

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 7–21, 2013.
© Springer-Verlag Berlin Heidelberg 2013

MockAPI: An Agile Approach Supporting API-first Web
Application Development

José Matías Rivero1, Sebastian Heil2, Julián Grigera1,
Martin Gaedke2, and Gustavo Rossi1

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{mrivero,julian.grigera,gustavo}@lifia.info.unlp.edu.ar
2 Department of Computer Science, Chemnitz University of Technology, Germany
{sebastian.heil,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. In the last years, agile development methodologies have been widely
adopted. However, they still lack support for API requirements while, at the
same time, public RESTful APIs are fueling a rapid growth of web applications
providing services built on other services. On the other hand, whereas Model-
Driven Development techniques successfully increase the productivity in the
development of data-intensive web applications, they lack the agility required
when developing heterogeneous web applications with frequent requirement
changes. In this paper we introduce MockAPI, an approach based on annotating
user interface mockups that combines the advantages of agile approaches and
Model-Driven Development. We introduce a metamodel for annotations and
demonstrate how to derive running API prototypes as starting point for agile
development. RESTful API best practices and API-first development are intro-
duced into the agile process. The MockAPI approach defines a set of constraints
to accelerate the development of web applications. We also show the results of
a brief validation applying MockAPI to popular web sites.

Keywords: API, Model-Driven Development, Agile Development, Prototyping.

1 Introduction

Agile development methodologies have shown a massive adoption [1] because they
allow to adapt quickly to changing requirements, effectively shorten the development
cycle and include end-users more intensively in the development process, in order to
reduce risks during projects. However, these development approaches are lacking
support for API-related requirements (i.e. stating what the applications should provide
as a service and how), since their advantages are not efficiently applied when gather-
ing and implementing requirements that are not strictly related to user interaction (like
user interface or business logic), i.e. not related to what the user can see [2].

Infrastructure-as-a-Service (IaaS) and Software-as-a-Service (SaaS) are transform-
ing the way of providing services in the Cloud, and at the same time dropping the
costs. On the one hand, IaaS provides a fast, easy and cost effective way of requesting
infrastructure (processing, storage, data transfer, etc.) as needed to implement and

8 J.M. Rivero et al.

scale applications. On the other hand, SaaS provides working software over the Cloud
at a low cost, avoiding higher cost of deployment and maintenance associated with
custom on-site installations. In this way, IaaS is providing an important cost reduction
for software developers while SaaS is providing a similar reduction for software end-
users. As a consequence, since both trends are intended to avoid an on-site installation
of infrastructure and software, they provide APIs to facilitate critical operations like
servers instantiations, storage increment requests (IaaS), data exportation/importation
or special data operations (SaaS) [3].

On the application level, APIs are commonly used for different purposes. A com-
mon API layer is usually built to fulfill the business requirements of applications that
run on different platforms and front-ends (web, desktop, mobile, etc.). Besides, mak-
ing APIs publicly available is a well-known way of extending the impact and use of
popular applications. Main examples of this approach are Facebook through its Face-
book Graph API1, and Twitter2.

The development of APIs is getting more attention because they speed up the de-
velopment process allowing reusing already existing software and infrastructural
power to deliver software faster through integration of existing components. As the
API becomes more important from the strategy and technology point of view and is
part of the requirements, the challenge is to either help the end-users understand the
concept and hidden complexity of distributed systems, or to provide a way for retriev-
ing the necessary information for the API design with common requirement gathering
techniques. Current agile methodologies do not provide a way of gathering and struc-
turing this kind of requirements. Agile methodologies leave all the APIs definition
work for developers without any guidance. Since in API-First3 development the im-
plementation of a core API is a blocking task delaying other tasks like frontend
development, the entire development process is slowed down.

In this paper we provide a structured way of dealing with the definition of APIs,
from requirements gathering to implementation. In addition to textual user stories,
we use annotated user interface sketches (mockups) of the different front-ends of
the application. We do so in order to gather a general overview of the underlying
API of the application being built. The annotations placed over mockups can be
easily applied to textual user stories as well, working as a story stereotyping
strategy.

