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Abstract. Monitoring processor power is important to define strategies that
allow reducing energy costs in computer systems. Today, processors have a
large number of counters that allow monitoring system events such as CPU
usage, memory, cache, and so forth. In previous works, it has been shown that
parallel application consumption can be predicted through these events, but only
for a given SBC board architecture. In this article, we analyze the portability of a
power prediction statistical model on a new generation of Raspberry boards. Our
experiments focus on the optimizations using different statistical methods so as
to systematically reduce the final estimation error in the architectures analyzed.
The final models yield an average error between 2.24% and 4.45%, increasing
computational cost as the prediction error decreases.
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1 Introduction

One of the main challenges in system design is the need for fast and accurate energy
consumption prediction. In recent years, various innovations have helped meet this
requirement.

The underlying idea is that power consumption depends not only on hardware, but
also on the use of the software and its internal characteristics. For example, more
complex software will require more CPU cycles, or a single huge disk write operation
can require less power than multiple small write operations. In general, if a person is
aware of how much power they are using, they can find their own suitable solution to
save energy when using their device [1, 2].
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While it is possible to perform hardware measurements on the system to implement
fine-grained power control, such instrumentation is expensive and not frequently
available.

However, with information about application execution, power consumption can be
estimated. These data are collected through hardware counters that can be used to
monitor a wide variety of events related to system performance with high precision.
Since each event is associated with a certain level of energy consumption, any one of
them can be used as a parameter in a performance model. While some events represent
activities with little impact on energy, correlation is high in others. Even though the
number of counters is usually limited, they can be used to count a wide variety of
events.

One way to estimate energy consumption is by generating a statistical model based
on these counters. To obtain a real-time prediction, a limited set of events must be
selected that describes most of the variation in power.

In [3], a power estimation model was developed using hardware counters which did
not contemplate the variation in the number of threads of the parallel application.
Similarly, the statistical linear regression model was used, which is intrinsically simple
to apply, but may result in greater estimation error. This model was implemented using
the Raspberry Pi 3 model B (RPI3B) development board.

In [4], the error obtained using the aforementioned model on the successor board
Raspberry Pi 3 model B+ (RPI3B+) is analyzed. Then, to improve predictions, the
power model developed for multi-thread applications supported by both boards is
optimized.

This work is an extension of [4]; here, different statistical methods are analyzed that
allow obtaining better accuracy in the prediction.

The article is organized as follows: Sect. 2 presents an overview of related works in
the energy consumption prediction field using different CPU and GPU architectures.
Section 3 presents the process for obtaining a statistical model that is compatible with
RPI3B and RPI3B+ boards and validates the model generated using linear regression.
Section 4 analyzes other statistical methods present in the development tool and
compares them to the one discussed in Sect. 3. Finally, in Sect. 5, conclusions and
future works are presented.

2 Related Work

This section presents some related previous research works. Lee et al. [5] proposed
regression modeling as an efficient approach to accurately predict performance and
power for various applications that use any microprocessor configuration considering
various microarchitecture designs, addressing cost simulation as a fundamental chal-
lenge to obtain correct values in the prediction. With the appearance of hardware
counters, Weaver et al. [6] analyzed the values obtained with them to check if there is a
good correlation with what was happening inside the processor architecture. From their
results indicated that it is reasonable to expect that counters reflect processor behavior.
This allowed many researchers to use tools to extract performance values.
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Singh et al. [7] developed a model to measure processor power consumption in real
time by compiling the information provided by the counters.

On the other hand, Bircher et al. [8–10] explored the use of performance counters to
predict the energy consumption of various subsystems such as CPU, memory, chipset,
I/O, disk, and GPU. It was developed and validated on two different platforms.
Likewise, Rodrigues et al. [11] studied the use of applied performance counters for
estimating energy consumption in real time on two different architectures – one ori-
ented to high performance, and the other based on low consumption.

On the other hand, Lively et al. [12] developed a set of hybrid application-centric
performance and consumption estimation models. They analyze a set of scientific codes
in their MPI/OpenMP implementation, and generate an appropriate procedure to carry
out modeling and validation.

Asymmetric core architectures have recently emerged as a promising alternative in
an environment with power and thermal limitations. They typically integrate cores with
different power and performance characteristics, which makes assigning workloads to
the appropriate cores a challenging task. Pricopi et al. [13] presented a model for
asymmetric multi-cores in which the performance and power consumption of the
workloads assigned to each core can be obtained using the hardware counters.

