)

motivation (problem): Project problem/goal solved by the strategy pattern; (5)

applicability: Situations in which the pattern can be applied; (6) structure (solution):

Generic structure and instantiable solution that the strategy pattern offers; (7) known

uses: References of real usage; (8) scenario of use: Concrete example and illustration

for the instantiated pattern.

It is worth to remark that the ontology of quality views plays a central role in

defining and instantiating strategy patterns. That is, without a clear specification of

the terms and relationships for quality views, the further specification of strategy

patterns could not be done appropriately. Specifically, the ontology of quality views

fosters the specification of strategy patterns and their instantiation regarding different

ME/MEC project goals.

If a project has a goal such as ‘improve the usability of the XYZ mobile

application’, this means that it has an ‘improve’ purpose which embraces the System

Quality View. This is because the concrete Entity is the ‘XYZ mobile application’

which belongs to the System Entity Super-Category, and the Quality Focus is EQ

(recall Fig. 4, where Usability is the characteristic linked to the EQ focus). For this

goal, it is necessary not only to understand the current situation of the entity but also

to perform changes on it in order to re-evaluate it and gauge the improvement gain.

Another project goal can have the same ‘improve’ purpose, even though the quality

view involved could be a different one (e.g., Software Product Quality View, Process

Quality View, or System-in-Use Quality View). Hence, for a concrete MEC project

embracing one quality view, the same MEC strategy pattern should be selected and

tailored accordingly. That is, for the intended quality view, the pattern (its processes

and methods) should be instantiated appropriately. This strategy pattern is the so-

called Goal-oriented Measurement, Evaluation and Change for One Quality View

(alias GoMEC_1QV).

The items used to specify the pattern are the following:

Intent: To provide a solution in the instantiation of a measurement, evaluation,

analysis and change strategy aimed at supporting a specific improvement goal of a

project when one quality view is considered.

Motivation (Problem): The purpose is to understand the current situation of a

concrete entity in a specific context for a set of characteristics and attributes related to

a given quality focus and then improve the entity and re-evaluate it in order to gauge

the improvement gain, through the systematic use of measurement, evaluation,

analysis and change activities and methods.

Applicability: This pattern is applicable in MEC projects where the purpose is to

understand and improve the quality focus of the evaluated entity for one quality view,

such as System, System-in-Use Quality Views, among others.

Structure (Solution): The pattern structure is based on the three capabilities of an

integrated strategy viz., the specification of the conceptual framework for the MEC

domain, the specification of MEC process perspectives, and the specification of MEC

methods. GoMEC_1QV provides a generic course of action that indicates which

activities should be instantiated during project planning. It also provides method

specifications for indicating how the activities should be performed. Specific methods

can be instantiated during scheduling and execution phases of the project. Below, we

describe the main structural aspects of the three strategy capabilities.

I. The concepts in the non-functional requirements, context,

measurement, evaluation, change, and analysis

components (Fig. 3 and 7) are defined as sub-ontologies. The included

terms, attributes and relationships belong to the MEC area. In Fig. 7 we

show just the main ME terms. Note that ME terms in Fig. 7 are also

enriched with terms from a generic process ontology [5] by means of

stereotypes. These concepts are used consistently in the activities,

artifacts, outcomes and methods of any ME/MEC strategy.

Fig. 7. Measurement

framework enriched with process terms.

Fig. 8. Generic process from the functional and behavioral perspectives for the

 and evaluation components of the C-INCAMI conceptual

framework enriched with process terms.

Generic process from the functional and behavioral perspectives for the GoMEC_1QV

pattern.

C_1QV

II. The process specification is made from different perspectives, i.e.,

functional which includes activities, inputs, outputs, etc.; behavioral,

which includes parallelisms, iterations, etc.; organizational, which deals

with agents, roles and responsibilities; and informational, which includes

the structure and interrelationships among artifacts produced or consumed

by activities. Considering the functional and behavioral perspective, Fig. 8

depicts the generic process for this pattern. The names of the eight (A1-

A8) MEC activities must be customized taking into account the concrete

quality view to be evaluated.

III. The method specification indicates how the descriptions of MEC

activities must be performed. Table 3 exemplifies two method

specification templates: one for a direct metric used as method

specification for direct measurement tasks; and the other for an

elementary indicator, used in elementary evaluations. Note that terms in

method specification templates come from the ME conceptual base. Many

other method specifications can be envisioned such as task usage log files,

questionnaires, aggregation methods for derived evaluation, amongst

others. For change activities traditional methods such as refactoring, re-

structuring, re-parameterization, among others can be specified as well.

Table 3. Method specification template for: a) Direct Metric and b) Elementary Indicator.

Known uses: GoMEC_1QV was used in a MEC project devoted to improve

Usability and Information Quality attributes of a shopping cart, i.e., from the System

Quality View through refactoring as change method [28]. Besides, this pattern was

instantiated in a MEC project for the Resource Quality View [29].

Scenario of use: The present example stems from the Facebook’s mobileapp (v3.8

for Android) Usability case study performed in Dec. 2013 [25], and then replicated

for the v14 in Sept. 2014, applying also the same Usability requirements.