The rest of the paper is organized as follows: in Section 2 we analyze related work
and background of the fundamental concepts used in our proposal, Section 3 details
the core features of our approach including procedural and technical features. In Sec-
tion 4 we explain implementation details and Section 5 summarizes the results of a
validation experiment featuring popular real-world web sites. Finally, in Section 6 we
conclude the paper and envision future work.

1 Facebook Graph API - https://developers.facebook.com/docs/reference/
api/, last accessed on 06-March-2013.

2 Twitter Developers - https://dev.twitter.com, last accessed on 23-Feb-2013.
3 API-First development - http://www.api-first.com

 MockAPI: An Agile Approach Supporting API-first Web Application Development 9

2 Background and Related Work

2.1 State of the Art in Web Applications Development

When developing software through direct coding, extensive tool support and well-
known practices are often available to make the development process faster and less
error prone for developers. Dependency management tools, Integrated Development
Environments (IDEs), build and deployment environments among many other re-
markable tools are available to assist the development team daily. In the same sense, a
plethora of technologies, patterns, practices and processes have been defined to cope
with complexities in software development like Design Patterns, Aspect-Oriented
Programming, Test-Driven Development, etc. However, while they substantially help
developers in the process, there are still many challenges related to coding software
by hand: writing it syntactically and semantically correct according to the elicited
requirements, writing tests to check whether the application meets them, use the same
patterns, practices, programming style and frameworks in the correct way, etc. To
make things worse, integration between newly developed software and SaaS applica-
tions (from social networking like Facebook or Twitter to infrastructural services as
provided by Amazon4, Microsoft5 or Google6) are becoming increasingly required in
industry. This introduces the problem of interacting with other software using
particular communication channels and data formats.

Not specifically focused on APIs, Model-Driven Development (MDD) [4] solu-
tions have been defined to cope with such challenges. In MDD, software is defined as
a set of high-level models and derived automatically using code generators, respecting
a previously agreed architecture, patterns and platform defined by the software archi-
tects or developers. The main problem in MDD is that it only allows specifying soft-
ware features by concepts included in the high-level language. When a special feature
has to be included in the application, either the language has to be extended in order
to express and further derive this features or the generated code has to be modified
manually. MDD can be suitable for specific types of development such as
data-intensive web applications [5]. However, MDD is less applicable for developing
heterogeneous applications. This is due to the cost of personalizing the MDD infra-
structure to cope with detailed and rapidly changing requirements and implementa-
tions. In a previous work we explore the possibility of bringing an agile approach to
MDD [6], starting from mockups to gather requirements and generating prototypes.

On the other hand, software scaffolding solutions like Ruby on Rails7 propose an
intermediate solution: they allow generating the structural parts of the applications
expressed in some simplistic specification language (sometimes using standards like
XML or YAML). Once generated, they have to be manually refined by developers,

4 Amazon Web Services - http://aws.amazon.com/, last accessed 23-Feb-2013.
5 Windows Azure - http://www.windowsazure.com/en-us/, last accessed 23-Feb-

2013.
6 Google App Engine - https://developers.google.com/appengine/, last

accessed 23-Feb-2013.
7 Ruby on Rails - http://rubyonrails.org/, accessed on 28-Feb-2013.

10 J.M. Rivero et al.

discarding the initial specifications. Such approaches force a specific platform and
architecture with the advantages of automatic code generation to speed-up the initial
stages of the development. Similar to scaffolding approaches, user interface prototype
annotations like Canonical Abstract Prototypes [7] intend to model common UI pat-
terns and propose a semi-automatic code generation. However, since they focus on
user interface implementation – that is inherently complex – they only allow generat-
ing a limited subset of features, leaving the task of dealing with the generated UI code
to the programmer.