More recently, with the use of FPGAs, O’Neal et al. [14] developed predictive
performance and power consumption models for CPUs, GPUs, and FPGAs, saving
simulation costs.

With the appearance of low consumption Single Board Computers (SBCs) boards,
the authors of [3] designed a statistical model to predict the energy consumption of
applications run on the RPI3B board. However, this model is limited in that it only
allows consumption to be predicted for sequential execution and with four cores, added
to the disadvantage that different prediction coefficients are used based on the number
of threads. This article is an evolution of that previous work, and focuses on developing
a model that allows evaluating parallel applications taking into account the variation in
the number of cores used. Likewise, the need to build a multi-architecture model that
considers the technological changes of new generations of SBC boards is highlighted.

3 Generating a Single Power Model for Various
Raspberry Pi Generations

Because this work is based on statistical models, information extracted from applica-
tions with different computational behaviors should be used, so as to obtain data related
to performance and energy consumption for the analyzed architectures.

In particular, the methodology used in our previous work [3] is applied: use of NAS
[15] and RODINIA [16] benchmarks, which have different computational behaviors;
instrumentation and parallel applications source code compilation; collection of per-
formance counters and instantaneous power sampling; counter-power correlation and
mutual correlation between counters; linear regression model training and model val-
idation through the technique of leaving one out.

Taking into account the model obtained in [3] (which we will call the “Original
Model”), the necessary modifications are applied to include the new Raspberry
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generation, generating a new statistical model that allows reducing the final estimation
error; we will call this updated version the “Unified Model”.

Since RPI3B and RPI3B+ are compatible SBC boards, the instrumented source
code is reused for the different applications.

The model is based on linear regression, a statistical engine that presents a
regressand, an offset constant and predictor or independent variables. Based on the
architecture used, five independent variables are used, which correspond to the per-
formance counters L2_DCM, L2_DCA, SR_INS, BR_INS and TOT_INS. In addition,
the TOT_CYC counter is included in order to normalize previous events, obtaining five
performance ratios.

First, the predictions obtained using the Original Model on the new generation of
Raspberry boards are studied. All necessary optimizations are then carried out to reduce
the error and thus obtain an accurate estimate [4].

3.1 Prediction with the Original Model

The model presents a constant that is added to the normalized values of the five
counters, which have an associated weight. Equation 1 shows how to obtain the esti-
mated power for the parallel applications.

Yi ¼ 1:595þ 14:696L2DCM þ 2:308L2DCA þ 0:108SRINS þ 0:093BRINS þ 0:058TOTINS
ð1Þ

To estimate the power required by the RPI3B+ board, we started by compiling all
applications. Then, we proceeded to record used power and performance counters in
each application running with 1, 2 and 4 threads.

Once the information is generated, the values obtained for each parallel application
from the six counters used in the model are used to estimate power for the new board.

This prediction has an average percentage error of 30% in the RPI3B+ , as opposed
to the 6.8% recorded for RPI3B [3]. This increase in error for the new boards is
explained by the architectural difference between generations, since the new version
has a higher clock rate.

3.2 Generating the Unified Model

Figure 1 shows the actual power used by the different parallel applications on each
board. The increase in power as more threads are used is similar in both architectures.
The 23 sequentially run applications (1 thread), found in the first third in the figure,
represent the lowest power consumption on both boards. On the other hand, with
2-thread and 4-thread parallel execution (second and third thirds in the figure,
respectively) devices are better exploited and, therefore, power consumption is greater.

For the RPI3B board, consumption ranges between 2–3 watts, while for the RPI3B+
model, this range is between 3–4 watts approximately. The first step in finding a unified
consumption prediction model for both boards is to study the cause of this difference.
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First, the values recorded by performance counters feeding the model for each
application are analyzed. In this case, the CFD application is chosen as an example;
however, the other algorithms show the same behavior in their counters. Figure 2
shows that all events have the same trend in both development boards. Since these
boards have several architectural similarities (cache levels and sizes, volatile memory,
execution pipeline, etc.), running the same applications yields similar behavior results.
Therefore, since there is no variation in performance counter values between the
boards, the model cannot be used to differentiate application execution between them.

