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Abstract. We introduce a deductive system Bal which models the logic of balance of op-
posing forces or of balance between conflicting evidence or influences. “Truth values” are
interpreted as deviations from a state of equilibrium, so in this sense, the theorems of Balare
to be interpreted as balanced statements, for which reason there is only one distinguished
truth value, namely the one that represents equilibrium.

The main results are that the system Bal is algebraizable in the sense of [5] and its equiv-
alent algebraic semantics BAL is definitionally equivalent to the variety of abelian lattice
ordered groups, that is, the categories of the algebras in BAL and of `–groups are isomorphic
(see [10], Ch.4, 4). We also prove the deduction theorem for Bal and we study different kinds
of semantic consequence associated to Bal. Finally, we prove the co-NP-completeness of
the tautology problem of Bal.

1. Introduction

In this paper we want to model some aspects of arguments in which conflicting
pieces of evidence, such as those that appear in a police investigation, credit re-
cords, political influences, and even in scientific research, are confronted. In all
these cases, the pieces of evidence can be assigned a degree of relevance to the case
at hand. It appears natural then to assign positive degrees to some bits of evidence
and negative degrees to those that oppose them. Needless to say, the positiveness
is arbitrary, it is simply a fixed privileged direction.

Evidence can pile up, but it is obvious that no amount of it will prove that some
fact is either true or false, so we should not talk about truth or falsehood, instead our
statements talk about potentially unbounded evidence for or against some fact. In
this scenario, it is natural to pay attention to those statements which do not provide
evidence that will incline us in any direction. This is precisely what our system
models, our theorems are the balanced statements, those that do not favor any fact.
So it is only natural that we have a single distinguished “truth” value, that represents
equilibrium, and an unbounded set of truth values to both sides of this point.
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In Section 2 we introduce the system Baland prove several technical results.
In Section 3, we prove that Balis algebraizable in the sense of [5]. In Section 4 we
characterize the equivalent algebraic semantics BAL and prove that it is definition-
ally equivalent to the variety of abelian lattice ordered groups. In other words, the
categories of the algebras in BAL and of `–groups are isomorphic (see [10], ch.4,
4). In Section 5 we prove the deduction theorem for Bal and we study different
kinds of semantic consequence associated to Bal. Section 6 is devoted to the proof
of co-NP-completeness of the tautology problem of Bal.

2. The logic Bal

Throughout this paper we are going to use the following notations and concepts
as defined in [5]. A propositional language L is a set of logical connectives, each
one with an associated arity. The set of formulas or terms FL of L is built re-
cursively as usual from the set of connectives and a denumerable set V ar =
{X1, X2, . . . , Xn, . . .} of variables. A deductive system S over a propositional lan-
guage L is determined by a set of axioms and inference rules. The consequence
relation on S denoted by `S is the usual relation between a set 0 of formulas of
L and a formula ϕ of L that holds when ϕ is obtained from 0 by means of a finite
number of applications of deduction rules. We consider S to be the pair hL,`Si.
The consequence operatorConS of S is the function from the power set of FL into
FL assigning to each set0 of formulas the setConS(0) = {ϕ ∈ FL : 0 `S ϕ}.
An S–theory is a set2 of formulas closed under `S , that is2 `S ϕ ⇒ ϕ ∈ 2.

2.1. Language

Let us consider the language LBal = {→,+ } of type (2, 1). The formulas are built
recursively as usual from a denumerable set of propositional variables.

Given our intuition that the formulas ϕ and ψ stand for pieces of evidence, and
that asserting ϕ means “the evidence provided by ϕ is in equilibrium or balanced”,
we should give the corresponding intuitions about the meaning of the formulas
ϕ → ψ and ϕ+.

The statement ϕ → ψ should be interpreted as “the amount of evidence needed
to go from the state described by ϕ to the state described byψ”. So to assert ϕ → ψ

means that the evidence ϕ and the evidence ψ are balanced.
The statement ϕ+ should be interpreted as “the positive part of the evidence

described by statement ϕ”. As we pointed out before, positive is an arbitrary direc-
tion.

2.2. Axioms

(B) (ϕ → ψ) → ((θ → ϕ) → (θ → ψ)),
(C) (ϕ → (ψ → θ)) → (ψ → (ϕ → θ)),
(N) ((ϕ → ψ) → ψ) → ϕ,
(P) ϕ++ → ϕ+ ,
(O) ((ψ → ϕ)+ → (ϕ → ψ)+ ) → (ϕ → ψ).
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2.3. Inference rules

(MP)
ϕ , ϕ → ψ

ψ
, (G)

ϕ, ψ

ϕ → ψ
,

(PI)
ϕ

ϕ+ , (MI)
(ϕ → ψ)+

(ϕ+ → ψ+)+
.

We will say that ϕ is a syntactical consequence of the set 0, denoted 0 `Bal ϕ
(or more briefly 0 ` ϕ) if there is a finite sequence of formulas ψ1, . . . , ψk such
that for each i = 1, . . . , k, ψi is an instance of an axiom or else it belongs to 0
or is obtained from the previous formulas in the sequence by application of some
inference rule.

2.4. About the axioms and rules

Given that we are trying to model a certain logic, the proposed deductive system
should be justified or, at least, the intuitions behind certain axioms and rules should
be explained.

