
Dynamic Building of Software Architectural
Connectors View?

Fernando Asteasuain1,3, Claudio Graiño2, and Manuel Dubinsky1,2

1 Universidad Nacional de Avellaneda, Dpto. Tecnoloǵıa y Administración,
Ing. en Informática, España 350, BsAs Argentina.

2 Dpto Computación-FCEyN,UBA, Ciudad Universitaria
CABA, Argentina

3 UAI-CAETI
CABA, Argentina

Abstract. In this article we present an approach to dynamically vali-
date the usage of software connectors in the context of software architec-
tures. By employing aspect oriented techniques the system execution is
monitored in order to obtain an architectural view describing how pro-
cesses communicate and interact with each other. This output can later
be compared to the connectors specified in the architecture document
to validate the consistency between the architecture specification and
the implementation of the system. Two case studies are presented show-
ing the potential of the approach. We believe the results are promising
enough to consider future extensions including other architectural ele-
ments beyond connectors.

Keywords: Software Architectures, Dynamic Validation, Software Con-
nectors, Aspect Orientation

1 Introduction

Over the past years the specification of software architectures has become a
crucial activity for medium and large software systems. In few words, a specifi-
cation of a software architecture for a given system provides a high level view of
its main components and artifacts, the way they relate to each other, and the
expected behavior for such interactions [20, 10]. In this sense Software Architec-
tures can be seen as a bridge filling the gap between requirements elicitation and
the resulting code [10].

One of the main challenges when dealing with software architectures is to
determine whether a certain implementation of a given system satisfies its ar-
chitecture specification [21, 8, 9]. There are two main reasons for this. On one
side, traceability betweens architecture elements and code is most of the times
fuzzy, complex and hard to achieve, since different levels of abstraction coex-
ist simultaneously [21]. On the other side, software architectures suffer from a

? This work was partially funded by UNDAVCYT 2014, PAE-PICT-2007-02278:(PAE
37279), PIP 112-200801-00955 and UBACyT X021, UAI-CAETI

problem widely known as drift and erosion [25]. This happens when the software
architecture specification of a system gets outdated with respect to the actual
system implementation, mainly due to software changes that are not properly
documented.

Some approaches tackling this problem aim to assure consistency between a
system architecture specification and its implementation by construction [2, 22].
However, they can only be applied only if specific tools are employed. Some-
times it is not possible to express all the interactions of a system since they
might use architectural styles not supported by the tools. Other alternatives ad-
dressing software architecture validation against a specification take a two step
process [26, 19]. First they collect information (either statically or dynamically)
of the architecture of the system. The second step consists of comparing the
obtained result against the architecture specification. From these alternatives
the dynamic reconstruction of software architectures has been pinpointed as the
most challenging one [21, 26].

Trying to understand the architectural behavior of a system from a static
perspective can sometimes be problematic since processes and other dynamic
structures cannot be easily mapped to static structures. Even more so, some
architectural elements exist only while the system is running (for example, a
server dedicated connection to a client).

The work we present in this article uses aspect-oriented techniques [17] to
reconstruct the architecture of a system based on its execution. In particular,
we focus on the utilization and validation of architectural connectors. The most
relevant architectural view to reflect the dynamic behavior of a system is called
Components and Connectors view [7, 4]. In this view, connectors play a crucial
role since they establish when, how and under which conditions two or more
components interact. Given this context, our approach answers the following
question: Is the implementation of a system communicating the way
it is specified by the connectors in the Components and Connectors
view? Since it is based on code annotations, our approach does not impose any
restrictions on the code. Nonetheless, it must be seen as an initial exploratory
step since it only focuses on connectors, leaving out other architectural elements
as components, ports, roles or interfaces. However, we believe that the obtained
results are promising enough to consider possible extensions to cope with more
architectural elements.

1.1 General description of the approach

Our approach monitors a system execution and builds an architecture view spec-
ifying how the detected connectors are used by the running processes. This is
achieved using aspect orientation. In our approach aspects are in charge of ob-
serving the execution and detecting the presence of architectural connectors.
With the information gathered by the aspects our tool builds an architectural
view showing what components exist in the system and how they interact with
each other. The tool was implemented using AspectJ, perhaps the most popular
aspect oriented programming language. As AspectJ is an extension of the Java

programming language, our tool only works with applications written in Java.
However, we believe the approach could also be implemented in other aspect
oriented programming languages.

In order to accomplish their task aspects assume that the code implementing
the system is properly annotated indicating those places in the code where the
connectors are defined and used. The usage of code annotations is not new and
has been largely used in the past years as a way of building a higher level of
abstraction and introducing a more robust layer to interact with than code itself
[24, 15]. In a software architecture domain this is particularly interesting since
it helps to reduce the gap between architectural elements and code. One classic
problem of code annotations is how to properly annotate the code, specially in
those cases where there is little knowledge of the code implementing the system.
We alleviate this issue by enabling the possibility of an incremental and localized
annotation process.

1.2 Previous work and new contributions

In [3] we introduced our tool describing its main features. We now upgrade that
work presenting the following new characteristics:

– An extended connectors description and specification and a new connectors
categorization based on their behavior. This categorization is latter used to
build the connectors’ view.

– A complete description of the aspect orientation technique used to dynam-
ically capture the presence of the selected architectural connectors. This
description covers all the connectors where only two of them were described
in [3].

– An upgraded Building Architectural Process description. Architectural An-
alyzers are introduced in this work describing more thoroughly how the ar-
chitectural connector view is built.

– An example showing how to proceed to obtain an incremental and localized
annotation process.

– A new case of study showing that our tools do not only contemplate the
mentioned connectors, but also any possible combination of them.

The rest of the paper is structured as follows. Section 2 details the connectors
that our tool can detect, their protocols’s specification and a proposed catego-
rization based on their behavior. Section 3 describes how using aspect-oriented
techniques our approach dynamically detects which connectors are being used
based on the system’s execution. Section 4 explains how the architectural con-
nectors view is built. Section 5 discusses some important topics related to our
approach whereas section 6 illustrates our tool in action by analyzing a case of
study. Section 7 shows how the incremental and localized annotation process can
be realized. Section 8 exhibits a case of study presenting a customized connector.
Section 9 condenses some ideas behind lessons learned and threats to validity.
Section 10 briefly discusses related work and Section 11 presents conclusions and
future work.