The project's goal is to improve the entity by evaluating, analyzing and detecting

Usability problems, and recommending change actions for fixing weaknesses. So the

Quality View is ‘System Quality View’, i.e., the Entity Super-Category is ‘System’

and the concrete Entity is ‘Facebook mobile app’. The Quality Focus is ‘EQ’ where

the evaluated characteristic (Calculable Concept) is ‘Usability’ and its related

‘Understandability’, ‘Learnability’, ‘Operability’, ‘User Error Protection’ and ‘UI

Aesthetic’ sub-characteristics.

b) Elementary Indicator
Interpreted Attribute name:

Indicator name:

Author: Version:

Elementary Model:

• Elementary Model specification:

• Decision Criteria [Acceptability Levels]

� Name: Range: Description:

Scale: [Numerical | Categorical]

• Scale Type name: Value Type: Representation:

Unit

• Name: Description: Acronym:

a) Direct Metric
Quantified Attribute name:

 Metric name:

Objective: Author: Version:

Measurement Procedure:

• Type: Specification:

Scale: [Numerical | Categorical]

• Scale Type name: Value Type:

Representation:

Unit:

• Name: Description: Acronym:

Tool: (Note: Info about the used tool if any)

For the above project goal, the GoMEC_1QV strategy pattern should be selected

and instantiated for the ‘System Quality View’. Therefore, the 8 generic activities that

the pattern provides as a solution (Fig. 8) are instantiated. E.g., A1 is now renamed

‘Define Non-Functional Requirements for EQ’, A2 is renamed as ‘Design

Measurement for EQ’, and so on. In the rest of this sub-section, the 8 instantiated

activities are illustrated.

(A1) Define Non-Functional Requirements for EQ: The instantiated A1 activity

produces the ‘Non-Functional Requirements Specification for EQ’ document, which

includes the ‘Information Need Specification for EQ’ (Fig. 9), and the ‘Requirements

Tree for EQ’ artifacts. In Table 4, the Usability sub-characteristics and attributes

definitions included in the ‘Requirements Tree for EQ’ for this case study are shown.

Fig. 9. Summarized Information Need artifact produced in the instantiated A1 activity.

Table 4. Definition of EQ/Usability sub-characteristics and attributes –in italic.

Characteristic/Attribute 2Q2U v2.0 Definition

1 Usability See the definition in Figure 4.
1.1 Understandability

(synonym Appropriateness

Recognizability)

See the definition in Figure 4.

1.1.1 Familiarity Degree to which the user understand what the application, system's

functions or tasks are about, and their functionality almost instantly,
mainly from initial impressions

1.1.1.1 Global organization

scheme understandability

Degree to which the application scheme or layout is consistent and

adheres to either de facto or industry standard to enable users to
instantly understand its function and content.

1.1.1.2 Control icon ease to

be recognized

Degree to which the representation of the control icon follows or

adheres to an international standard or agreed convention.

1.1.1.2.1 Main control icon

ease to be recognized
Degree to which the representation of the main controls icons follows
or adheres to an international standard or agreed convention.

1.1.1.2.2 Contextual control

icon ease to be recognized

Degree to which the representation of the contextual controls icons

follows or adheres to an international standard or agreed convention.

1.1.1.3 Foreign language

support
Degree to which the application functions, controls and content has
multi-language support enabling user to change his/her language of

preference.

1.2 Learnability See the definition in Figure 4.

1.2.1 Feedback Suitability Degree to which mechanisms and information regarding the success,

failure or awareness of actions is provided to users to help them

interact with the application.

1.2.1.1 Current location

feedback appropriateness

Degree to which users are made aware of where they are at the current
location by an appropriate mechanism.

1.2.1.2 Alert notification

feedback appropriateness

Degree to which users are made aware of new triggered alerts that they

are involved by an appropriate mechanism.

1.2.1.3 Error message Degree to which meaningful error messages are provided upon invalid

ME Information Need's purpose: Improve User Viewpoint: Final user

Entity Category: Social Network Application Entity Super-Category: System

(Concrete) Entity: Facebook mobile app, v14 for Android

Quality Focus: External Quality

Context Properties: Mobile device type: "Mobile phone", Screen size: "540x960px/4.3inches",
Mobilephone generation: "Full-sized smartphone", amongst others.

Calculable Concepts (Characteristics): Usability and its related sub-characteristics:

Understandability, Learnability, Operability, User Error Protection, and User Interface Aesthetics

appropriateness operation so that users know what they did wrong, what information

was missing, or what other options are available.

1.2.2 Helpfulness Degree to which the software product provides help that is easy to find,

comprehensive and effective when users need assistance

1.2.2.1 Context-sensitive help

appropriateness

Degree to which the application provides context sensitive help

depending on the user profile and goal, and current interaction.

1.2.2.2 First-time visitor help

appropriateness

Degree to which the application provides an appropriate mechanism

(e.g. a guided tour, etc) to help beginner users to understand the main

tasks that they can do.