Axiom (B) states that balance is not affected if equal information is added to ex-
isting pieces of evidence. (See axiom (N) below.) Axiom (C) states that the order in
which evidence is provided does not affect the outcome.Axiom(N) is non–standard.
It should be noted that this is the crucial Axiom of Relativity in Meyer & Slaney’s
Abelian logic A, (axiom A9 in [11].) They interpret ϕ → ψ as a negation of ϕ
relative to ψ , and write ϕ → ψ = ∼ψ ϕ, so the axiom reduces to

∼ψ∼ψ ϕ → ϕ,

that is, the axiom of double (relative) negations. There is another interesting
consequence. Axiom (B), prefixing, is equivalent with suffixing, (ϕ → ψ) →
((ψ → θ) → (ϕ → θ)) , which if we interpret implication as relative negation,
yields

(ϕ → ψ) → (∼θ ψ →∼θ ϕ),

that is, (B) is a relativized version of contraposition.
Axiom (P) says that positive evidence is balanced with its positive part. Togeth-

er with (O), this axiom implies that the positive part of some piece of evidence
does not carry negative evidence. Axiom (O) is the most obscure of the axioms.
It implies that all evidence is composed by a positive part and a negative part. We
have chosen this form in order to stress the relation of Baland Chang’s logic  L∗ of
[6].

The inclusion of modus ponens (MP) is straightforward. If ϕ → ψ is balanced
then no evidence is necessary to go from state ϕ to state ψ , so if ϕ is balanced, so
must be ψ . Rule (G), sometimes known as Gödel’s rule, is very simple. If ϕ and ψ
are in equilibrium, then no evidence is needed to go from state ϕ to state ψ , that
is, they are balanced. This rule is essential for our definition of negation. The rule
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(G) is equivalent with the following derived rule ϕ `Bal ¬ϕ, where negation is
a derived operation that we will define later on. In Balthis is not at all surprising
since, if an assertion is balanced, its negation, the statement that carries the oppo-
site information, should also be balanced. The rule (PI) is also straightforward, the
positive part of a balanced statement is balanced. Finally, the rule (MI) looks very
technical but is simple in spirit. Following the intuitions developed so far, it is not
difficult to see that `Bal (ϕ → ψ)+, asserts that ψ ≤ ϕ. The rule says that the
operation + is monotone.

We observe that if we define �ϕ = ϕ+, then some of the axioms and rules have
a modal connotation.

(P’) ��ϕ → �ϕ ,
(O’) (�(ψ → ϕ) → �(ϕ → ψ) ) → (ϕ → ψ) ,

(PI’) ϕ

�ϕ ,

(MI’) �(ϕ→ψ)

�(�ϕ→�ψ) .

We will not pursue this issue any further in this paper.

2.5. Preliminary results

Theorem 1. The following hold in Bal.
1. ` ϕ → ϕ , (I),
2. ` (ϕ → ψ) → ((ψ → θ) → (ϕ → θ)) ,

3. ` (ϕ → ϕ) → (ψ → ψ) ,

4. ϕ ` ϕ → (ψ → ψ) ,

5. ` (ϕ → (ψ → ψ)) → (ϕ → (θ → θ)) ,

6. ϕ → ψ ` ψ → ϕ ,

7. ` ϕ → ((ϕ → (ψ → ψ)) → (ψ → ψ)) ,

8. ` ((ψ → ψ) → ϕ) → ϕ ,

9. ϕ → ψ , u → v ` (ϕ → u) → (ψ → v) ,

10. ϕ → ψ ` ϕ+ → ψ+.

Proof. The proofs are very simple, we only indicate the main axioms and rules
involved in each case. 1., the principle of identity (I), is obtained from (N) 2., suf-
fixing, is obtained from (B) prefixing, using (C) and (MP). It should be noted that
prefixing can be obtained from suffixing in a similar way. 3. and 4. follow from (I)
and (G). 5. follows from 3., (B) and (MP). 6. follows from 2., 4., (N) and (MP). 7.
is a special case of the converse of axiom (N), it is immediate, and so are 8. and 9..
Item 10. uses the “order rules and axiom”, (PI), (SI) and (O). ut

3. From Bal to the quasivariety BAL

In this section we study the class of algebras that belong to the equivalent algebraic
semantics BAL for the deductive system Bal.
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3.1. Background

Given a language L, an L–algebra is an algebra A = hA; (αA)i, where for each
n–ary connective α of L, αA is an n–ary operation on A. For example, the
set FL of all terms, together with the connectives as formal operations constitute
an L–algebra, called the absolutely free algebra over the set V ar of propositional
variables.

Let K be a class of algebras. We define the relation |=K between a set of
equations (pairs of terms (ϕ, ψ) written as ϕ ≈ ψ), and an equation as follows.
0 |=K ϕ ≈ ψ if and only if for every A ∈ K and for every interpretation of
the variables of 0 ∪ {ϕ ≈ ψ}, if the equations in 0 hold in that interpretation,
then ϕ ≈ ψ also holds in that interpretation. This relation is called equational
consequence determined by K. We observe that the operator |=K is not necessarily
finitary.

We say that the class of algebras K is an equivalent algebraic semantics for a de-
ductive system S if `S can be interpreted in |=K in the following way. There exists
a finite set of equations δi(x) ≈ εi(x) for i < n, the defining equations, and a finite
set 1k(x, y), for k < m, the equivalence formulas, such that for 0 ∪ {ϕ} ⊆ FL,

(1) 0 `S ϕ iff {δi(ψ) ≈ εi(ψ) : i < n,ψ ∈ 0} |=K δj (ϕ) ≈ εj (ϕ),

for each j < n, and for every equation ϕ ≈ ψ of K
(2’) ϕ ≈ ψ |=K δi(ϕ1kψ) ≈ εi(ϕ1kψ) and
(2”) {δi(ϕ1kψ) ≈ εi(ϕ1kψ) : i < n and k < m} |=K ϕ ≈ ψ .

A deductive system S is algebraizable if it has an equivalent algebraic semantics
K. For all unexplained details we refer the reader to [5].

3.2. Results

The following theorem is an application of the algebraizability criterion given in
Corollary 4.8 in [5].