2 Connectors: Which ones are detected and why

In this section we describe the connectors that are covered in our approach
and the reasons behind this selection. Finally, we propose a classification of
connectors based on their architectural behavior which play an important role
when discovering connectors usage based on the system execution.

2.1 Set of Connectors Selected

Connectors play a crucial role in any software architecture specification since
they dictate how the different parts of system communicate with each other. In
particular a connector allows to express how information and data flow through
the system and which protocols are used. A connector might determine, for
example, if two processes interact through a simple asynchronous call or using
instead a complex buffer based on events such as Publish and Subscribe [4].

In the literature there exits a vast variety of approaches enumerating and
classifying software architecture connectors. In other words, there are available
a plethora of different taxonomies describing connectors properties and behavior
[4, 7, 25]. Taking this into account, we believe it is important to mention which
software connectors our approach can handle and state the expected protocol for
each one of them. Despite this selection might be considered arbitrary, the items
in the set allow to express the most common software interactions between two or
more processes. As an example of the expressivity of the selected connectors, it
can be mentioned that they cover all the connectors used by Red Hat to describe
the software architecture of the products of the company [14].

The selected connectors are the following: Asynchronous Call, Synchronous
Call, Pipe, Publish and Subscribe,Client-Server, Router, Broadcast and Black-
board.

This set of connectors might be classified into three different categories ac-
cording to their behavior: Direct connectors, Naive Intermediary connectors and
Sophisticated Intermediary connectors. These categories are explained in the
next section.

2.2 Characterization of Connectors Behavior

The selected connectors might be grouped into three categories based on how
they architecturally behave. Basically, we will distinguish between those connec-
tors using a somehow intermediary structure or not, and wether this intermediate
artifact performs an architectural relevant action or not for the connector to be
detected. The proposed categories are: Direct connectors, Naive Intermediary
connectors and Sophisticated Intermediary connectors. As it was said before,
these categories play a crucial role for the detection used in our approach to
reveal the usage of the connectors while monitoring the system’s execution.

Direct connectors The connectors in this category relate in a straightforward
manner two given processes without any intermediaries in between. We include
in this category the following connectors: Asynchronous Call, Synchronous Call,
and Client-Server. A process might directly call another (either waiting or not
for a response) or invoke a given service in a server. In any case, the two processes
related by the connector are the only ones involved in the communication.

Naive Intermediary Connectors The connectors in this category uses an
intermediary to communicate two or more processes. They are called Naive In-
termediary since the intermediary does not realize any other relevant architec-
tural action (for the connector to be properly detected) besides appropriately
transporting information from the source to the destination. Connectors Pipe,
Publish and Subscribe and Blackboard belong in this category. For example, a
Pipe connector takes the output from a process and places as the input for the
following process. Similarly, a Publish and Subscribe connector will communicate
a given event to any interested process. In both cases the intermediate structure
do some tasks. However, they are not architecturally relevant for the proper
detection of the connectors.

Sophisticated Intermediary Connectors Finally, connectors in this cate-
gory uses an intermediary, which will take decisive actions while communicating
processes. Connectors Router and Broadcast belong in this category. In this case,
the intermediary structure performs relevant architectural actions which must
be considered in order to properly detect the usage of the connector. For ex-
ample, in the router connector, the connector forwards the information to only
a subset of the possible destinations. Similarly, in a broadcast flavour of com-
munication, the connector must iterate through all the possible destinations. In
these cases these actions are architecturally relevant for the proper detection of
the connector since they expose the functioning of the connector.

Table 1 summarizes the proposed categories for classifying the selected ar-
chitectural connectors. In the table, NI stands for Naive Intermediary and SI
stands for Sophisticated Intermediary.

2.3 Specifying Connectors Behavior

The behavior specification of a connector is crucial since it guides the runtime
detection procedure performed by our approach. Since our approach is only
focused in detecting connectors in runtime the specification does not need to in-
clude notions such as ports, role and other similar concepts. Section 11 mentions
the possibility to include these concepts in future work.

Connector’s behavior is specified using a labeled finite automaton-based nota-
tion following the one used in [25]. Transitions labeled with an exclamation mark
(!) can be seen as events produced locally in the automaton whereas transitions
labeled with a question mark (?) can be seen as events produced in other au-
tomaton. In this way, actions are used to synchronize automata and behavior can

Table 1. Categorization of connectors’ behavior

Connector Direct NI SI

Asynchronous Call X

Synchronous Call X

Pipe X

Publish and Subscribe X

Client-Server X

Router X

Broadcast X

Blackboard X

be denoted as the composition of two or more automatons. As an example, figure
1 presents an automaton describing the behavior of the Synchronous Call con-
nector, which combines the behavior of the caller and the callee. Once the caller
makes the call, represented by the event CALL, the connector forwards it to the
callee (FORWARD CALL event). Similarly, when the callee produces its output(
RETURN event) the connector forwards it to the caller (FORWARD RETURN
event).

Fig. 1. An automaton describing the behavior of the Synchronous Call connector

Since in this first stage of our tool concepts like ports or roles are not needed
we can abstract the behavior of the connectors in a very direct and simple way.
Given this fact we can rely on a more basic specification of the connectors behav-
ior. For example, considering the behavior of the Synchronous Call connector in
figure 1 we can simply assume that any message exchanged between two objects
is a Synchronous call connector. This is also the case for connectors involving
intermediate structures such as the the Pipe connector. We define its behav-
ior as an intermediate structure communicating two processes or components: a

component producing the data and a component consuming the data. We de-
nominate these actions as: push (writing in the pipe) and pop (reading from the
pipe). The other connectors covered by our tool are defined in a very similar way.
The complete connector’s specification can be found in [11]. It is worth to point
out that extending our tool to include other meaningful architectural elements
as ports or roles will imply the usage of a more complex and formal specification
of the connectors. This issue in particular is contemplated as future work.

3 Detecting Connectors in Runtime

In this section we describe how using aspect-oriented techniques our approach
dynamically detects which connectors are being used based on the system’s ex-
ecution.