1.3 Operability See the definition in Figure 4.

1.3.1 Data Entry Ease Degree to which mechanisms are provided which make entering data

as easy and as accurate as possible.

1.3.1.1 Defaults Degree to which the application provides support for default data.

1.3.1.2 Mandatory entry Degree to which the application provides support for mandatory data

entry.

1.3.1.3 Widget entry

appropriateness

Degree to which the application provides the appropriate type of entry

mechanism in order to reduce the effort required.

1.3.2 Visibility (synonym

Optical Legibility)

Degree to which the application enables ease of operation through

controls and text that can be seen and discerned by the user in order to

take appropriate actions.

1.3.2.1 Color visibility

appropriateness

Degree to which the main GUI object (e.g. text, control, etc.) color

compared to the background color provide sufficient contrast and

ultimately appropriate visibility.

1.3.2.1.1 Brightness

difference appropriateness

Degree to which the foreground color of the GUI object (e.g. text,

control, etc.) compared to the background color provide appropriate

brightness difference.

1.3.2.1.2 Color difference

appropriateness

Degree to which the foreground text or control color compared to the

background color provide appropriate color difference.

1.3.2.2 GUI object size

appropriateness

Degree to which the size of GUI objects (e.g. text, buttons, and

controls in general) are appropriate in order to enable users to easily

identify and operate them.

1.3.2.2.1 Control (widget)

size appropriateness

Degree to which the size of GUI controls are appropriate in order to

enable users to easily identify and operate them.

1.3.2.2.2 Text size

appropriateness

Degree to which text sizes and font types are appropriate to enable

users to easily determine and understand their meaning.

1.3.3 Consistency Degree to which users can operate the task controls and actions in a

consistent and coherent way even in different contexts and platforms.

1.3.3.1 Permanence of

controls

Degree to which main and contextual controls are consistently

available for users in all appropriate screens or pages.

1.3.3.1.1 Permanence of

main controls

Degree to which main controls are consistently available for users in

all appropriate screens or pages.

1.3.3.1.2 Permanence of

contextual controls

Degree to which contextual controls are consistently available for
users in all appropriate screens or pages.

1.3.3.2 Stability of controls Degree to which main controls are in the same location (placement)

and order in all appropriate screens.

1.4 User Error Protection See the definition in Figure 4.

1.4.1 Error Management Degree to which users can avoid and recover from errors easily.

1.4.1.1 Error prevention Degree to which mechanisms are provided to prevent mistakes.

1.4.1.2 Error recovery Degree to which the application provides support for error recovery.

1.5 UI Aesthetics (synonym

Attractiveness)

See the definition in Figure 4.

1.5.1 UI Style Uniformity Degree to which the UI provides consistency in style and meaning.

1.5.1.1 Text color style

uniformity

Degree to which text colors are used consistently throughout the UI

with the same meaning and purpose.

1.5.1.2 Aesthetic harmony Degree to which the UI shows and maintains an aesthetic harmony

regarding the usage and combination of colors, texts, images, controls

and layouts throughout the whole application.

(A2) Design the Measurement for EQ: In the MEC project's scheduling phase,

metrics (as methods) are assigned to the instantiated activities. During the A2

(‘Design the Measurement for EQ’) activity, metrics are selected and assigned to

quantify all attributes of the requirements tree. Metrics are retrieved from a repository

(Metrics <<datastore>> in Fig. 8) and their specifications are based on templates such

as the one shown in Table 3. For instance, the Ratio of Main Controls Permanence

(%MCP) Indirect Metric quantifies the Permanence of main controls attribute (coded

as 1.3.3.1.1 in Table 4). The metric’s objective is “to determine the percentage of

permanence for controls from the set of main controls (buttons) in the application

selected screens”. Fig. 10 shows full details of the metric specification.

Concrete Entity: Name: Facebook app; Version: 14 (Set 2014); Sub-Entity Description: Set of Screens of

the Facebook app where the Main controls bar is (or should be) containing the set of Main controls (Buttons)

Attribute: Name: Permanence of main controls; Code: 1.3.3.1.1 in Table 4

Indirect Metric: Name: Ratio of Main Controls Permanence (%MCP); Objective: To determine the

percentage of permanence for controls from the set of main controls in the application selected screens;

 Author: Santos L.; Version: 1.0;

Calculation Procedure: Formula: %MCP = �∑ ∑ �	
����������
��∗�� � ∗ 100; for i=1 to m and j=1 to n, where m is

the number of application main controls and n is the number of application selected screens; with m, n > 0

Numerical Scale: Representation: Continuous; Value Type: Real; Scale Type: Ratio;

Unit Name: Percentage; Acronym: %

Related Metrics: Main control permanence level (MCPL)

Related Direct Metric: Name: Main Control Permanence Level (MCPL); Objective: To determine the

permanence level of a selected control in a given application screen; Author: Santos L.; Version: 1.0;

Measurement Procedure: Type: Objective; Specification: The expert inspects the main controls bar in

a given screen in order to determine whether the button is available or not, using the 0 or 1 allowed values.