Subsequently, the generational changes between the two boards are analyzed to
assess their effect on the prediction. The most significant change between both boards
is the increase in clock rate from 1.2 GHz to 1.4 GHz. As a result, applications require
more power to run, which can cause the increase analyzed in Fig. 1. To verify this, a
predictor corresponding to maximum frequency value at runtime is added to the

Fig. 1. Actual power for each application, considering number of threads.

Fig. 2. Performance counter values on each development board considering number of threads
running on the CFD application.
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statistical model. This change decreased the error in the estimate, reaching 14% on
average.

When training the original model, only the execution of 1- and 4-threaded appli-
cations was taken into account, since the goal in [3] was to evaluate the power for
sequential and parallel executions with the maximum number of cores available in the
processor. Therefore, to consider the impact of the level of parallelization used in the
application, a predictor that considers the number of threads (cores) necessary for
execution is added, since the applications are developed with the OpenMP shared
memory multi-thread programming interface [17].

These optimizations allow estimating used power in both versions of the devel-
opment board. Thus, the final statistical model based on linear regression (Unified
Model) is described in Eq. 2.

Yi ¼ b0 þ b1L2DCM þ b2L2DCA þ b3SRINS þ b4BRINS þ b5TOTINS þ b6THREADSþ b7MAXFREQUENCY

ð2Þ

To build the statistical model, the RapidMiner development tool was replaced by
Python. This allows optimizing data cleaning time and the creation process of the
prediction model with the inclusion of embedded libraries within the tool. It also
provides different statistical models with efficient training. In addition, it allows to
easily customize parameters to train each model. Table 1 shows weight bi values after
the model has been trained.

3.3 Evaluating the Unified Model

After training the model, which results in a set of weights that are applied to the
aforementioned predictors, the result is evaluated against the actual power values
measured. The predictions obtained for both Raspberry generations can be seen in
Fig. 3, together with actual power used. Two types of samples are observed – circles
represent the applications run on RPI3B, while triangles correspond to applications run
on RPI3B+ .

Table 1. Weights obtained for each predictor.

Predictor Counter Coefficient Value

– INTERCEPT b0 −2.656
X1 L2_DCM b1 18.437
X2 L2_DCA b2 4.381
X3 SR_INS b3 0.037
X4 BR_INS b4 −0.032
X5 TOT_INS b5 0.169
X6 THREADS b6 0.221
X7 MAX_FREQUENCY b7 3.546
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Finally, prediction errors for each model can be seen in Fig. 4. The X axis lists each
application analyzed, the Y axis represents the model used to run the applications, and
the Z axis corresponds to the percentage error in the prediction. Model 0 corresponds to
the Original Model developed in [3]. In model 1 (Model Opt. 1) clock rate is added as a
predictor. As a last improvement, model 2 (Unified Model) adds the independent
variable that corresponds to the number of threads that the application uses for its
parallel execution.

Fig. 3. Used power prediction for both boards.

Fig. 4. Application prediction error comparison for the improvements proposed in the statistical
model.
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In the Unified Model, the average prediction error taking into account all tests
carried out is 4.45%, the maximum prediction error is 16.95%, and error dispersion or
standard deviation for the sample set is 3.85%.

3.4 Validating the Unified Model

To estimate model accuracy, the leave-one-out cross-validation (LOOCV) technique is
used. This evaluation method is better than residual ones. The main problem with
residual methods is that they do not generate an indicator of how the model behaves
with predictions for applications not included in the training phase.

One possible solution is not using the entire set of applications for training. After
obtaining the model, the set of applications that was removed for training is used to
make the prediction. This type of evaluation methods is known as cross-validation.

Among the different cross-validation variants, the leave-one-out technique is used
in our model, which allows separating the information in such a way that, for each
iteration, a single sample is destined for the test data while the remaining set makes up
the model’s training data. Then, the average of the errors in each iteration is calculated
to obtain the final error for the validation.

Figure 5 shows the error for each iteration with the validation technique used. The
maximum prediction error is 18.46%. Error dispersion or standard deviation for the
sample set is 4.14%. The average error for all iterations is 4.76%, which is considered
acceptable and does not result in great differences between actual and estimated power
to run a parallel application.

Fig. 5. Prediction error percentage for each application.
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4 Analysis of Other Statistical Models

In an attempt to minimize the estimation error of the linear regression statistical
method, various models from the Python’s Sklearn library [18] were studied.