An additional issue in all three approaches is the need to manually translate re-
quirements (expressed usually as user stories, use cases, natural language narratives,
etc.) to code or models only observing the requirements artifacts; that is, no assistance
is provided to guide this process. In this work, we present a Model-Driven process
that allows defining and quickly generating an initial API for a Web Application to
speed-up the initial iterations in the development. This allows developing the applica-
tion frontend that uses the API through direct coding speedily in order to obtain a
fully functional running version of the application that can be tested with end-users as
soon as possible. Finally, the generated API can be further partially or totally imple-
mented as necessary in the following iterations. Thus, our approach intends to com-
bine classic code-based development with Model-Driven and Scaffolding processes.

2.2 Agile Development Style Meets Service-Oriented Architecture

In agile development, the focus on a rapid implementation of functionality that yields
a visible business value can be unfavorable in the context of service-oriented architec-
ture [8]. While user stories are customer-oriented, architectural aspects like identifica-
tion and modeling of services, data resources or API design are not covered in agile
development [9–11]. Though there are proposals to tackle service related features in
the early requirements gathering stage, e.g., using use cases [12], they do not use re-
quirement artifacts fully understandable for end-users, which are at the same time,
unambiguous and technically sound for developers [13]. Approaches like [11] advo-
cate using architectural knowledge bases for decision making and evaluation, howev-
er, they do not focus on accelerating the process to create early running versions.

Advantages of the API-first paradigm cannot be fully leveraged. Ideally, common
functionality and resources for different application platforms are consolidated at the
service layer. This enables independent parallel development of applications for dif-
ferent devices and facilitates serendipity through the development of third-party ap-
plications benefiting from the exposed service layer [14].

As API development requires a lot of experience and knowledge about best prac-
tices [15], API quality in agile development is highly dependent on the developer
team's skill level. There is no process-intrinsic guidance or widely accepted concept
available that supports agile developers in using best practices.

Agile development teams encounter difficulties when applying a service-oriented
architecture style. Particularly, there is a gap between requirements represented by
customer-oriented stories and application architecture, which can produce poorly
designed APIs. Application of best practices for a clean, usable API is highly depen-
dent on the experience of the development team as there is no further guidance

 MockAPI: An Agile Approach Supporting API-first Web Application Development 11

provided. For better support of applying service-oriented architecture style in agile
development, a refined approach is required bridging the gap between requirements
and architecture by combining the most promising elements of various development
approaches employed today and providing enhanced guidance regarding API best
practices to the agile developer.

3 The MockAPI Approach

In this section we describe motivation, procedural and technical aspects of our ap-
proach that allows quickly specifying and generating APIs using requirement artifacts
that are easily understood by both developers and customers: user interface mockups.

3.1 The Approach in a Nutshell

To overcome the issues mentioned in Section 2, we proposed an approach called
MockAPI. MockAPI aims at helping developers in an agile environment to design
service-oriented applications. The proposed process starts by eliciting requirements
through user stories and their related user interface mockups. Such mockups represent
an intermediate language between developers and customers, being technically sound
to developers and fully understandable by customers [13]. Mockups are then anno-
tated with simple but formal specifications that we use to automatically generate a
first API implementation. This API is intended to help building the first iterations of
the different application front-ends, reducing the requirements-to-software time and
effort, though it might be later replaced by the definitive one. In this paper we focus
on generating APIs for service-backed web applications, however, the same annota-
tion approach can be used to generate other artifacts like interaction descriptions re-
lated to mockups (that can be checked by end-users) or data layer schemas and
configurations.

3.2 MockAPI Process

To exemplify the approach within an agile methodology we chose Scrum, since it is
one of the most widely adopted in industry [1]. The Scrum process starts with the
construction of a Product Backlog, listing Stories, ordered by value delivered to the
customer. Then, the product is built iteratively in Sprints. Every Sprint starts with a
Planning Meeting in which Stories are selected from the Product Backlog according
to their priority and broken down into Tasks, forming the Sprint Backlog. A short
Daily Meeting is held every work day to gain awareness of work progress/problems.
At the end of each Sprint, a potentially shippable application is demonstrated to the
Product Owner and customer [16].