Where 0 means the main button is absent in the screen, and 1 means the main button is present in the screen;
Numerical Scale: Representation: Discrete; Value Type: Integer; Scale Type: Absolute;

Unit: Name Control

Fig. 10. Indirect and direct metric specifications for the Permanence of main controls attribute.

Attribute: Permanence of main controls
Elementary Indicator: Name: Performance Level of the Permanence of Main Controls (P_MCP)
Author: Santos L.; Version: 1.0

Elementary Model:

 Specification: the mapping is: P_MCP = %MCP.

 Decision Criterion: [Three Acceptability Levels]

 Name 1: Unsatisfactory Range: if 0 ≤ P_MCP < 60 Description: Indicates change actions must be taken

with high priority.

 Name 2: Marginal Range: if 60 ≤ P_MCP < 80 Description: Indicates a need for improvement

actions.

 Name 3: Satisfactory Range: if 80 ≤ P_MCP ≤ 100 Description: Indicates no need for current actions.
Numerical Scale: Value Type: Real; Scale Type: Ratio

Unit/Name: Percentage; Acronym: %

Fig. 11. Elementary Indicator specification for the Permanence of main controls attribute.

(A3) Implement the Measurement for EQ: The pattern’s generic process

establishes A3 as the next activity to be instantiated. Hence, ‘Implement the

Measurement for EQ’ produces the measures for each attribute. For example, using

the above Indirect Metric specification for quantifying the 1.3.3.1.1 attribute, A3

allows recording its availability per each ‘Main button’ of the ‘Main controls bar’ for

each Facebook screen in which the button must remain permanent. So evaluators can

easily understand what concrete button is absent in each screen for a further change

action, if necessary. The final calculated value for this indirect metric was 46.2%.

Additionally, all intermediate values for related direct metrics were also recorded in

the Measures <<datastore>>.

Table 5. Requirements Tree for EQ with evaluation outcomes yielded in the 2013 and 2014

studies. (Note: EI means Elementary Indicator; DI means Derived Indicator).

Characteristic /Sub-characteristic / Attribute 2013 2014

EI DI EI DI

1 Usability 60.5���� 65.1����

1.1 Understandability 76.1���� 89.9����

1.1.1 Familiarity 76.1���� 89.9����

1.1.1.1 Global organization scheme understandability 100���� 100����

1.1.1.2 Control icon ease to be recognized 65.2���� 74.8����

1.1.1.2.1 Main control icon ease to be recognized 60���� 71.4����

1.1.1.2.2 Contextual control icon ease to be

recognized

87.5���� 88.9����

1.1.1.3 Foreign language support 0� 100����

1.2 Learnability 59.7���� 66.4����

1.2.1 Feedback Suitability 75.9���� 85.6����

1.2.1.1 Current location feedback appropriateness 52.6� 80.3����

1.2.1.2 Alert notification feedback appropriateness 100���� 100����

1.2.1.3 Error message appropriateness 75���� 75����

1.2.2 Helpfulness 45���� 49.1����

1.2.2.1 Context-sensitive help appropriateness 50� 54.5�

1.2.2.2 First-time visitor help appropriateness 0� 0�

1.3 Operability 80.7���� 80.4����

1.3.1 Data Entry Ease 90���� 90����

1.3.1.1 Defaults 100���� 100����

1.3.1.2 Mandatory entry 50���� 50����

1.3.1.3 Widget appropriateness 100���� 100����

1.3.2 Visibility (synonym Optical Legibility) 81.5���� 81.5����

1.3.2.1 Color visibility appropriateness 100���� 100����

1.3.2.1.1 Brightness difference appropriateness 100���� 100����

1.3.2.1.2 Color difference appropriateness 100���� 100����

1.3.2.2 GUI object size appropriateness 63���� 63����

1.3.2.2.1 Control (widget) size appropriateness 100���� 100����

1.3.2.2.2 Text size appropriateness 42.1���� 42.1����

1.3.3 Consistency 75.5� 74.6�

1.3.3.1 Permanence of controls 57.3���� 55.7����

1.3.3.1.1 Permanence of main controls 54.9���� 46.2����

1.3.3.1.2 Permanence of contextual controls 67.4���� 100����

1.3.3.2 Stability of controls 95.5���� 95.5����

1.4 User Error Protection 8.4���� 8.4����

1.4.1 Error Management 8.4���� 8.4����

1.4.1.1 Error prevention 0� 0�

1.4.1.2 Error recovery 16.7� 16.7�

1.5 UI Aesthetics 80.8���� 91.1����

1.5.1 UI Style Uniformity 80.8� 91.1�

1.5.1.1 Text color style uniformity 85� 95�

1.5.1.2 Aesthetic harmony 79���� 89.5�

(A4) Design the Evaluation for EQ: This activity consists of defining elementary

indicators to map measures values to a new numeric or categorical value in order to

interpret the measured value. Also derived indicators are defined, which allow

interpreting high-level abstraction requirements, that is, to interpret characteristics and

sub-characteristics by means of a global model. Fig. 11 shows the elementary

indicator specification for the attribute Permanence of main controls, following the

elementary indicator specification template shown in Table 3 b).