Using aspect orientation the execution of a system can be interrupted at
certain moments in order to introduce the behavior of an aspect, allowing a
more powerful and flexible modularization technique. An aspect specification
includes its behavior and the identification of those places of the system that
trigger the application of the aspect’s behavior. We define an aspect for each
available connector. Each one of these aspects will be in charge of detecting the
presence of a given connector. As it is previously mentioned, the tool assumes
that the source code is annotated in those places implementing the protocol
of each connector. This is true for every connector excepting the Synchronous
Call connector. Our tool considers any method call without annotations as two
components communicating with a Synchronous Call connector. Based on the
annotations, the aspects can infer the presence of a given connector.

The followings sections detail how aspects are defined in order to detect the
presence of the architectural connectors covered by our work.

3.1 Synchronous Call

This is the most simple connector. We will assume any message exchanged be-
tween two objects is a Synchronous Call connector. Given this, the Synchronous
call aspects just detect any given call between two objects. Note that no code
annotation is needed for the detection of this connector. The next code fragment
sketches part of the definition of the Synchronous Call Aspect (see Listing 3-1).
This implies that this aspect will intervene in every method call between two
objects.

Listing 3-1. Part of the Synchronous Call Aspect Definition

1 c a l l (∗ ∗ (. .)) ;

3.2 Asynchronous Call

Asynchronous messages are implemented in our tool by using threads. In this
context, any method call made from a thread will be monitored by the Asyn-
chronous Call Aspect (see Listing 3-2).

Listing 3-2. Part of the Asynchronous Call Aspect Definition

1 c a l l (∗ (. .))&& withincode (void java . lang . Runnable . run ()) ;

3.3 Pipe

A pipe connects two processes in a chain by forwarding the output from one
source to the input of the next one. These two particularly actions define the
pipe connector protocol and they must be properly captured using two code
annotation: PipePop and PipePush. The pipe aspect essentially captures any
method annotated with PipePop and PipePush. This is shown in Listing 3-3.
This code fragment describes those moments where the aspect should intervene:
whenever a certain object invokes a method annotated as PipePush or PipePop.
Note that the annotations name and quantity follow the connector’s specified
protocol.

Listing 3-3. Part of the Pipe Aspect Definition

1 c a l l (@PipePop ∗ ∗ (. .)) ;
2 c a l l (@PipePush ∗ ∗ (. .)) ; . . .

3.4 Router

In this case only one code annotation is needed: route, to indicate which method
implements the behavior of the connector. There is, however, another step to
make to completely define the behavior of the connector. It is necessary to iden-
tify any method call made within the router method since the receptors of these
calls stands for the receptors of the router connector. The code fragment in
Listing 3-4 exemplifies this behavior.

Listing 3-4. Part of the Router Aspect Definition

1 c a l l (@Route ∗ ∗ (. .))
2 c a l l (∗ ∗ (. .)) && withincode (@Route public ∗ ∗ (. .))

3.5 Broadcast

This aspect is analogous to the Router Aspect, except that the aspect annotation
is named Broadcast instead of Router.

3.6 Client-Server

Two points need to be considered for this connector. On one side, the Client-
Server Aspect must detect the message sent to the server by the client to establish
the connection between them (line 1 in Listing 3-5). On the other side, the aspect
must also be aware of the messages sent to the object representing the connection
itself (line 2 in Listing 3-5)

Listing 3-5. Part of the Client Server-Aspect Definition

1 c a l l (@RequestConnection ∗ ∗ (. .))
2 c a l l (∗ @ClientServerConnect ion ∗ . ∗ (. .))

3.7 Publish-Subscribe

Annotations named Publish and Subscribe are introduced to detect the interac-
tion to the intermediate structure of the behavior (see Lines 1 and 2 from Listing
3-6). Additionally, the Publish-Subscribe Aspect must detect all the messages ex-
changed when subscribers are notified of a new publication. In order to detect
only these methods calls (and not any other call) made within the code of the
Publisher a new annotation is introduced: Notify (see Line 3 from Listing 3-6)

Listing 3-6. Part of the Publish Subscribe Aspect Definition

1 c a l l (@Publish ∗ ∗ (. .))
2 c a l l (@Subscribe ∗ ∗ (. .))
3 with incode (@Publish ∗ ∗ (. .)) && c a l l (@Notify ∗ ∗ (. .))

3.8 Blackboard

This aspect is very similar to the Publish-Subscribe Aspect. The Listing 3-7 shows
part of this aspect’s definition. Lines 1 and 2 identify calls made to add data to
the repository and subscription to the repository. Line 3 targets the notifications
made by the connector to its subscribers. Finally, line 4 uses a new annotation,
named Read, to identify read actions from the repository.

Listing 3-7. Part of the BlackBoard Aspect Definition

1 c a l l (@Store ∗ ∗ (. .))
2 c a l l (@SubscribeBlackboard ∗ ∗ (. .))
3 c a l l (@Not i f i c a t i on ∗∗(. .))&& withincode (@Store ∗ ∗ (. .))
4 c a l l (@Read public ∗ ∗ (. .))

4 Building the Connectors Architectural View

In this section we describe how the architectural view is dynamically built by
the tool. Section 4.1 details the building process whereas section 4.2 illustrates
the process with a simple example.

4.1 Architectural Builder

Based on the information gathered by the aspects there exists a central process
named Architectural Builder that builds the connectors view. This process keeps
track of the interactions among components, and the connector used in each
interaction. Since all the aspects are observing the system’s execution at the
same time we define an aspect’s application precedence in order to guarantee
that the architecture view is properly built. For example, to avoid identifying a
method call to a pipe structure as a Synchronous Call connector instead of a
Pipe connector. The architectural view is updated each time new information is
obtained by any of the aspects.

The Architectural Builder process is nourished by three types of software
artifacts named Architectural Analyzers. Architectural analyzers are in charge of
obtaining the information from all the aspects monitoring the systems execution
and detect the presence of an architectural connector. With this information the
Architectural Builder constructs the aimed connectors’ view. Figure 2 illustrates
the main steps of our approach.

Fig. 2. Original Architecture Specification of the System

In order to perform the task they were designated for Architectural Analyz-
ers use dynamic information about the aspects who captures a point of interest
(for example, one object invoking a method from another object). This infor-
mation includes the name of the aspect collecting the information, signature of
the invoked method, class name of the sender and the receiver, among other
items. Following the classification of the connectors’ behavior in section 2 we in-
troduce three types of Architectural Analyzers: Direct, Naive Intermediary and
Sophisticated Intermediary, which are described in what follows.