Theorem 2. The system Balis algebraizable by means of the single defining equa-
tion ϕ ≈ ϕ → ϕ and the single equivalence formula ϕ → ψ .

Proof.

1. By (I), that is, Thm. 1 (1), ` ϕ → ϕ.
2. By Thm. 1 (6), ϕ → ψ ` ψ → ϕ.
3. By Thm. 1 (2) and (MP), ϕ → ψ , ψ → θ ` ϕ → θ .
4. By Thm. 1 (9), ϕ1 → ψ1 , ϕ2 → ψ2 ` (ϕ1 → ϕ2) → (ψ1 → ψ2) and by

Thm. 1 (10), ϕ → ψ ` ϕ+ → ψ+ , so → defines a congruence on the algebra
of formulas of Bal.
By [5], Thm. 4.8, the system Balis algebraizable since both modus ponens and

rule G hold in Bal. ut
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Theorem 3. Let FBal be the set of terms of Bal. Let the binary relation ≡ over
FBal be defined by ϕ ≡ ψ if and only if `Bal ϕ → ψ . Then ≡ is a congruence
on the absolutely free (term) algebra hFBal, +,→i.
Proof. From the previous theorem. ut
Notation. For every formula ϕ we shall denote by [ϕ] its equivalence class. The
equivalence class of ψ → ψ shall be denoted by O.

Before giving an axiomatization for BAL we will prove

Lemma 4. The following identities hold in BAL.

x → x ≈ y → y ,

x → (y → y) ≈ x → (z → z) .

Proof. Recall that if BAL is the algebraic semantics equivalent to Bal, by [5], Def.
2.8, (which is summarized in (1), (2’) and (2”) above.)

` x → y if and only if |=K x ≈ y . (*)

Our lemma follows from (*) and Thm. 1 (3) and (5), respectively. ut
Notation. We can now use the abbreviations

0 := x → x

−x := x → 0

x& y := −x → y = (x → 0) → y

which by Lemma 4 are well defined.

Theorem 5. The algebraic semantics equivalent to Balis the quasi–variety BAL
defined by the following identities and quasi–identity.

BAL(AA) (x → x) ≈ 0 ,
BAL(B) (x → y) ≈ (z → x) → (z → y) ,

BAL(C) x → (y → z) ≈ y → (x → z) ,

BAL(N) (x → y) → y ≈ x ,

BAL(P) x++ ≈ x+ ,
BAL(O) (y → x)+ → (x → y)+ ≈ x → y ,

BAL(MP) 0 → x ≈ x ,

BAL(PI) 0+ ≈ 0 ,
BAL(AQ) x& (x → y) ≈ y ,

BAL(SI) (x → y)+ ≈ 0 H⇒ (x+ → y+)+ ≈ 0.

Proof. We can get an axiomatization of BAL from [5], Thm. 2.17. For each Bal–
axiom σ there is a BAL–identity δ(σ ) ≈ ε(σ ). In our case, this means σ ≈ 0. A
quasi–identity is associated with each Bal–rule.

There is also an extra identity that arises in the process. In our case this is

x → x ≈ (x → x) → (x → x) . (AA)
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Finally, there is a quasi–identity associated to the algebraization process, namely

x → y ≈ 0 H⇒ x ≈ y (AQ).

We will now check all axioms and rules of Baland establish their counterparts
in BAL. We will prove that not all of them are necessary and that the axiomatization
given in this theorem is equivalent and simpler.

(AA) The extra axiom (AA) reduces to x → x ≈ 0 .
(B) From Bal–axiom (B) and (*), it is immediate that x → y ≈ (z → x) →

(z → y) holds in BAL.
(C) From Bal–axiom (C) and (*), x → (y → z) ≈ y → (x → z) holds in

BAL.
(N) From Bal–axiom (N) and (*), (x → y) → y ≈ x holds in BAL.
(P) From Bal–axiom (P) and (*), x++ ≈ x+ .
(O) From Bal–axiom (O) and (*), (y → x)+ → (x → y)+ ≈ x → y holds in

BAL.
(MP) Bal–rule (MP) translates into x ≈ 0 , x → y ≈ 0 H⇒ y ≈ 0 . This

quasi–identity can be replaced by 0 → x ≈ x.
The identity follows from Thm. 1 (7) and (*). In order to show that the qua-
si–identity can be deduced, assume 0 → y ≈ y. Then if x ≈ 0 and
x → y ≈ 0, we get y ≈ 0 → y ≈ x → y ≈ 0, so the quasi–identity holds.

(G) Bal–rule (G) translates into x ≈ 0 , y ≈ 0 H⇒ x → y ≈ 0 and can
be replaced by 0 → 0 ≈ 0 which is an instance of (BALAA).

(PI) Bal–rule (PI) translates into x ≈ 0 H⇒ x+ ≈ 0, which is equivalent to
the identity 0+ ≈ 0.

(AQ) We first prove that the identity y → (x&(x → y)) ≈ 0 holds in BAL.
y → (x&(x → y)) ≈ y → ((x → 0) → (x → y)) , def.,

≈ (x → 0) → (y → (x → y)) , (BALC),
≈ (x → 0) → (x → (y → y)) , (BALC),
≈ (x → 0) → (x → 0) , (BALI),
≈ 0 , (BALI).