 (A5) Implement the Evaluation for EQ: From the measures obtained in A3 and

using the selected elementary indicators and derived indicators designed in A4, the

A5 activity (renamed as ‘Implement the Evaluation for EQ’) must be instantiated and

executed. This activity produces the Elementary and Derived Indicators' values shown

in 4
th

 and 5
th

 columns of Table 5, for the re-evaluation performed in Sept. 2014.

Notice that in Table 5, the metaphor of the three-colored semaphore is used to

identify the acceptability level of satisfaction achieved by each attribute/sub-

characteristic. For example, the red-colored semaphore (with values within the 0-60

range, in the percentage scale) indicates an ‘Unsatisfactory’ acceptability level. This

means that change actions must be done urgently.

(A6) Analyze and Recommend for EQ: After finishing ME activities, the

instantiated A6 (‘Analyze and Recommend for EQ’) activity should be performed.

Table 6 shows a fragment of the A6 generated document named ‘Recommendation

Report for EQ’. This report contains one or more recommendations for attributes that

did not meet the ‘Satisfactory’ level, i.e., for those with red- or yellow-colored

semaphores. Each recommendation has also a priority. E.g., in Table 6, ‘H’ means

high priority. Recommendations enable to design and perform change actions for

improvement.

Looking at the elementary indicator values for 2014 in Table 5, seven attributes fell

in the ‘Unsatisfactory’ acceptability level, namely: ‘Context-sensitive help

appropriateness’ (1.2.2.1), ‘First-time visitor help appropriateness’ (1.2.2.2),

‘Mandatory entry’ (1.3.1.2), ‘Text size appropriateness’ (1.3.2.2.2), ‘Permanence of

main controls’ (1.3.3.1.1), ‘Error prevention’(1.4.1.1) and ‘Error recovery’ (1.4.1.2).

So, at least, seven recommendations must be done with high priority for designing

change actions.

For instance, for the ‘Permanence of main controls’ attribute, the R2.1

recommendation in Table 6 establishes “ensure that in the set of selected screens, the

main controls bar has always the same main buttons” and that should be pursued as a

high priority change action. Fig. 12 shows two selected screenshots belonging to the

set of appropriate screens that were evaluated (34 out of 38) for the Facebook mobile

app (v14 for Android). The ‘Main controls bar’ sub-entity has seven ‘Main buttons’.

Also, it can be observed in the right screen that the specific “Chat button” is missing.

(A7) Design Change Actions for EQ: The next A7 activity specified in

GoMEC_1QV should be instantiated. Thus, A7 is renamed now as ‘Design Change

Actions for EQ’. Table 7 shows a fragment of the ‘Improvement Plan for EQ’ artifact.

Basically, per each recommendation (R) in Table 6, the planned change actions (CA),

the CA source for each attribute (Measures repository), and the method type to be

used for the change action are described.

Table 6. Fragment of the Recommendation Report for EQ artifact generated in the instantiated

A6 activity. (Note: H stands for High, i.e., an urgent action is recommended).

ID Recommendation (R) Attribute Priority

R1 1. To ensure that in the set of selected screens, those
mandatory form fields have the suitable support for

preventing missing data entry.

Mandatory entry

(1.3.1.2)
H

R2 1. To ensure that in the set of selected screens, the main

controls bar has always the same main buttons.

Permanence of main

controls (1.3.3.1.1)

H

Fig. 12. Two Facebook v14 screenshots: Left one shows the ‘Main Controls Bar’ sub-entity,

which is composed of seven ‘Main Buttons’; Right one highlights the missing ‘Chat button’.

Table 7. Fragment of the Improvement Plan for EQ produced in the instantiated A7 activity.

ID Change Action (CA) CA sources Method
CA1 1. Provide a function on the form mandatory

field/control for checking missing data entry.

2. Add a suitable visual indicator (e.g., “�”) to

each form’s mandatory field/control.

Use the Measures/

Measurement registry

for 1.3.1.2 to find the

form field/control ID
with the problem.

Programming

GUI

refactoring

CA2 1. Add those missing main buttons in the main

controls bar per each screen with the problem
detected.

Use the

Measures/Measuremen
t registry for 1.3.3.1.1

to find the screen/main

button ID with the
problem.

GUI

refactoring

For the 1.3.3.1.1 attribute, the change action is CA2.1 in Table 7, derived from

R2.1 in Table 6. It indicates: “add those missing main buttons in the main controls

bar per each screen with the problem detected”. To this end, the ‘GUI refactoring’

change method can be used (as in [28]). Besides, in the measurement registry for

1.3.3.1.1 (Measures <<datastore>>) can be found the corresponding screen ID where

each concrete button is missing. Therefore, we can affirm that a good metric

specification can help in planning and performing change actions.

"Main Controls

Bar" sub-entity

"Main Button"

sub-entity

"Chat Button" is

missing

"Permanence of Main Controls"

(1.3.3.1.1) Attribute

(A8) Implement Change Actions for EQ: The last activity is devoted to

implement change actions planned in the A7 activity. It should be noted that since

Facebook is a proprietary system, changes actually couldn’t be performed since we

didn’t have access to its source code and GUI objects.