The MockAPI Scrum process in Fig. 1 proposes using mockups in all steps. Since
a mockup represents the user interface/interaction required to satisfy a story, mockups
form an intermediate tool between abstract stories and concrete tasks. Therefore, we
propose to add mockups to the Sprint Backlog. Mockups must be built and annotated
with stakeholder participation; developers can explain semantics if needed.

12 J.M. Rivero et al.

Fig. 1. An overview of the MockAPI Scrum process

The developer team starts with coding the application front-end. An initial API im-
plementation can be derived from annotated mockups to speed-up the process. Thus,
in early iterations, the development team can focus on interaction and presentation
allowing for early feedback. Front-ends for different devices (e.g. cellphones, tablets,
PCs) can be built in parallel with API support from the outset.

Although changes in mockups are frequent, they do not require strong re-
implementation effort: the API can be re-generated from updated annotations.

3.3 Mockup Building and Annotation

MockAPI relies on annotating mockups to discover and specify features related to the
required API. Annotations can serve both as requirements and implementation speci-
fication. In the following subsections we describe the structure of the annotations
MockAPI defines to specify API-related features.

3.3.1 Dealing with Content
One of the basic specifications required to define an API is its content (in terms of
types and relationships) and the way it is accessed. To deal with these concerns,
MockAPI proposes the following annotation types, depicted in Fig. 2 over sample
mockups for a conference management system:

List(ItemName): describes a list of items in a mockup, of the type ItemName. For
instance, the List(conference) tag in the leftmost mockup from Fig. 2 denotes a
list of conference objects. From these tags, we can infer the existence of resources
called ItemName (objects of type ItemName) aggregated in a list.

Item(ElementName): expresses that the annotated mockup shows a user interface
containing representation of a single item called ElementName. A mockup showing
the details of a conference is annotated with Item(conference).

Viewing/Editing: describe access type to resources; we identified two basic resource
access patterns: viewing and editing. Both are included as tags in MockAPI.
viewing represents read-only access, editing represents Create, Read, Update,
Delete functionality.

 MockAPI: An Agile Approach Supporting API-first Web Application Development 13

Fig. 2. Sample annotated mockups for a conference management system

Although there are other combinations of CRUD actions, in order to keep our ap-
proach simple, the two combinations described by our resource access patterns cover
most actions used in web applications. If other particular combinations are required, a
user story is added and the respective API has to be manually configured. Used with
Item, viewing implies the content cannot be changed, while editing allows creat-
ing new instances, updating their content and deleting them. Used with List, edit-
ing additionally allows removing/reordering elements.

Associations. Since the structure of mockups can be arbitrarily complex, several con-
tent annotations can be present in a single mockup. Thus, MockAPI allows defining
and relating different Item or List annotations. For this purpose, we introduce the con-
cept of Associations. Each Association represents a directed relationship between two
content annotations in the mockup and is graphically expressed by an arrow
connecting them.

Sorting, Ordering, Filtering, Selection and Pagination. These 5 tags can only be
applied to List to indicate it supports element sorting (e.g. by price), ordering (e.g.
list prioritization using drag & drop), filtering elements (e.g. filtering by name),
selecting elements (e.g. to apply some operation like deleting them) or pagination.

3.3.2 Dealing with Navigation
Navigation is another important aspect to define in web applications. It defines how
interaction and data from the UI is fractioned and simplified in presentation units like
pages, windows or menus, which can have an indirect impact in the API. For instance,
a complex UI that displays a lot of data will be presented faster to the end-user if the
API supports to get all the required information in a single request instead of many.
This kind of relationship may be directly specified from one annotation to the other
within the same mockup, as illustrated in Fig. 3a, where selecting a specific confe-
rence produces the tracks list to update. To relate data across two different mockups
instead, an indirect navigation relationship can be defined between them, as shown in
figure 3.b. To specify these navigations MockAPI includes the following annotation:

Navigation(DestinationMockupName). Indicates an element in the present mockup
navigates to another mockup identified by DestinationMockupName, as seen in Fig.3b
from mockup1 to mockup2. Depending on the tooling used, the destination mockup
can be identified by its name using different strategies like its filename.