Using (*), the quasi–identity (AQ) implies y ≈ x + (x → y).
Assume (BALAQ). If we also assume that x → y ≈ 0 , then by two appli-
cations of (BALAQ),

x ≈ x + (x → x) ≈ x + 0 ≈ x + (x → y) ≈ y ,

thus proving (AQ).
(MI) The quasi–identity (BALMI) is a direct translation of Bal–rule (MI).

ut
Theorem 6. The system F/≡ = hFBal/≡ ; →,+ i is an algebra in BAL, where →
and + are defined by

[x] → [y] = [x → y]
[x]+ = [x+]

The algebra F/≡ is free in BAL with the set of free generators {[X1], [X2], . . .},
where X1, X2, . . . are the propositional variables.
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Proof. By the previous theorem, it suffices to prove the identities corresponding
to the axioms (which are immediate), those associated to the rules MP and PI, the
identity (BALAQ) and the quasi–identity (BALSI ). We can deduce (BALMP ) from
Thm. 1, 8 and (BALPI ) follows from rule (PI) and (*),with x = 0. In order to prove
(BALAQ) we need to prove `Bal ((x → (u → u)) → (x → y)) → y. This last
assertion follows from axiom (B), (BALMP ) and hypothetical syllogism. Finally,
the proof of (BALSI ) is straightforward, as well as the fact that the algebra F/≡ is
freely generated by {[X1], [X2], . . .}. ut

4. From BAL to `–groups

In this section we establish a categorical isomorphism between BAL and `–groups
(lattice–ordered abelian groups). As a key tool, we shall show that the quasivariety
BAL is in fact a variety.

Theorem 7. Let A = hA; →,+ i be an algebra in BAL. Then A∗ = hA; & ,−, 0i
is an abelian group. Moreover, x → y ≈ y − x.

Proof. Recall that by definition and axiom (BALN)

− − x ≈ −x → 0 ≈ (x → 0) → 0 ≈ x .

Replacing x, y and z by −x, −y and 0, respectively, in axiom (BALC),

−x → (−y → 0) ≈ −y → (−x → 0) ,

so by the definition of & ,

x& y ≈ −x → y ≈ −x → − − y ≈ −y → − − x ≈ −y → x ≈ y& x ,

so & is commutative.
By axiom (BALC) again, replacing x, y and z by −x, −z and y, respectively,

we get
−x → (−z → y) ≈ −z → (−x → y) ,

which by definition of & is

x& (z& y) ≈ z& (x& y) ,

so by commutativity, associativity holds.
Next, by (BALAQ)

x& 0 ≈ x& (x → x) ≈ x ,

proving that 0 is an identity for & .
Finally, by axiom (BALAA),

x& (−x) ≈ −x → −x ≈ 0

thus proving that −x is the additive inverse of x .
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It is immediate that

x → y ≈ − − x → y ≈ −x& y . ut
Lemma 8. The following identities and quasi–identities hold in BAL.

1. x ≈ x+ − (−x)+ ,
2. (−(x+))+ ≈ 0,
3. (x+ → x)+ ≈ 0,
4. (x → y)+ ≈ 0 , (z → x)+ ≈ 0 H⇒ (z → y)+ ≈ 0 ,
5. x+ ≈ 0 H⇒ (y+ → x)+ ≈ 0 ,
6. (x+ & y+)+ ≈ x+ & y+ .

Proof. We point out the main axioms used in each proof. 1. follows from (BALO).
2. uses (BALP). 3. follows from 2. Item 4. uses (BALB), (BALMI), (BALMP) and
(BALP). 5. follows from 4. replacing x, y and z by 0, x and y+, respectively. Item
6. follows from 5. using 2. and 1. ut
Theorem 9. The group A∗ defined in Thm. 7 is a p.o.–group whose positive cone
is given by

P = {a ∈ A : a+ = a} .
Proof. If a ∈ P and −a ∈ P , a = a+ and −a = (−a)+, so a = −(−a)+ =
−(−(a+))+ and by Lemma 8 (2), x = −0 = 0 , and thus P ∩ −P = {0} .

Let a ∈ P and b ∈ P . Then by Lemma 8 (6), (a+ & b+)+ = a+ & b+, so
P&P ⊆ P .

Finally, since A∗ is abelian, for any a ∈ A, a&P & (−a) ⊆ P .

By [9], Chapter II, Thm. 2, A∗ is a p.o.–group. ut
Lemma 10. The order defined by the positive cone P is

x ≤ y if and only if x → y = y − x ∈ P if and only if (y → x)+ = 0 .

Proof. The latter is obtained as follows. If y − x ∈ P then (x − y)+ =
(−(y − x))+ = (−(y − x)+)+ = 0 , by Lemma 8 (2).

On the other hand, if (x − y)+ = 0, by Lemma 8 (1), x − y = −(−(x − y))+,
so y − x = (y − x)+, and y − x ∈ P . ut
Lemma 11. Let ≤ be the partial order defined in the previous lemma. Then for all
a ∈ A, a+ = l.u.b.{a, 0}.
Proof. From the definition of P and Lemma 8 (2), for any a ∈ A, we have 0 ≤ a+.
Also, by Lemmas 8 (3), and 10, a ≤ a+.

Let b be any upper bound of both 0 and a. Then b = b+ and b+ ≥ a, that
is (b+ → a)+ = 0, so by quasi–identity (BALSI), (b+ → a+)+ = 0, that is
b = b+ ≥ a+, so a+ = l.u.b.{a, 0}. ut
Lemma 12. Let A ∈ BAL. Then

a ≤A b H⇒ a+ ≤A b
+ .
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Theorem 13. The p.o.–group defined in Thms. 7 and 9 is an `–group.

Proof. Define

a ∨ b := (b → a)+ & b ,

a ∧ b := −(−a ∨ −b) .

By [9], F), page 67, or [8], Thm. 3.3, the algebra A∗∗ = hA, & ,−, 0,∨,∧i is an
`–group. ut

The class BAL is defined by a set of identities and a quasi–identity, so in prin-
ciple, it is a quasi–variety. Nevertheless, we will prove that BAL is closed under
homomorphic images. Since it is already closed under subalgebras and direct prod-
ucts, BAL is a variety. As in the previous section, for any A ∈ BAL, the associated
`–group will be denoted A∗.