Once changes are made through the instantiation of A8, the GoMEC_1QV course

of action establishes that the new system version should be re-evaluated. To this aim,

A3, A5 and A6 must be performed again, as specified in Fig. 7. So the achieved

improvement gain can be compared with the previous version. Thus, once the CA2.1

change action is performed on the app, the elementary indicator value for

‘Permanence of main controls’ will rise from 46.2% (red) to 100% (green). If all

recommended changes for weakly benchmarked indicators were performed, the

overall level of satisfaction for Usability could reach 100% for the target entity.

5 Discussion of other ME/MEC Strategy Patterns

As we have commented above, a strategy pattern is a way of packaging general and

reusable solutions for common and recurrent measurement, evaluation and

change/improvement problems or situations for specific projects' goals. Hence,

according to the project goal and the amount of involved quality views a strategy

pattern should be selected and retrieved from a catalogue of strategy patterns. Each

pattern stored in the catalogue should be compliant with the strategy pattern

specification shown in Section 4.

In the previous section we have analyzed the GoMEC_1QV strategy pattern which

is applied when the project goal states that it is necessary not only to understand the

current situation of the entity at hand but also to perform changes on the entity, re-

evaluate it, and gauge the achieved improvement gain. This pattern is instantiated for a

MEC project goal considering just one quality view. We have illustrated this pattern in

a case study for improving the Usability of the Facebook social network app. Usability

was linked in this case to the EQ focus. However, we may also instantiate this pattern

to improve, for instance, the Usability regarding the IQ focus. The sub-entity category

for the IQ focus can be an artifact at early stages of development, such as an

architectural design, as presented in [11].

Another strategy pattern is the Goal-oriented Measurement, Evaluation, and

Change for Two Quality Views (alias GoMEC_2QV). This pattern gives a solution for

an improvement project goal which involves two quality views and their relations.

Recall that between two quality views, the ‘influences’ and ‘depends on’ relationships

can be used. This implies that one quality view plays the role of dependent quality

view, while the other plays the role of independent quality view (see these roles in Fig.

3).

For example, if we consider the System Quality View and the System-in-Use

Quality View, these relations embrace the hypothesis [16] that evaluating and

improving the EQ focus of a system is one means for improving the QinU focus of a

system in use. Additionally, understanding the QinU problems may provide feedback

for deriving EQ attributes that if improved could impact positively in the system

quality. Furthermore, we can envision valid and interesting relationships for instance

between Resource Quality View and Software Product Quality View. That is to say, by

evaluating and improving the resource quality can be one means for improving the IQ

focus of a product. For example, changes in the development team can impact

positively in the architectural design.

On the other hand, GoME_1QV is the alias of the strategy pattern used to provide a

solution in the instantiation of a ME strategy aimed at supporting just an understanding

goal when one quality view is considered. This strategy pattern should be selected

when the project goal is just to understand the current situation of any entity with

regard to the corresponding quality focus. The generic process of GoME_1QV consists

of six activities, which are the gray-colored A1-A6 activities in Fig. 8. This is the

simplest pattern to be instantiated. Also, so far, it is the mostly used in the ME projects

we have performed, e.g., in the evaluation of a mash-up application [26] and a

shopping cart [27]. This pattern can be used to evaluate not only any quality focus

depicted in Fig. 2 but also other quality focuses such as Service Quality, amongst

others.

Regarding the amount of views, a strategy pattern where three quality views

intervene can be instantiated as well. For instance, we can mention GoMEC_3QV

where the three yellow-colored Software Product, System and System-in-Use Quality

Views of Fig. 2 can be evaluated. Both Usability (for IQ and EQ) and UX (for QinU)

can be linked to the three quality views accordingly. In this sense, a project goal can be

“to improve the quality in use of a XYZ mobile application by means of improving the

system and software product quality”. The specification of GoMEC_3QV is also not

shown in this paper due to brevity reasons. However, the reader can surmise that it

implies changes on two views.

So far, we have analyzed ME/MEC strategy patterns for providing solutions in the

instantiation of strategies for specific project goals. Nevertheless, it is also possible to

have a project goal related to the evaluation, comparison and selection of competitive

entities such as selecting the best alternative system or product considering quality

and/or cost performance indicators. In this direction, CMMI [7] establishes the

Decision Analysis and Resolution process area aimed at evaluating, analyzing and

performing decision making for identified alternatives (competitive entities) against

established evaluation criteria using a formal evaluation process. So, we envision

specifying a new pattern for this well-known situation. The intention of this strategy

pattern is to provide a solution in the instantiation of a strategy that allows evaluating

and comparing competitive entities for selecting one regarding the established

quality/cost requirements and decision criteria.

Finally, it is worthwhile to remark that the inclusion of strategy patterns in our

holistic quality evaluation and improvement approach makes it scalable. Thanks to the

conception of different strategy patterns applied to related quality views, our approach

is scalable since the quality multi-view modeling framework (discussed in sub-section

3.1) supports many quality views and their relationships that ME/MEC project goals

may deal with.