A Direct Architectural Analyzer simple captures messages like “An object
a of type A sends a message M to an object c of type C”. This implies that a

Direct Architectural Analyzer manages the detection of the following connectors:
Synchronous Call, Asynchronous Call and Client-Server.

Naive and Sophisticated Intermediary Architectural Analyzers are similar,
but they also contemplate the flow of the execution involving the intermedi-
ate structure, such as a buffer. An Naive Intermediary Architectural Analyzer
captures messages like “An object a of type A sends a message M to the in-
termediary i of type I”. For example, an object placing information in a pipe
invoking the pop method, or an object retrieving data from a pipe, invoking
the push method. Since both messages are sent to the intermediary object we
denominate these analyzers as Naive Intermediary. A Naive Intermediary Ar-
chitectural Analyzer handles the information of the following connectors: Pipe,
Publish-Subscribe and Blackboard. A Sophisticated Architectural Analyzer is a bit
more complex, since it need to distinguish if the intermediary is the sender or the
receiver of the message. For example, a router connector will only be detected if
two things happen. First, a router annotated method must be invoked (in this
case the intermediary is playing the role of the receiver). Secondly, a message to
the expected receptors is sent by the intermediary (in this case the intermediary
plays the role of the sender). So, in order to detect the architectural relation the
intermediary needs to play both roles, sender and receiver, and that is why they
are called actives. A Sophisticated Architectural Analyzer detects the presence
of the following connectors: Router and Broadcast.

Since our approach monitors the system execution the architectural view
construction is a continuous process and is updated as new architectural infor-
mation is gathered. The main steps followed by our approach can be schematized
as shown next.

– Step 1: The systems is running.
– Step 2: Aspects monitor the system’s execution in order to detect the pres-

ence of connectors.
– Step 3: Certain execution point ep is captured by one of the defined aspects.
– Step 4: If ep has already been analyzed by one aspect, the execution point

is discarded.
– Step 5: If ep has not been previously analyzed, the aspect collects the con-

text of execution of ep and passes that information to the corresponding
Architectural Analyzer. The ep is marked as analyzed.

– Step 6: The Architectural Builder analyzes the received information and
updates accordingly the architectural view.

– Step 7: Once the architectural view is updated, the system continues its
execution at step 1.

Since we define one aspect for each selected connector, while the system is
running all the aspects monitor the execution at the same time. Some points of
interest such a method invocation might call the attention of two or more aspects
at the same time. An object o of type O calling a method m of an object p of
type P might be a simple synchronous call between two processes or perhaps it
belongs to a more complex connector like a Pipe and it represents one processes

performing a push over a pipe. Taking this into account, aspects analyze exe-
cution points in a certain order so as to guarantee that the architectural view
is properly built. What is more, only one aspect must analyze each execution
point of interest. This is checked in step 4 whereas line 5 shows when a certain
execution point is marked as analyzed. The reasons for this are inherited by
current limitations of the aspect oriented language used in our work, AspectJ.

To further clarify how our approach works, a simple example is given next.
The reader is referred to [11] for more details about the Architectural Builder
process.

4.2 A simple example

Suppose a system implementing two components communicating through a Pipe
Connector. More concretely, an EmailsPipe class implementing a pipe, and two
components using it: the EmailCreationGUI and the EmailProcessor class. In
this context, the expected output for the tool would be a view showing that
these classes are communicating through a Pipe connector.

The code fragment in Listing 4-8 shows the definition of a EmailsPipe class
where two of its methods (pushNewEmail and popNextEmail) are annotated as
implementing a Pipe connector’s protocol. The annotations are shown in lines 2
and 6.

Listing 4-8. A Class Implementing a Pipe

1 class EmailsPipe {
2 @PipePush
3 public void pushNewEmail (Email emai l){
4 emai l s . add (emai l) ;
5 }
6 @PipePop
7 public Email popNextEmail (){
8 emai l s . g e t F i r s t () ; . . .
9 }

Similarly, the next code fragment (Listing 4-9) shows part of the code for
the two classes of the system communicating through the pipe: the EmailCre-
ationGUI and the EmailProcessor class.

Listing 4-9. Implementation of the Components Using the Pipe

1 class EmailCreationGUI {
2 public void newEmail (Email emai lRece ived){
3 emai l sConta iner . pushNewEmail (emai lRece ived) ;
4 }
5 }
. . .
6 class Emai lProcessor {
7 public void processEmai l (){

8 EmailPipe emai lToProcess=emai lsToProcess . popNextEmail () ;
9 // . . .
10 }
11 }

When the pushNewEmail is invoked (shown in line 3 in Listing 4-9) the Pipe
aspect enters in the game since a method annotated as PipePush is called. The
pipe aspect collects the information, which is in turn passed to a Naive Interme-
diary Architectural Analyzer which starts to build a pipe relationship between
the class EmailCreationGUI and a Pipe connector. The mentioned analyzer does
not have at this point enough architectural information to fully establish a pipe
connector since no objects have consumed from the pipe. In other words, no pop
annotated method has been invoked yet. However, it is registered that the class
EmailCreationGUI performed a push over a pipe. It is worth noticing at this
point that the aspect in charge of detecting synchronous call connector will also
be activated. However, since this method invocation has been previously ana-
lyzed by the Pipe aspect the Synchronous Call aspect ignores this method call.
If it was the case that no other aspect had previously intervened, then a syn-
chronous call connector will be established between the sender and the invoked
objects. Recall that there exist a precedence rule that dictates which aspect is
applied first.

Eventually, the popNextEMail method is invoked (see line 8 in Listing 4-
9). When this invocation occurs, the pipe aspect gathers this information and
the Naive Intermediary Architectural Analyzer can therefore detect the presence
of a pipe connector. More particulary, it can establish that classes EmailCre-
ationGUI and EmailProcessor communicate through a pipe connector, since
an object of class EmailCreationGUI performs a push action over a pipe, and
objects of class EmailCreationGUI performs a pop action over the same pipe.
Analogously to the previous discussion, a possible synchronous call connector
between EmailProcessor and EMailsPipe is discarded. This information is sent
to the Architectural Builder who accordingly updates the view exhibiting two
components communicating through a pipe connector as it was expected.