Lemma 14. The following inequality holds in any `–group.
0 ≤ (a+ → b+)+ ≤ (a → b)+.

Proof. As we know, the variety of `–groups is generated by Z, so it is enough to
check that this identity holds in the integers and this is straightforward. ut

Theorem 15. The quasi–identity (BALSI)

(y → x)+ ≈ 0 H⇒ (y+ → x+)+ ≈ 0

is preserved under homomorphic images of algebras in BAL.

Proof. Let A ∈ BAL and h : A −→ B be an epimorphism. Then B∗ is an `–group
and thus by Lemma 14, for any a, b ∈ B, if (a → b)+ = 0, then (a+ → b+)+ = 0,
so the quasi–identity holds. ut

Lemma 16. The quasi–identity (BALSI) can be replaced by the following identity
((y → x)+ → (y+ → x+)+ )+ ≈ 0 .

Proof. It is clear that if ((y → x)+ → (y+ → x+)+)+ ≈ 0, the quasi–identity
(BALSI) holds.

On the other hand, since with the defined operations, BAL is the variety of
`–groups and this identity holds in Z, it holds in any algebra in BAL. ut

Notation. In the following theorem we shall denote with the same symbols the
variety BAL and the category of algebras in BAL and BAL–homomorphisms. We
shall also write LG for the variety of `–groups and the category LG of `–groups
and `–group–homomorphisms.

Theorem 17. The algebraic semantics equivalent to Balis a variety BAL definition-
ally equivalent to the variety LG of `–groups. Thus, the category BAL is isomorphic
to LG.
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Proof. The first part is proved by the previous theorem. We shall now deal with the
categorical isomorphism.

Let hA,→,+ i be an object of BAL. Define the following operations over A :

0 := x → x

−x := x → 0

x& y := (x → 0) → y

x ∨ y := (x → y)+ & x

x ∧ y := −(−x ∨ −y)
Then by Thm. 13, hA, & ,−, 0,∨,∧i is an `–group.

Conversely, let hG,+,−, 0,∨,∧i be an `–group. Then hG,→,+ i belongs to
BAL, if we define the operations as follows.

x → y := y − x

x+ := x ∨ 0 .

Checking that the identities (BALAA), (BALB), (BALC), (BALN), (BALP ),
(BALMP ), (BALPI ) and (BALAQ) hold is trivial. We deduce (BALO) from Lem-
ma 8 (1). (See [1]). The quasi–identity (BALSI ) is proved as follows.

Suppose y−x ≤ 0. Then, y−x+ ≤ 0. Therefore, y+ −x+ = y−x+ ∨−x+ ≤
0. ut
Notation. In what follows we will use without distinction the symbols correspond-
ing to BAL and to LG respectively assuming the definitions used so far. For instance
x+ to mean x∨0 and (−x)+ or x− to mean −x∨0, etc.Also, |x| will be x+ & (−x)+
(respectively x+ + x−).

Corollary 18. The system hF/≡; +,−,O,∨,∧, i is an `–group, where the oper-
ations are defined by

−[x] = [x → O]
[x] + [y] = −[x] → [y]
[x] ∨ [y] = [x → y]+ + [x]
[x] ∧ [y] = −(−[x] ∨ −[y])

Proof. From Theorem 6. ut
We assume the reader to be familiar with the notion of `–group term (see e.g.,

[7], Ch 2, 2.5) in the variables X1, . . . , Xn. For any such term τ = τ(X1, . . . , Xn)

one defines the associated term function fτ : R
n −→ R in the usual way.

Notation. We let T ermR
n denote the set of `–group term functions over R

n.

Theorem 19. For every n ≥ 1, T ermR
n with pointwise `–group operations is the

free `–group over the generating set {[X1], . . . , [Xn]} of the canonical projection
functions. T ermR

n is the `–group of all piecewise linear homogeneous functions
f : R

n −→ R with integer coefficients. Fn/≡ is the same set of functions
equipped with the operations →, +.

Proof. From [1], 6.3, 17 and the fact that Fn/≡ is free (see Thm. 6.) ut
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5. Deduction theorem and Bal-consequence

By the categorical isomorphism of the previous section, the underlying sets of ob-
jects and morphisms in BAL and in LG coincide. In this section we further explore
kernels of morphisms to prove the appropriate deduction theorem for Bal.

Let A = hA; →,+ i be an algebra in BAL and let A∗ = hA; & ,−,∨,∧, 0i be
the associated `–group.

Recall that a Bal–filter of A is a subset F of A that contains all interpretations
in A of the axioms of Baland is closed under all the rules of Bal. This means that

1. 0 ∈ F (since all axioms take the value 0 when interpreted in A.)
2. If a and a → b ∈ F , then b ∈ F .
3. If a and b ∈ F , then a → b ∈ F .
4. If a ∈ F , then a+ ∈ F .
5. If (a → b)+ ∈ F , then (a+ → b+)+ ∈ F .

In this section we shall use standard definitions from `–groups theory. See, for
example, [1] [4] or [9]. An `–subgroup H of an `–group G is a sublattice and a
subgroup of G. If H is convex, that is, if x, z ∈ H and x < y < z implies y ∈ H ,
then H is called an `–ideal. If H is an `–ideal, the quotient G/H has a structure
of `–group. An `–ideal is called prime if G/H is a totally ordered `–group. A
principal ideal is a finitely generated `–ideal.

An `–group is called semisimple if the intersection of its maximal ideals is {0}.

Theorem 20. Let A be an algebra in BAL and F ⊆ A. Then F is a Bal–filter of A
if and only if F is an `–ideal of A∗.

Proof. Let F be a Bal–filter of A. Since 0 ∈ F , F is not empty, furthermore, if a,
b ∈ F , by condition 3, b − a = a → b ∈ F , so F is a subgroup of A∗.