Also the framework can be extended to specify not only quality but also cost

requirements, since the Quality View and the Cost View are both Calculable-Concept

Views as represented in Fig. 1.

6 Conclusions and Future Work

In this work, we have enhanced our holistic quality evaluation and improvement

approach by strengthening its architecture based on two pillars. Firstly, for the quality

multi-view modeling framework, we have defined the ontology of quality views aimed

at adding conceptual robustness to our approach in addition to semantic

processability. In the process of building this ontology, we have reviewed related

literature about quality views and multi-view modeling frameworks. Specifically, we

have discussed in Section 2 that an ontology, taxonomy or glossary of terms for this

domain does not exist based on the research we have done.

Secondly, due to the lessons learnt in the development of concrete ME/MEC

strategies during the last decade, we have envisioned the opportunity to generalize

and distill the gained knowledge into strategy patterns. The benefits of having

documented patterns are well known. Hence, we have contributed in the specification

of a set of strategy patterns to be applied in the domain of ME/MEC projects. Also,

we have discussed why the modeling of quality views and their ‘influences’ and

‘depends on’ relationships, in conjunction with ME/MEC project goals are key

aspects to defining strategy patterns. Finally, we have described the GoMEC_1QV

strategy pattern and the instantiation of it for the Facebook's mobileapp Usability case

study.

As future lines of research, we will instantiate the GoMEC_3QV strategy pattern,

for Usability and Security issues regarding architectural design artifacts and the IQ

focus as well. This will allow us to gauge improvements in QinU for both Satisfaction

and Actual Usability characteristics, taking also to some extent the Folmer et al. work

[11] into account. We think that by using a couple of suitable strategy patterns and

our evaluation and improvement approach, many of the raised issues in [10] can be

covered appropriately. On the other hand, we will work on the specification and

instantiation of the strategy pattern related to the evaluation, comparison and selection

of competitive entities, which was mentioned in Section 5.

With respect to the quality views ontology, we are aware that in its current version

both generic and quality domain-specific terms are embedded. We are planning to re-

design the ontology for decoupling foundational (generic) ontology concerns from the

current version, due to the relevance of this in the development of domain ontologies,

as proposed in [14]. The re-design will enable reuse of the foundational ontology in

specific domains such as quality and cost, amongst others.

Finally, considering the semantic processability, we envision the development of a

strategy pattern recommender system as a practical use of the quality views ontology

in the context of the holistic quality evaluation and improvement approach. This

recommendation system can be useful when an organization establishes a ME/MEC

project goal. So, taking into account the type of project goal and the amount of

involved quality views, the strategy pattern recommender system will suggest the

suitable strategy pattern that fits that goal.

Acknowledgments. We thank the support given by Science and Technology Agency of

Argentina, in the PICT 2014-1224 project at Universidad Nacional de La Pampa. Also, Belen

Rivera thanks the support given by the co-funded CONICET and UNLPam grant.

References

1. Alexander C: The Timeless Way of Building. Oxford University Press, (1979)

2. Basili V., Lindvall M., Regardie M., Seaman C., Heidrich J., Jurgen M., Rombach

D.,Trendowicz A.: Linking Software Development and Business Strategy through

Measurement. IEEE Computer, 43(4), pp. 57–65, (2010)

3. Basili R., Caldiera G., Rombach H. D., The goal question metric approach, In:

Encyclopedia of Software Engineering, (1), pp 528-532, (1994)

4. Basili V., Software Development: A Paradigm for the Future, Proceedings of the 13th

Annual International Computer Software & Applications Conference (COMPSAC),

Keynote Address, Orlando, FL, (1989)

5. Becker P., Papa F., Olsina L.: Process Ontology Specification for Enhancing the Process

Compliance of a Measurement and Evaluation Strategy, In CLEI Electronic Journal 18(1),

pp. 1-26. ISSN 0717-5000, (2015)

6. Bevan N.: Extending Quality in Use to provide a Framework for Usability Measurement.

LNCS 5619, Springer, HCI Int’l 2009, San Diego, USA, pp. 13-22, (2009)

7. CMMI (Capability Maturity Model Integration), Version.1.3. CMU/SEI-2010-TR-033,

USA, (2010)

8. Curtis B., Kellner M., Over J.: Process Modelling. Communications of ACM, 35:(9),

pp.75-90, (1992)

9. Fernández-López M., Gómez-Pérez A., Juristo N.: METHONTOLOGY: From Ontological

Art Towards Ontological Engineering. Spring Symposium on Ontological Engineering of

AAAI, pp. 33–40, Stanford University, California, (1997)

10. Folmer E., Bosch J.: Experiences with software architecture analysis of usability.

International Journal of Information Technology and Web Engineering, 3:(4), pp. 1-29,

(2008)

11. Folmer E., van Gurp J., Bosch J.: A framework for capturing the relationship between

usability and software architecture. In Software Process: Improvement and Practice, 8, pp.