14 J.M. Rivero et al.

Fig. 3. Expressing relationships in annotations (directly or through a navigation)

3.3.3 Dealing with Custom Behavior
Features beyond manipulation of data objects and navigation are also considered in
the approach. The underlying functionality cannot be generated automatically, but
they can be modeled and added to the mockup to be implemented as separated user
stories to be coded later, without breaking the annotation abstraction and requiring to
make extensive language and code generation improvements. This kind of features
can be introduced with the SpecialFeature() tag:

SpecialFeature(Description). Represents a complex feature that must be imple-
mented in the API through direct coding, described in plain text (Description).

3.3.4 The MockAPI Metamodel
In order to abstract the structure of MockAPI annotations from their representations,
we defined a detailed metamodel which structure can be observed in Fig. 4.

Fig. 4. Structure of the MockAPI metamodel

A MockAPI model (MockAPIModel) is composed by a list of annotations (Mock-
APIAnnotations) and associations (Association). An annotation is composed by
a list of tags (Tag), which can be of type content (ContentTag), navigation (Navi-
gationTag) or a special feature (SpecialFeatureTag) according to the types pre-
viously introduced. A ContentTag can be a List or Item and can have a specific
AccessType (Viewing or Writing). In addition, a list can feature sorting (Sort-
ing), selection (Selection), etc. A NavigationTag stores the id of the destination
mockup and SpecialFeatureTag includes the description of the special behaviour
to be implemented. Though not directly expressed in the metamodel, MockAPIAnno-
tation can only contain one instance of each Tag type but SpecialFeatureTag.

 MockAPI: An Agile Approach Supporting API-first Web Application Development 15

In 3.4 we describe how to generate API prototypes for set-based resources by analyz-
ing content annotations, i.e. instances of the metamodel. The tags detailed in this
section can be combined to form annotations placed over mockups. Fig. 5. shows a
sample mockup of a conference manager with editable data of a conference, its edita-
ble and selectable tracks and read-only papers per tracks. Papers can be sorted and
paginated. Clicking a paper navigates to another mockup called trackDetails.

Fig. 5. Annotated conference manager mockup

3.4 Generating APIs from MockAPI

The MockAPI approach focuses on CRUD features of applications based on RESTful
Web services; therefore, it constrains the supported design space. Providing guidance
for these basic aspects supports agile developers in a frequent and time-consuming yet
important part of work. Martin Fowler argues that “[d]isappointing as it is, many of
the use cases in an enterprise application are fairly boring ‘CRUD’ (create, read, up-
date, delete) use cases on domain objects” [17]. Any functionality beyond CRUD
access to API resources, e.g., calculations, complex queries and statistical report gen-
eration, is handled in the usual agile way by creating a corresponding story. MockAPI
simply sets the stage for developers to start implementing the missing functionality.

From an instance of our metamodel, the basic outline of the RESTful API can be
inferred. Best practices for RESTful Web services [15] and the set-based navigation
pattern [18] are applied to the modeling. The two central tags regarding content are
List and Item. List tags are used to identify API resources and corresponding
URIs. In the example shown in Fig. 5 List(track) implies the existence of:

/tracks

following the “Plural nouns and concrete names” principle described in [15]. Fur-
thermore, tags defining user interaction aspects such as Selection and Ordering
also influence the API. For instance adding a Selection tag in addition to the pre-
vious List(track) tag defines the items of the list, i.e. single tracks, to be indivi-
dually selectable elements. Inferring resource URIs would additionally yield:

/track/<id>

16 J.M. Rivero et al.

This allows for access to the entire list as well as to a single item of the list identified
by its id [15]. Although the same API can be achieved with List(track) and
Item(track) – because to display a single list item it has to be identifiable in the
API – the Selection tag additionally documents the user interaction requirement of
selecting items from the list. The same applies to Ordering, which, only considering
the API, is implied by List(conference) with access pattern editing as allowing
update of a list implicitly enables reordering of its items. However, Ordering also
specifies implementing list ordering at the application frontend e.g. by drag & drop.