Next, if a, b ∈ F , by conditions 2 and 3, (a → b)+ ∈ F and since F is a
subgroup, (a → b)+ & a = a ∨ b ∈ F , so F is closed under suprema, and thus
also closed under infima, so it is an `–group.

To prove F is convex, let a, b ∈ F and let a ≤ c ≤ b. Then

a → b ∈ F , (3),
(c → a) → (c → b) ∈ F , (B), (2),
((c → a) → (c → b))+ ∈ F , (4),
((c → a)+ → (c → b)+ )+ ∈ F , (5),
((c → b)+ → (c → a)+ )+ ∈ F , similarly,
(c → a)+ → (c → b)+ ∈ F , (O), (2),
(−c → (c → a)+) → (−c → (c → b)+ ) ∈ F , (B), (2),
(c& (c → a)+) ) → (c& (c → b)+ ) ∈ F , definition,
(c ∨ a) → (c ∨ b) ∈ F , definition,
c → b ∈ F , hypothesis,
b → c ∈ F , Thm. 1 6,
c ∈ F , (2),
so F is convex.
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Assume now that F is an `–ideal of A∗. Then obviously 0 ∈ F and F verifies
condition 3 and 4.

If a and a → b ∈ F , then a& (a → b) = b ∈ F , so condition 2 holds.
Finally, by Lemma 14, 0 ≤ (a+ → b+)+ ≤ (a → b)+, so if (a → b)+ ∈ F ,

by convexity, (a+ → b+)+ ∈ F , thus proving condition 5, so F is a Bal–filter. ut
Corollary 21. The Bal–filter generated by a nonempty set E is the set I (E) =
{a ∈ A : ∃e1, . . . , ek ∈ E, |a| ≤ |e1| & . . . & |en|}.
Proof. See [9] page 79. ut

It is easy to see that I (E) = I (E+), where E+ is the set of positive elements
of E. Thus we can assume without loss of generality that a set generating an ideal
contains only positive elements.

Theorem 22. There is an isomorphism between the class of Bal–filters ofFω(BAL)
and the class of theories of Bal.
Proof. Straightforward. ut
Theorem 23. Let f be an element ofFω(BAL), the free algebra in BAL with count-
able many free generators. Let E be a nonempty subset of positive elements of
Fω(BAL). Then f ∈ I (E) if and only if there exist elements g1, . . . , gt ∈ E such
that

f+ ≤ g1 & . . . & gt and f− ≤ g1 & . . . & gt

Proof. In view of the isomorphism between BAL and LG, this is just a reformulation
of the definition of ideal generated by E. ut

The following is the deduction theorem for Bal.
Theorem 24. Let 0 ⊆ FBal , ϕ a formula such that 0 `Bal ϕ. Then there ex-
ist formulas α1, . . . , αk ∈ 0 such that `Bal ((α1 & . . . & αk) → ϕ+)+ and
`Bal ((α1 & . . . & αk) → ϕ−)+. The converse is also obviously true.

Proof. It follows from the definition of order in an algebra of BAL: x ≤ y if and
only if (y → x)+ = 0. ut
Theorem 25. (See [1] Cor. 4.1.2. or [4] Cor. 4.1.8.) Every `–group is a subdirect
product of totally ordered abelian groups.

Theorem 26. (See [4] Cor. 2.5.5.) Every `–ideal of an `–group is an intersection
of all prime ideals containing it.

The following well known proposition is analogous to Wójcicki’s theorem for
MV–algebras (see [7], Chap. 3, Thm. 3.6.9.). We give a sketch of proof in our
context.

Theorem 27. Every quotient of a free `–group by a principal `–ideal is semisimple.
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In Benyon (see [3], Thm. 3.1) it is proved that every n–generated projective
`–group G is the quotient of the free n–generated `–group T ermR

n by some prin-
cipal ideal J (that is, an ideal generated by some function f .) As a corollary (see
page 251) we can deduce that a zero–set of a function in T ermR

n is the quotient just
mentioned (see also [2]). Thus, T ermR

n /J is the group of restrictions of the func-
tions of T ermR

n to the zero–set of f . So, since T ermR
n /J is a group of real–valued

functions, it is semisimple. Briefly, every finitely generated projective `–group is
semisimple and thus, every quotient of a free n generated `–group by a principal `–
ideal is semisimple. Free `–groups in general are direct limits of finitely generated
free `–groups.

Let F be any one of the totally ordered abelian groups Z, Q or R. It is well
known that the variety V (F) generated by F is LG. This is a direct consequence
of the fact that every free `–group is a subdirect product of copies of Z. (See for
instance [4], Cor. A.1.6 and Cor. A.1.7.)

Definition 1. An F–valuation is a function v : V ar −→ F. A valuation v can be
extended recursively to all formulas, F . Define v : F −→ F , as follows.

1. v(X) = v(X),
for any propositional variable X ∈ V ar ,

2. v(ϕ → ψ) = v(ψ)− v(ϕ),
3. v(−ϕ) = −v(ϕ),
4. v(ϕ+) = max{v(ϕ), 0}.

We say that a valuation v satisfies ϕ if v(ϕ) = 0. The formula ϕ is F–valid if
v(ϕ) = 0 for any F–valuation v. Similarly, given a set 0 of formulas and a formula
ϕ, we say ϕ is a F–consequence of 0 if any F– valuation that satisfies all formulas
of 0 also satisfies ϕ. We then write 0 |=F ϕ.

By the remarks before the definition of valuation, a formula ϕ is Z–valid if and
only if it is Q–valid if and only if it is R–valid.

Theorem 28. For every (possibly uncountable1) set 0 of formulas together with
any formula ϕ we have

1. 0 `Bal ϕ ⇒ 0 |=R ϕ.
2. 0 |=R ϕ ⇒ 0 |=Q ϕ.
3. 0 |=Q ϕ ⇔ 0 |=Z ϕ.