67–87, (2003)

12. Gamma E., Helm R., Johnson R.,Vlissides J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addisson-Wesley, ISBN 0-201-63361-2, (1995)

13. Gruber T.R.: A Translation Approach to Portable Ontologies. Knowledge Acquisition,

5:(2), pp. 199-220, (1993)

14. Guizzardi G., Baião F., Lopes M., Falbo R.: The Role of Foundational Ontologies for

Domain Ontology Engineering: An Industrial Case Study in the Domain of Oil and Gas

Exploration and Production. Int. J. Inf. Syst. Model. Des. 1, 2 (April 2010), pp. 1-22,

(2010)

15. Heo J., Ham D-H., Park S., Song C., Chul W.: A framework for evaluating the usability of

mobile phones based on multi-level, hierarchical model of usability factors. Interacting

with Computers, Elsevier. 21:(4), pp. 263-275, (2009)

16. ISO/IEC 25010: Systems and software engineering - Systems and software Quality

Requirements and Evaluation (SQuaRE) - System and software quality models, (2011)

17. ISO/IEC 9126-1: Software Engineering Product Quality - Part 1: Quality Model, (2001)

18. Kitchenham B., Hughes R., Linkman S. Modeling Software Measurement Data. IEEE

Transactions on Software Engineering. (27):9, pp. 788-804, (2001)

19. Lew P., Qanber A. M., Rafique I., Wang X., Olsina L.: Using Web Quality Models and

Questionnaires for Web Applications Evaluation. IEEE proc. QUATIC, pp. 20-29, (2012)

20. Lew P., Olsina L., Becker P., Zhang, L.: An Integrated Strategy to Systematically

Understand and Manage Quality in Use for Web Applications. Requirements Engineering

Journal, Springer London, 17:(4), pp. 299-330, (2012)

21. Lindvall M., Donzelli P., Asgari S., Basili V.: Towards Reusable Measurement Patterns.,

11th IEEE Int’l Symposium in Software Metrics, pp. 1-8, (2005)

22. McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J., et al.: Practical Software

Measurement: Objective Information for Decision Makers. Addison-Wesley Professional.

ISBN-13: 978-0-201-71516-3, (2001)

23. Moraga M.A, Bertoa M.F., Morcillo M.C., Calero C., Vallecillo A.: Evaluating Quality-in-

Use Using Bayesian Networks. In QAOOSE 2008, Paphos, Cyprus, pp 1-10, (2008)

24. OMG-UML. Unified Modeling Language Specification, Version 2.0. (2005)

25. Olsina L., Santos L., Lew P.: Evaluating Mobileapp Usability: A Holistic Quality

Approach, In: 14th Int’l Conference on Web Engineering, ICWE 2014, S. Casteleyn, G.

Rossi, and M. Winckler (Eds.): Springer, LNCS 8541, pp. 111-129, (2014)

26. Olsina L., Lew P., Dieser A., Rivera B.: Updating Quality Models for Evaluating New

Generation Web Applications. In Journal of Web Engineering, Special issue: Quality in

new generation Web applications, Abrahão S., Cachero C., Cappiello C., Matera M. (Eds.),

Rinton Press, USA, 11:(3), pp. 209-246, (2012)

27. Olsina L., Papa F., Molina H.: How to Measure and Evaluate Web Applications in a

Consistent Way. HCIS Springer book Web Engineering: Modeling and Implementing Web

Applications; Rossi G., Pastor O., Schwabe D., and Olsina L. (Eds.), pp. 385-420, (2008)

28. Olsina L., Rossi G., Garrido A., Distante D., Canfora G.: Web Applications Refactoring

and Evaluation: A Quality-Oriented Improvement Approach, In: Journal of Web

Engineering, Rinton Press, US, 7:(4), pp. 258-280, (2008)

29. Papa M.F.: Toward the Improvement of a Measurement and Evaluation Strategy from a

Comparative Study, In LNCS 7703, Springer: Current Trends in Web Engineering, ICWE

Int’l Workshops, Grossniklauss M. and Wimmer M. (Eds.), pp. 189-203, (2012)

30. Rivera M.B., Becker P., Olsina L.: Strategy Patterns for Measurement, Evaluation And

Improvement Projects (In Spanish). XVIII Iberoamerican Conference in Software

Engineering (CIbSE’15), Lima, Perú, pp. 166-180, (2015)

31. Rivera B., Becker, P., Olsina L.: Extending the Conceptual Base for a Holistic Quality

Evaluation Approach. 1st Argentine Symposium on Ontologies and their Applications

(SAOA'15) Rosario, Argentina, ceur-ws.org/Vol-1449/, pp. 121-130, (2015)

32. Rodríguez, M.; Genero, M.; Torre, D.; Blasco, B.; Piattini, M., A Methodology for

Continuos Quality Assessment of Software Artefacts , 10th International Conference on

Quality Software (QSIC 2010), pp.254-261, (2010)

33. van Heijst G., Schreiber A.T., Wielinga B.J.: Using Explicit Ontologies in KBS

Development. International Journal of Human-Computer Studies, 46, pp.183-292,

Academic Press, Inc. Duluth, MN,USA, (1997)

View publication statsView publication stats

https://www.researchgate.net/publication/337715551