5 Related topics

In this section we highlight some important points of our approach. We first
analyze in section 5.1 some decisions regarding aspects precedence, which are
related to a crucial problem for the aspect-oriented community: the Aspects
Interference Problem [5]. In section 5.2 we describe how by employing a special
type of annotation our approach is suitable for an incremental and localized
architectural analysis. In this sense, we define a special type of annotation used
in our tool to detect the presence of architectural connectors in runtime: the
“Ignored” annotation. Finally, in Section 5.3 we present some extra features
available in our tool beyond the discovery of software connectors.

5.1 Aspects Precedence and the Aspects Interference Problem

The Aspect Interference problem [5] is a very well known problem in the aspect
oriented community. This problem occurs when two or more aspects can act
on the very same point of interest, such as a method call. In these cases, it is
important to resolve questions like: Which aspect should be applied first? Why?
Does it matter? In particular, this problem is exacerbated if the correct behavior
of the system depends on the order in which the aspects are applied.

In our case this problem occurs when two or more of the aspects defined
to identify connectors interact within the same method call. For example, a
method call could be registered either as a synchronous call or as a part of a
pipe behavior. In order to tackle this problem we define a particular precedence of
aspects application, so that the tool analyzes each particular method call in the
right order. After a rigorous analysis we define the following precedence: Pipe ,
Publish Subscribe, BlackBoard, Client Server, Broadcast, Router, Asynchronous
Call and finally, Synchronous Call. This implies that the Pipe aspect will be
always executed first (it has the highest precedence) and the Synchronous Call
aspect will always occur in the last place (a simple method call will be catalogued
as a Synchronous Call connector if no other connector was previously detected).
Getting back to the previous example when trying to distinguish between a Pipe
connector or a Synchronous call, if the method call was part of a pipe structure
the resulting architectural relationship will be registered as a Pipe as expected
since the Pipe aspect has higher precedence than the Synchronous Call aspect.

One interesting final remark regarding aspects interference is about the ex-
pressivity of the language used to specify aspects’ behavior. We would have
needed to specify aspect application as follows: “Only apply this aspect at this
execution point if and only if no other aspect has been applied here before”.
Similarly, work in [6] proposes a richer aspect model where the user can specify
this exclusive application of an aspect at a certain point. Since the language we
used to implement our approach (AspectJ) does not support this kind of expres-
sions, this was solved in an ad-hoc fashion, keeping a structure of the points of
interest already visited. Under this perspective, we advocate for aspect oriented
languages implementing a richer model to express and specify aspect’s behavior.

5.2 Incremental and Localized Architectural Analysis

By defining a special type of annotation our approach is able to allow an incre-
mental and localized architectural analysis. In this sense, we introduce a special
annotation named “Ignored” pursuing two main purposes. On one side, some
methods might be known as not being relevant for architectural analyses. In
those cases, they can be annotated as “Ignored” so that Architectural Analyz-
ers can simply ignore their invocation. The other objective for this annotation
is to allow an incremental and localized construction of the architectural view.
For example, if only a certain portion of the code is to be addressed or only
a particular interaction between two or more components need to be validated
the rest of the implementation can be marked as ignored so that the tool can

only focuses on the exact portion of the system that is relevant at that given
moment. This is also particularly interesting since it allows the possibility of an
incremental discovery of the architecture. The user might start analyzing only a
small portion of the system and later expand the area covered by our tool in an
incremental flavour by simply removing the ignored annotation. This incremen-
tal process is also helpful to properly annotate the code of the system if there is
little knowledge of the system behavior. The user of the tool can initially anno-
tate only a portion of the code restricting the analysis to that portion, instead
of trying to annotate the whole code at once.

5.3 Beyond connectors detection

The current state of our tool is able to provide two more interesting features
besides the dynamic discovery of software connectors. In the first place, it can
detect a more deeper analysis related to the Publish Subscribe connector. In
particular, it can detect what type of messages is receiving each subscriber.
This information is helpful in order to validate that each component is receiving
the data is supposed to receive and nothing else. This is achieved by recording
not only the components interacting at a given point but also the type of the
messages exchanged in the interaction.

More related to an architectural analysis, our tool can suggest the presence of
a Pipe and Filter architectural style and not only the presence of a pipe connec-
tor. This style describes a certain interaction between two or more components
communicating with pipe connectors in a sequential fashion. When collecting
the information gathered by the Pipe aspects, the tool can build a chain of
processes interacting all together with two or more pipes over the same struc-
ture, and therefore detecting not just a pipe connector but a Pipe and Filter
architectural style.

6 Case Study: The tool in action

In this section our approach is shown in action by validating the architecture
of a given system. Although the system under analysis is simple it features
non trivial architectural behavior exhibiting the use of several type of different
connectors resulting in a interesting case of study. Given these characteristics,
the analyzed system results in a solid case of study to apply and validate our
approach. The system, called “My Little Tomato Plant”, was implemented as a
final assignment of a Software Engineering course at the Universidad de Buenos
Aires, Argentina. It consists of a system in charge of controlling the growth of a
tomato plant. Given the information obtained by sensors attached to the plant
(indicating water, light and humidity levels) the system executes the necessary
actions to take care of the tomato plant and to assure that it grows healthy. These
actions are obtained based on botanical knowledge and a growth plan indicating
the expected health parameters of a tomato plant through its life cycle. These
actions are built as orders to actuator components that can augment or diminish

the levels of light, water and humidity that the tomato plant is receiving. The
system consists of nearly 5000 lines of code distributed among 35 Java classes.
Figure 3 shows the architecture specification for the system. It can be seen that
several connector types are used: Synchronous and Asynchronous Call, Publish
and Subscribe, Pipe and Client Server. Figure 3 also shows in the right corner a
reference to identify each connector in the view.

Fig. 3. Original Architecture Specification of the System

Given a certain code implementing the system our tool was employed to ob-
tain an architectural view based on the system’s execution. Figure 4 shows the
architecture built by the tool relying on a fully annotated source code imple-
menting the system.