Proof. 1. Let v be an R–valuation satisfying all formulas ψ in 0. Then the correct-
ness of the axioms and rules of Bal ensures that v satisfies all formulas obtained
from the various steps on the proof of ϕ.

2. Let v be a Q–valuation that satisfies every ψ in 0. Then v is a R–valuation,
and by hypothesis it satisfies ϕ.

3. One direction is proven as above. The other direction follows from the repre-
sentation theorem of free algebras in BAL (BAL isomorphic to LG) as continuous
real valued piecewise linear homogeneous functions with integer coefficients de-
fined on R

n. ut
1 With obvious modifications concerning the set of propositional variables
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The following theorem shows that, in the finite case, the notion of consequence
`Bal (having a syntactic algorithmic nature) has a semantic counterpart.

Theorem 29. Let 0 ∪ {ϕ} be a finite set of formulas. Then,

0 `Bal ϕ if and only if 0 |=F ϕ .

Proof. The proof is based on Thm. 27 taking into account the isomorphism between
algebras in BAL and in LG (section 4).

Observe that if 0 is finite, the assertion {γ ≈ 0 : γ ∈ 0} |=BAL ϕ ≈ 0, where
BAL is the variety of `–groups, is equivalent to say that the quasi–identity

^

γ∈0
γ ≈ 0 H⇒ ϕ ≈ 0

holds in the variety of `–groups. Now since the variety of `–groups is generated by
F, this implies that

{γ ≈ 0 : γ ∈ 0} |=BAL ϕ ≈ 0 if and only if {γ ≈ 0 : γ ∈ 0} |=F ϕ ≈ 0,

and the last assertion is a different way of writing0 |=F ϕ . So by the algebraization
theorem of Bal, if 0 is finite, then 0 ` ϕ if and only if 0 |=F ϕ. ut

When 0 is infinite the situation is more delicate.

Theorem 30. 1. There exists a set of formulas0 and a formulaϕ such that0 |=R ϕ

and 0 6`Bal ϕ
2. There exists a set of formulas0 and a formula ϕ such that0 |=Q ϕ and0 6|=R ϕ

Proof. 1. In order to prove that 0 |=R ϕ does not imply 0 `Bal ϕ, we prove that
|=R is infinitary.

For each positive integer n let γn = (x → ny)+ , where 1y = y and
(n+ 1)y = ny + y.

Each formula γn, interpreted under all possible valuations, defines a function
gn : R × R −→ R

gn(x, y) =
�

0 if ny − x ≤ 0 ,
ny − x if ny − x > 0.

Let 0 = {γn : n is a positive integer} and let v be a valuation such that for
all n, v(γn) = 0. Then it is easy to check that v(y) ≤ 0. For, if v(y) > 0, then
v(x) > 0, so for some positive integer m, mv(y) − v(x) > 0, contradicting the
assumption that v(γm) = 0. This observation implies that 0 |=R y

+. On the other
hand, for every finite set 00 ⊆ 0 it is not the case that 00 |=R y

+.
As a matter of fact, letting 00 = {γn1 , . . . , γnt } with n1 ≤ · · · ≤ nt , let the val-

uation v be such that v(x) = 2nt and v(y) = 1. Then v(γn) = 0 for all n ≤ nt and
in particular v(γni ) = 0 for i = 1, . . . , t . Since v(y+) 6= 0 we see that 00 |=R y

+
and |=R is infinitary, as required.

On the other hand, `Bal is finitary, and the first implication of proposition 28
can not be reversed.
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2. We shall construct an infinite set 0 of formulas in the two variables X, Y
such that no Q–valuation v satisfies the formulas ψ ∈ 0. Then a fortiori: 0 |=Q ϕ,
for every ϕ. But some R–valuation satisfies 0 and not ϕ.

Let L be an irrational line in R
2 through the origin (ax+ by = 0 with a

b
/∈ Q ).

Let (x∗, y∗) ∈ L ∩ (R+)2. Let v∗ the R–valuation v∗(X) = x∗, v∗(Y ) = y∗. Let
0 be the set of all formulas ψ(X, Y ) such that v∗(ψ) = 0. In other words, the term
function fψ associated to ψ is 0 over the line L.

A R–valuation v satisfies 0 if and only if v(X) = λx∗, v(Y ) = λy∗. So, no
Q–valuation satisfies 0. Then, for all ϕ, 0 |=Q ϕ.

Take now ϕ = |X|+ |Y |, where |Z| = Z+ + (−Z)+. By definition, v∗ satisfies
all ψ ∈ 0. But v∗ does not satisfies ϕ because v∗(ϕ) = x∗ + y∗ > 0.

Then 0 6|=R ϕ. ut
To obtain a purely semantic notion of consequence coincident with `Bal we

(routinely) proceed as follows.

Definition 2. Let T be a totally ordered abelian group (o–group, for short).
A T–valuation is a function v from the variables into T. This is canonically ex-
tended to a T–valuation v to the formulas.

Let 0 be a set of formulas, ϕ a formula. We say that ϕ is an o–group–conse-
quence of 0 and denote 0 |=∗ ϕ if and only if for every totally ordered group T,
for every T–valuation w, if w satisfies all ψ ∈ 0 then w satisfies ϕ.

Theorem 31. Let 0 be a set of formulas, ϕ a formula. Then

0 `Bal ϕ if and only if 0 |=∗ ϕ .