Associations between content annotations are used to identify resource relation-
ships explicitly visible in the UI mockups. For instance in Fig. 5, from
Item(conference) and List(track) along with the association, i.e. the arrow
from Item(conference) to List(track), the following resource URIs can be
inferred:

/tracks

/tracks/<id>

/conferences/<id>/track

It is important to note that MockAPI assumes a one-to-many relationship by default
when Item and List are related. However, if an inverse one-to-many relationship is
found in another mockup, the entire relationship is interpreted as many-to-many. Re-
lationships between Lists are always assumed as many-to-many.

Further associations can be inferred even between annotations in separate mock-
ups, using the Navigation tags. For instance, if an Item(conference) defines a
navigation to a List(track) in a different mockup, a relationship between confe-
rences and tracks will be inferred. In general, when annotations specify navigation to
other mockups, the root content annotation is identified and an association is created
between both content elements. The root content annotation of a mockup is an annota-
tion with no incoming associations. If only one root annotation is present, the associa-
tion is inferred automatically; otherwise it has to be refined manually.

4 Implementation

To assist the process, we devised tools that help through the main steps, as depicted in
Fig. 6, starting from bare mockups to the generated API prototype.

Fig. 6. MockAPI process with tooling support

In the following we explain process and tools for annotation automatic generation.

 MockAPI: An Agile Approach Supporting API-first Web Application Development 17

4.1 The Interactive Annotation Tool

While the structured annotations previously introduced can be applied manually over
physical mockups to add semantics to the plain UI structure that they represent, semi-
automatic API generation is not possible directly from them. To assist the annotation
process and also to have a digital representation of the proposed annotations that can
be used to generate the API, we developed a web annotation tool8. This tool allows
importing any mockup image – e.g. hand-drawn or from image export capabilities
present in mockup tools like Balsamiq9 – and allows adding annotations over it. Fig.
7 shows a screenshot of the tool. During annotation, the tool parses the annotations to
validate their structure and generates the underlying MockAPI model concepts.

Fig. 7. Annotating a hand-drawn mockup with the MockAPI annotating tool

Once mockups have been correctly annotated, the tool provides a way of exporting
an XML representation of the MockAPI model represented by the annotations. This
model is used to further derive and configure the API automatically. Thus, the annota-
tion tool works as the initial stage in the semi-automatic annotation-to-API process.

4.2 Generating APIs from MockAPI

In the following section we describe the implementation of a supporting tool that
automatically generates a running API prototype from a set of annotated mockups by
processing the XML representation of a MockAPI model. This tool applies the rules
described in 3.4 to infer involved resources, access patterns and relationships.

4.2.1 WebComposition/DataGridService
In order to transform annotated mockups into a running API prototype, we employ the
WebComposition/DataGridService (DGS) [19], which allows defining, creating and
configuring resources at runtime and access via a RESTful interface. Our API Gene-
rator sets up the API prototype by configuring DGS XML resources.

8 Available at: http://agilemdd.lifia.info.unlp.edu.ar/mockapi/
9 Balsamiq Mockups - http://www.balsamiq.com/, last accessed 23-Feb-2013.