4.1 Support Vector Regression (SVR)

This algorithm is a modified version of SVM (Support Vector Machine) used for
classification in machine learning. SVM generates a hyperplane that separates data
maximizing margin. To create the margin, two lines including all data are defined. Each
predictor used generates one dimension, resulting in a hyperplane with D (number of
predictors) dimensions. Kernels allow decreasing the number of input dimensions.
Finally, Support Vectors refers to all the data enclosed by margin lines [19].

The model generated with this statistical method is evaluated for each application,
obtaining the percentage error relative to actual power consumption. Figure 6 shows
the application errors for each generation of RPI3 for different number of execution
threads (1, 2 and 4 threads). SVR generates an average prediction error of 2.24% and a
maximum error of 17.66%.

4.2 Gaussian Regression (GR)

The regression of the Gaussian process is not parametric (that is, it is not limited by a
functional form) so, instead of calculating the probability distribution of the parameters
of a specific function, GPR calculates the probability distribution over all allowable
functions that fit the data. GPR has several benefits, including good performance in
small data sets and the ability to provide uncertainty measurements on predictions [20].
For this model, the procedure used in the previous method is repeated. Figure 7 shows
an average error of 2.58% and a maximum error of 11.21%.

Fig. 6. Prediction error for each application evaluated with the SVR model.

Unified Power Modeling Design for Various Raspberry Pi Generations 61



4.3 Kernel Ridge Regression (KRR)

Kernel ridge regression is a non-parametric form of ridge regression [21, 22]. The aim
is to learn a function in the space induced by the respective kernel k by minimizing a
squared loss with a squared norm regularization term. The form of the model learned
by KernelRidge is identical to SVR. However, different loss functions are used: KRR
uses squared error loss while support vector regression uses e-insensitive loss.

Fig. 7. Prediction error for each application evaluated with the Gaussian Regression model.

Fig. 8. Prediction error for each application evaluated with the Kernel Ridge Regression model.
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Figure 8 shows that the average prediction error is 3.45%, and the maximum error
is 12.23%.

4.4 Statistical Models Comparison

After generating the prediction models based on the different statistical methods, each
behavior should be analyzed to choose the one with the best performance and the
lowest cost at runtime.

Table 2 shows, for each statistical method, prediction average and maximum error,
as well as the increase in training time compared to the Linear Regression model.

To achieve a training process with lower execution time but higher error percent-
age, the Linear Regression method should be used. On the other hand, if a higher
prediction accuracy is desired, regardless of how long training takes, then the SVR
model is better.

5 Conclusions and Future Work

In this article, power consumption prediction for various parallel applications based on
readings from performance counters present on the RPI3B and RPI3B+ development
boards was discussed.

We considered the possibility of adding to a previously built power model (com-
patible only with RPI3B), new predictors that allow integrating new board generations,
as well as considering the level of parallelism applied to each algorithm.

A statistical power model based on linear regression was designed for multi-thread
applications, and it was validated using samples obtained from the analyzed boards.
The previously created model was optimized by adding the number of threads used by
the application and maximum board frequency as predictors.

Model validation (using LOOCV) yielded an average prediction error of 4.76%,
meaning that power consumption was estimated with a high degree of accuracy for
both boards.

Different statistical techniques were analyzed in an attempt to reduce the estimation
error: SVR, KRR, and GR. These achieved estimation average error reductions
between 22.48% and 49.67%, compared to the Linear Regression method, which help
achieve significant improvements in the prediction. As a disadvantage, there is an
increase in training time as prediction accuracy increases.

Table 2. Average prediction error for supplementary models.

Model Mean error [%] Max error [%] Increase
training time

SVR 2.24 17.66 55.9X
Gaussian Regression 2.58 11.21 1.56X
Kernel Ridge Regression 3.45 14.22 1.25X
Linear Regression 4.45 16.95 1X
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Based on the target error margin for the prediction, one of the different models can
be chosen:

– Linear Regression is simple and requires less training time. Its disadvantage is that
it has a high average prediction error.

– SVR yields the lowest average error, but it is the most expensive method in terms of
training time. Additionally, it does not minimize maximum prediction error.

– On the other hand, GR has a low average error (close to that achieved by SVR), but
with the advantage that it minimizes maximum prediction error.

As a future line of work, we are planning to apply the methodology developed to
the new Raspberry Pi 4 development board. Similarly, we are planning on imple-
menting a tool that collects all required information in real time, applies the proposed
statistical model and generates a report on power consumption for a given parallel
application.
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