Proof. This is just restating the fact that BAL is the equivalent algebraic semantics
of Bal. ut

6. Co-NP-completeness of the tautology problem for Bal

The isomorphism between BAL and LG and the well known facts about free
`–groups( see theorem 17, and corollary 19) enables us to prove the co-NP-com-
pleteness of the tautology problem for Bal.
Notation. Let V ar = {X1, X2, . . . , Xn, . . .} be the set of variables of F . For a
formula ϕ(X1, X2, . . . , Xn) in Fn we denote fϕ the corresponding function in Fn
by the isomorphism of 19.

Theorem 32. For every formula ϕ ∈ Fn and every unit vector û = (u1, . . . , un) in
R
n the directional derivative ∂fϕ

∂û
(Ex) exists at each Ex ∈ R

n.

In particular, we are interested in the derivatives in the direction of the positive
and negative axis, i.e. ∂fϕ

∂û
for û = (0, . . . , 1, . . . , 0) and û = (0, . . . ,−1, . . . , 0),

(1 in the i th place.) These will be denoted ∂fϕ

∂x+
i

and ∂fϕ

∂x−
i

, respectively.
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Theorem 33. (Following [12].) Let ϕ(X1, X2, . . . , Xn) ∈ Fn and let kϕk be the
number of occurrences of variables in ϕ. Then | ∂fϕ

∂x−
i

| ≤ kϕk and | ∂fϕ
∂x+
i

| ≤ kϕk.

Proof. By induction on the number k of connectives in ϕ.
Let k = 0. Then, ϕ is a variable and the absolute value of ∂fϕ

∂x±
i

is 0 or 1. Therefore

| ∂fϕ
∂x±
i

| ≤ kϕk = 1.

For the induction step here are two cases.,
Case 1. Let ϕ be ψ+. Then trivially,

| ∂fϕ
∂x±
i

| = | ∂fψ
∂x±
i

| ≤ kψk = kϕk.

Case 2. Let ϕ be χ → ψ . Then,

| ∂fϕ
∂x±
i

| = | ∂fψ
∂x±
i

− ∂fχ

∂x±
i

| ≤ | ∂fψ
∂x±
i

| + | ∂fχ
∂x±
i

| ≤ kψk + kχk = kϕk.

utWe are now in position to prove our main result in this section.

Theorem 34. The tautology problem for Bal is co-NP-complete.

Proof. Suppose ϕ is not a tautology. This means that fϕ is not constantly equal
to 0.

Consider the n–cube Cn = {(x1, . . . , xn) ∈ R
n : |x1| ≤ 1, . . . , |xn| ≤ 1}.

Since fϕ is homogeneous, there is a face 8 of Cn such that the restriction
fϕ �8 6= 0. Without loss of generality, all points (y1, . . . , yn) ∈ 8 have y1 = 1.
Being fϕ continuous,8 compact, there is a point (1, z2, . . . , zn) of8where fϕ at-
tains its maximum value, t . Since fϕ is piecewise linear homogeneous with integer
coefficients, all the z2, . . . , zn, as well as t , are rationals.

The same analysis of [7], chapter 9, shows that the point (1, z2, . . . , zn) is the
intersection of n hyperplanes with integer coefficients bounded by kϕk (see Thm.
33).

An application of Hadamard’s theorem shows that the least common denomi-
nator d of z2, . . . , zn satisfies the inequality, say, d ≤ kϕk5(kϕk3) .

When written in binary notation, the point (1, z2, . . . , zn) requires an amount
of space bounded by a fixed polynomial in the length of ϕ.

To conclude, here is a fast nondeterministic procedure to decide if ϕ is not a
tautology: guess such short input number (1, z2, . . . , zn) and quickly check that
fϕ(1, z2, . . . , zn) 6= 0. Indeed, the check is quick because ϕ involves only a small
number of comparisons and subtractions of rational numbers in 8 with the same
denominator d .

We have just proved that the complement of the tautology problem in Balis NP.
To complete the proof we now show NP–hardness, by reducing to it the satisfiability
problem for the infinite-valued propositional Lukasiewicz calculus (see [12]).

We shall describe a polynomial time transformation of each formula
ϕ(X1, . . . , Xn) of the Lukasiewicz calculus into a formula ϕ∗(X1, . . . , Xn, Y ) of
Bal such that ϕ is satisfiable (in the sense that the Mc Naughton function fϕ asso-
ciated to ϕ is not constantly 0) if and only if ϕ∗ is not a tautology of Bal.
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The reduction has two stages. We first transform ϕ into ϕ0 as follows.

X0
j = Xj

(¬ψ)0 = Y − ψ 0

(ψ ⊕ ρ)0 = Y ∧ (ψ 0 & ρ0).

Now ϕ∗ = [ϕ0 ∧X1 ∧ · · · ∧Xn ∧ Y ∧ (Y −X1) ∧ · · · ∧ (Y −Xn)] ∨ 0.
Claim: fϕ(x1, . . . , xn)is not constantly 0 if and only if ϕ∗ is not a Bal tautology

(i.e., the term function fϕ∗ is not constantly 0.)
Proof of the claim: Suppose x1, . . . , xn ∈ [0, 1] satisfies fϕ(x1, . . . , xn) 6= 0.

Without loss of generality, by continuity of fϕ , we can assume that for each j =
1, . . . , n, xj 6= 0, xj 6= 1. Then by induction on the complexity of ϕ, one sees that
fϕ∗(x1, . . . , xn, 1) 6= 0.

Conversely, suppose fϕ∗ is not constantly 0. That is, suppose x1, . . . , xn, y ∈ R

are such that fϕ∗(x1, . . . , xn, y) 6= 0, whence fϕ∗(x1, . . . , xn, y) > 0. By defini-
tion of ϕ∗ we have 0 < xj < 1 and y > xj . By homogeneity we can safely
assume fϕ∗(x1, . . . , xn, 1) > 0. So, by induction on the complexity of ϕ we see
that fϕ(x1, . . . , xn) > 0. ut
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