Two main differences are appreciated when comparing both views (the archi-
tecture built by the tool in Figure 4 and the architecture original specification
in Figure 3). One one side, there is a missing collaboration between two com-
ponents. In the original specification there is a Synchronous Call relationship
between the Growth Plan and the Botanical Expert component which is not
present in the architecture built by the tool. It can be the case that either the
Growth Plan component was marked as ignored, or that the component was not
involved in the system’s execution when the view was built. In these cases, the
user can remove the ignored annotation, or run again the system in such a way
that the Growth Plan is executed. If after realizing these changes the Growth
Plan component is still missing in the view then this inconsistency between both
views indicates a potential serious problem: either there is an implementation
bug and the Botanical Expert component is never interacting with the Growth
Plan component, or an architectural decision was made during the implementa-
tion phase and the original specification was never updated. On the other side,
there is a connector mismatch between components Sensor and Botanical Ex-

Fig. 4. The architectural view of the system built by the tool

pert. In the original architecture it is specified that they should interact through
an Asynchronous Call connector whereas in the view built by the tool they inter-
act through a Synchronous Call connector. A similar analysis to the one seen in
the previous case can be performed: either the original specification is outdated
or the current implementation is not behaving as it is supposed according to the
specification.

In both cases the tool resulted indeed helpful to identify architectural behav-
ior alarms either in the shape of errors in the implementation or specific items
to update the original architecture specification. Finally, it is worth mention-
ing that the tool also properly identified a Pipe and Filter style. In addition,
the output obtained by the tool was also used to validate that the subscribers
processes were receiving the expected information from the publishers.

7 Incremental and localized annotation process: An
example

The tool implementing our approach assumes that the source code is annotated
indicating those places in the code implementing the connectors protocol. How-
ever, as it was previously mentioned in section 5, if there is little knowledge
of the source code the very same output of the tool can be used to refine the
annotation process in an iterative procedure until a mature and solid annotation
layer is obtained. The rest of this section aims to illustrate this process using the
same systems described in the previous section, the “My Little Tomato Plant”
system.

In order to proceed in an incremental fashion, the user might start focusing
only in one particular architectural relationship. In this case, we assume the
user selects the architectural relationship between the Heat applier component

and the Gardener Component, thus avoiding the need to completely annotate
the code which might be an extremely demanding task. To accomplish this,
all the components (excepting the Heat and Gardener) should be annotated as
“Ignored”. Running the tool under under this setting produces the following
output shown in Figure 5:

Fig. 5. Discovering the Pipe connector: Exploring the system without annotations

As it can be seen, the tool produces a view where the Heat Component
communicates with a Queue Component with a Synchronous Call connector,
and the same happens with the Queue component and the Gardener Component.
Recall that any method call will be marked as a Synchronous Call since no
annotations are needed for this type of connector.

Analyzing this figure the user might deduce that Queue Component is indeed
the intermediate structure implementing the Pipe connector protocol and decides
to annotate the Queue component’s source code accordingly as show in the next
code fragment (see Listing 7-10). Line 6 in Listing 7-10 exhibits the PipePush
annotation attached to the method push, whereas line 10 in the same Listing
shows the PipePop annotation attached to the method pop of the class Queue.

Listing 7-10. Component Queue source code

1 public class Queue {
2 private LinkedList<Str ing> content ;
3 public Queue (){
4 content = new LinkedList<Str ing >() ;
5 }
6 @PipePush
7 public void push (St r ing dato) {
8 content . push (dato) ;
9 }
10 @PipePop
11 public St r ing pop (){
12 return content . pop () ;

13 }
14 public boolean hasElements (){
15 return ! content . isEmpty () ;
16 }
17 }

Running the tool with the annotations shown in Listing 7-10 produces the
following view depicted in Figure 6. It can be noted that the Pipe relationship
between both components is now shown in the view.

Fig. 6. Discovering the Pipe connector: Running the tool with an annotated source
code

Next, the user might try to focus on the relationships between other compo-
nents until the whole system in annotated. When this learning process is over
the architectural view built by the tool can be compared against the architecture
specification. It is worth mentioning that this process is only needed if there is
little knowledge about the code implementing the system. It can be the case
that the source code can be directly annotated without doing this step. It is
only shown here as an example of the flexibility of the approach.

8 Case Study: Customized Connectors

In this section we describe how our tool was applied to capture a customized
connector. Although the connector itself it is not included in our selected set of
connectors (see Section 2), its behavior can be specified in terms of connectors
in the set. This example shows that our tool does not only contemplate the
mentioned connectors, but also any possible combination of them.

The case of study covers part of a Twitter-based application called TW Rat-
ing, which measures TV shows’ ratings based on the comments made by the
community in the Twitter social network. The application was developed by
advanced students of Computer Engineering at the Universidad Nacional de
Avellaneda in the context of a Software Engineering course. Regarding the size

of the analyzed system, it can be stated that the implementation of the connector
consists of 11 Java classes, with a total of 1411 lines of code.

Twitter offers an application programming interface (API) that covers four
main use cases [23, 13]:

– The user must authenticate in order to perform any action.

– The user can send a tweet to update its status.

– Users can retrieve tweets when they are online.

– Users can search for tweets using predefined topics called hashtags.

The developers were asked to implement a particular connector between the
application and the Twitter API. This connector is presented in [23]. Instead of
providing separate connectors for these four cases, work in [23] proposes a cus-
tomized connector which internally handles all the required services. Three of
them are based in a classic client-server interaction excepting the sending tweets
service since tweets are asynchronously sent to Twitter. The others three, authen-
tication, searching tweets and retrieving tweets, require a dedicated connection
between the social network and the application. Figure 7 shows the architecture
of the twitter connector. Reader is referred to [23] for a complete description of
the behavior of the connector.

Fig. 7. Arquitecture Specification for the Twitter Connector

Using the localized and incremental method described in Section 7 the source
code of the connector was isolated and incrementally annotated as well. Once
this step was completed, the tool delivered the connectors view shown in Figure
8.

Analyzing the differences between the original architecture (Figure 7) and
the one produced by the tool (Figure 8) it can be seen that two new components
arise in the view built by the tool which are not present in the given specification
of the connector. These components are: the Pre Loader component in the Pipe
and Filter style implementing the Sending Tweets service and the Pre Fetcher
component in the Pipe and Filter style implementing the Retrieving Tweets
service.

When the developers were consulted about the gap between both architecture
specifications they answered they needed to include these two new components
due to changes made in the Twitter API. In a newer version of the API tweets
can include videos and also contain multiple images instead of only one picture.
The developers decided to include the mentioned new components to especially
handle the multimedia content of this kind of tweets due to different purposes.
For example, to avoid the degradation of the connection between Twitter and
the application.

In this case, the tool was helpful to find an outdated architecture specifica-
tion. The problem originated during the developing phase of the product, where
a implementation decision was not properly documented. We also showed in this
example how our tool can detect also customized connectors, taking into account
the restriction that their behavior must be expressible as a combination of the
chosen connectors.

9 Lessons Learned and Threats to Validity

In this section we discuss lessons learned while developing the case-studies. We
also briefly compare our tool against others known tools and present some threats
to validity related to our approach.

9.1 Lessons Learned

One of the first learned lesson is about the aspects implementation to detect
the presence of some connectors. In order to detect the presence of the Syn-
chronous Call connector we assume that any method call between two objects is
treated as two objects communicating with a Synchronous Call connector. This
implementation decision leads to the introduction of the “Ignored” annotation
so that the user can indicate that certain methods calls should be ignored by
the aspects during the execution of the system. This process might result in a
tedious process. This could be avoided by introducing a dedicated annotation for
the Synchronous Call connector and modifying accordingly its aspect definition.
Under this context, the user only would only need to annotate those portions of
the code he is interested in, and the “Ignored” annotation could be discarded.

Fig. 8. Arquitecture View Built by the tool

We are considering to include this modification in the new version of our tool.
Note that this modification does not invalidate the earlier described iterative
process to discover and annotate the source code since the user can still learn
from the obtained output of the tool to improve the annotation schema.

Similarly, current implementation details of others connectors deserve some
considerations. The implementation of the Asynchronous Call rely on a particu-
lar coding convention, namely threads. After considering some other alternatives
such as distributed environments we decided to use threads to maintain the sim-
plicity of the tool in this first stage. Other implementation alternatives could be
considered in future versions of the tool. More generally, given a proper aspect
definition it would be possible to include simultaneously more than one aspect
to detect several implementations for the same connector. An special consider-
ation is to be analyzed in the case of using software libraries or frameworks to
implement a given connector. Using our approach the user needs to annotate
the portion of the code implementing the connector. If this code is not accessi-
ble to the user (because it is hidden in the library or framework) the connector
could still be detected introducing some “ad-hoc” annotations. These annota-
tions should indicate the place in the source code where the software library or
framework is invoked.

Regarding the case study in section 8, a new connector is detected combining
the behavior of the connectors included in our tool. These kind of “compound”
connectors could be included in the set of connectors. This would require new
aspects definitions and a more complex architectural analyzers infrastructure in

order to establish that, for example, a client-server connections is indeed part
of a composite connector and not a “stand-alone” connector. All these points
are certainly a challenge regarding future work. A possible initial step in this
sense might be considering an object-oriented hierarchy structure based on ab-
stractions and inheritance for the aspects definitions, similar to the hierarchy
introduced in [12] when implementing object oriented patterns using aspect ori-
entation.

Another important lesson came from comparing the output produced by our
tool with other known approaches. Our tool can be seen as a lightweight tool
since only detects the presence of connectors. Tools like [26, 21, 1] provide a
more complex view including ports, roles, interfaces, component together with
the possibility of performing automatic formal validation of the architecture
behavior.

Similar to our work, [1] employs annotations in their approach. However,
these annotations are based on local modular ownership in the code to impose
a conceptual hierarchy on objects. Then, a static analysis extracts from the
annotated program a global object graph that uses object hierarchy to con-
vey architectural abstraction. Annotations in our work are directly related to
architectural behavior, since they are strictly referring to the behavior of the
connectors. In this sense, we believe the lightweight nature of our tool implies
a simpler annotation effort. Nonetheless, a precise conclusion regarding this as-
pect requires a well designed experiment, which is out of the scope of this paper.
Work in [26, 21] does not rely on annotations, but the source code must follow
certain naming conventions, a condition that might hard to satisfy in certain
contexts.

The current stage of our tool lacks the necessary infrastructure to provide
more complex architectural reasoning such as the automatic detection of confor-
mance violations or the presence of components. Components behavior in our
approach are simplified since we can only detect objects communicating with
each other. In order to properly detect components and more complex archi-
tectural behavior our tool would need to be extended beyond reasonings about
method calls. This could be achieved by complementing our tool with other tech-
niques such as introducing behavioral assertions like in [18] or employing static
analysis as in [1].

9.2 Threats to validity

One of the main threats to validity relies on the size and complexity of our case
studies. Although the analyzed systems present a rich and interesting architec-
tural behavior they do belong into the small-sized systems category. Therefore,
the usefulness of our tool need to be challenged with more complex and larger
systems.

Another important topic is the expertise of the developers of the systems since
in all cases students of Computer Science careers were involved. It might have
been the case that the gap, errors and differences detected between architectural
views in the case-studies (between the original architecture specification and

the one obtained by our tool) were originated due to the lack of experience of
the developers. This indicate that the results obtained in this work should be
validated against systems developed by more experienced developers.

Finally, the annotation process certainly represents a threat to validity due
mainly of two reasons. In the first place, the systems were relatively small sized.
And second, users annotating the source code were familiar to the systems. As
it was previously stated a dedicated experiment is needed to effectively measure
the amount of effort to annotate the source code.

10 Related Work

Approaches in related work can be divided into three categories [26, 21]. The
first one groups those alternatives which aim to assure consistency between a
system architecture’s specification and its implementation by construction [2,
22]. These approaches work efficiently when the tools that give support to them
can be actually employed [26]. In some occasions, for example, it is not possible
to express all the interactions of a system since they might use architectural
styles which are not available in the tools to be used.

The second category consists of those approaches based on static code anal-
ysis [19, 16]. These approaches aim to build the architecture of a system upon
its code. However, they suffer from some known problems [26, 21]. Trying to un-
derstand the architectural behavior of a system from the code can be sometimes
problematic since process and other dynamic structures cannot be easily mapped
to the static structures reflected by the code. What is more, some architectural
elements exist only while the system is running and therefore cannot be cap-
tured using these techniques. Work in [1] uses static analysis and annotations
to build a runtime architectural structure where conformance analysis can be
applied. The main purpose of our work is different since we are only interested
in building a dynamic view of the architecture. Similarly, annotations in [1] are
focused in the structure and hierarchy of the system while in our work they are
used to identify the behavior of the connectors. Work in [18] employs aspect
orientation and annotations to verify conformance to architectural design. In
this case annotations are used to introduce static assertions that trigger an error
when non-valid interactions between modules take place. In our case, aspects
orientation is dynamic since aspects monitors system’s execution. Another dif-
ference is that our annotations are focused in the detection of connectors, and
not to specify behavior of components. Nonetheless, our approach could incor-
porate these kind of annotations in order to detect the presence of components
and validate their behavior.

Finally, approaches in the third category focus on the extraction of a system
architecture upon the dynamic observation of the system execution. Probably
the most representative example of the category is the tool DiscoTect [26, 21].
It has been widely applied since it can detect architectural components, connec-
tors, roles, and interfaces. However, the restriction for the code to follow certain

naming conventions and other similar limitations might be hard to satisfy in
certain contexts.

11 Conclusions and Future Work

In this work we present a tool that builds an architectural view based on the
system’s execution. In particular, it is focused on detecting the connectors used
while the system is executing. The tool requires that the source code is properly
annotated in those places implementing the connector’s protocol. We explained
how this can be done in an incremental and localized manner even in the case
where there is little knowledge of the source code. We applied our tool to non
trivial case-studies and the results showed that the tool helped to identify archi-
tectural behavior mismatches between the running system and the original spec-
ification of the system. We believe our tool constitutes a solid first exploratory
step towards a runtime discovering architectural tool.

Our tool was implemented using the AspectJ language, following aspect-
oriented techniques. In this sense, we found some obstacles when trying to spec-
ify the aspects behavior and we realized that a more richer language model is
needed to properly address the Aspect Interference problem [5]. Regarding future
work, we would like to augment our expressivity to denote architectural behav-
ior beyond connector’s detection. For example, we would like to add notions like
ports, roles, styles among others, in order to become a more precise architectural
tool. This step will involve the need to rely on a more formal specification of
the connectors behavior. We believe our current status being able to identify a
potential use of the Pipe and Filer style, and the ability to pinpoint information
between publishers and subscribers is promising enough to believe the expressiv-
ity of the tool can be easily increased. This next step would allow the possibility
to interact with other software architecture tools like Arch Java [2] or Disco-
Tect [26]. Similarly, we believe our approach can complement other alternatives
based on hybrid approaches combining static and dynamic analysis such as [1].
We would also like to explore the possibility to annotate the code automatically.
Finally, a next logical step is to validate our tool with more sophisticated exam-
ples including the possibility of interacting with software frameworks, which are
increasingly present in actual software development.

References

1. M. Abi-Antoun and J. Aldrich. Static extraction and conformance analysis of
hierarchical runtime architectural structure using annotations. In ACM SIGPLAN
Notices, volume 44, pages 321–340. ACM, 2009.

2. J. Aldrich, C. Chambers, and D. Notkin. Archjava: connecting software architec-
ture to implementation. In ICSE 2002, pages 187–197. IEEE, 2002.

3. F. Asteasuain, C. Graiño, and D. Manuel. Dynamic validation of software archi-
tectural connectors. ASSE 2016. JAIIIO. pp 87-98.

4. L. Bass. Software architecture in practice. Pearson Education India, 2007.

5. L. M. Bergmans. Towards detection of semantic conflicts between crosscutting
concerns. Analysis of Aspect-Oriented Software (ECOOP 2003), 2003.

6. S. Casas, J. Pérez-Schofield, and C. Marcos. Conflicts in aspectj: Restrictions and
solutions. Latin America Transactions IEEE, 8(3):280–286, 2010.

7. P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little.
Documenting software architectures: views and beyond. Pearson Education, 2002.

8. J. Garcia, I. Ivkovic, and N. Medvidovic. A comparative analysis of software
architecture recovery techniques. In ASE, pages 486–496. IEEE, 2013.

9. J. Garcia, I. Krka, C. Mattmann, and N. Medvidovic. Obtaining ground-truth
software architectures. In ICSE 2013, pages 901–910. IEEE Press, 2013.

10. D. Garlan. Formal modeling and analysis of software architecture: Components,
connectors, and events. In SFM, pages 1–24. Springer, 2003.

11. C. Graiño. Validación de arquitecturas a través de la pro-
gramación orientada a aspectos. Tesis de Licenciatura.,
http://www.dc.uba.ar/inv/tesis/licenciatura/2015/graino.pdf. 2015.

12. J. Hannemann and G. Kiczales. Design pattern implementation in java and aspectj.
In ACM Sigplan Notices, volume 37, pages 161–173. ACM, 2002.

13. C. Honey and S. C. Herring. Beyond microblogging: Conversation and collabora-
tion via twitter. In System Sciences, 2009. HICSS’09. 42nd Hawaii International
Conference on, pages 1–10. IEEE, 2009.

14. https://www.redhat.com/es/files/resources/en-rhjb-fuse-eip-flashcards 10611447-
.pdf. Enterprise Integration Patterns. Red Hat, 2015.

15. M. M. Joy, M. Becker, W. Mueller, and E. Mathews. Automated source code
annotation for timing analysis of embedded software. In ADCOM,12-18, 2012.

16. R. Kazman and S. J. Carrière. Playing detective: Reconstructing software archi-
tecture from available evidence. ASE, 6(2):107–138, 1999.

17. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of aspectj. In ECOOP 2001, pages 327–354. Springer, 2001.

18. P. Merson. Using aspect-oriented programming to enforce architecture, software
engineering institute. Technical report, CMU/SEI-2007-TN-019, 2007.

19. L. Passos, R. Terra, M. T. Valente, R. Diniz, and N. das Chagas Mendonca.
Static architecture-conformance checking: An illustrative overview. IEEE software,
27(5):82, 2010.

20. D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

21. B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan. Discovering architec-
tures from running systems. TSE, 32(7):454–466, 2006.

22. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik.
Abstractions for software architecture and tools to support them. Software Engi-
neering, IEEE Transactions on, 21(4):314–335, 1995.

23. T. Slotos. A specification schema for software connectors. In Proceedings of the 17th
international ACM Sigsoft symposium on Component-based software engineering,
pages 139–148. ACM, 2014.

24. R. Suzuki. Interactive and collaborative source code annotation. In ICSE, pages
799–800. IEEE Press, 2015.

25. R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software architecture: founda-
tions, theory, and practice. Wiley Publishing, 2009.

26. H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman. Discotect: A system
for discovering architectures from running systems. In ICSE, aosfpp 470-479, 2004.