18 J.M. Rivero et al.

HTTP methods GET, POST, PUT and DELETE are supported on both resource
and item level. Child elements of the XML root of the resource are treated as items of
this resource, facilitating full read/write access to each of them separately. Additional-
ly, DGS provides service and resource metadata maintained as RDF10. Configuration
of the DGS and its resources is available through adding RDF statements to the meta-
data of the service or resource. Configuration on resource level includes the possibili-
ty to blacklist HTTP methods defining resource access policy. XML schema can be
declared per resource to provide validation when HTTP-Requests attempt to modify
the resource. On service level, relationships between resources can be declared con-
sisting of source and target resource, a predicate, optionally an inverse predicate,
source and target alias. Predicate is the RDF predicate to represent the relationship
between items of source and target resource. Using inverse predicates, we leverage
the benefits of RDF allowing DGS to automatically infer inverse relationships be-
tween items of resources related via (forward) predicates. To query items of target
resource related to an item of source resource, target alias is appended to the source
item path. Source alias works in the same way for inverse relationships.

Using the above set of DGS features we create a running API prototype at runtime.

4.2.2 API Generation
As shown in Fig. 8, API Generation consists of two phases: resource identification (1-
5) and resource configuration (7-14). All types along with their access patterns are
collected from items and lists defined in the MockAPI model (2-3). Relationships are
identified processing associations and cardinality is determined as described in
3.4 (5).

Processing the derived set of types with access pattern information, the correspond-
ing resources are created in the DGS, one per type (08). We pursue a set-based ap-
proach declaring the resources assuming containers of elements of the identified type.
The container resource name follows the scheme <TypeName>s. While any occur-
rence of access pattern editing causes a type to be defined editable, only those types
with all occurrences of viewing across all mockups are considered read-only. For
each type identified read-only we configure DGS to restrict access to the correspond-
ing resource accordingly denying HTTP methods POST, PUT and DELETE (10).

A default XML Schema is created per list (11) defining the root element matching
the above name scheme and its content as sequence of elements named after the type,
zero to unbounded occurrences. Currently, the content of the list elements is specified
as xs:any, zero to unbounded, in order to allow for arbitrary data structures. However,
the XML Schema can be easily adapted to incorporate specification of concrete data
structures in future. For instance, a semi-natural language approach with statements
like “A conference consists of name, location, startDate and endDate” is desirable.

Following the rules described in 3.4 relationships between resources are configured
(14). Predicate names are created from a combination of resource names, e.g.
mkapi:ConferenceHasTracks or mkapi:TrackBelongsToConference.

10 RDF Primer - http://www.w3.org/TR/rdf-primer/, last accessed 29-Apr-2013.

 MockAPI: An Agile Approach Supporting API-first Web Application Development 19

Fig. 8. API Generation

Source and target alias are set to the resource name of the forward/inverse related
resources. For instance /conferences/<cid>/tracks yields all tracks related to
the conference with id <cid> via the mkapi:ConferenceHasTracks predicate.
For the inverse relationship using mkapi:TrackBelongsToConference the gener-
ated URI path is /tracks/<tid>/conference.

5 Validation

In order to evaluate our proposed approach and identify potential shortcomings we
conducted a brief validation. We tested the applicability of MockAPI in state-of-the-
art websites by creating mockups for the most relevant user interfaces of 10 of the
most popular websites based on the Alexa ranking [20]. To demonstrate the versatility
of MockAPI, we used pen and paper mockups as well as digital mockup tools. The
resulting mockups have been annotated using our interactive annotation tool and API
prototypes have been generated using the MockAPI DGS API Generator.

MockAPI does not claim to create complete and mature APIs ready for productive
use. Instead, we aim at providing a starting point for agile development by creating
functional API prototypes. Therefore, an indirect metric is employed to evaluate our
approach. We call this metric coverage metric and define it as follows:

Let ܯ be a mockup and ܲሺܯሻ ൌ ௌܲ ׫ ஽ܲ the set of panels of ܯ which provide
user interface functionality. ܲሺܯሻ can be subdivided into ௌܲ, the set of panels which
are static, and ஽ܲ , the set of dynamic panels. For instance, ௌܲ includes navigation
menus and buttons triggering predefined actions and ஽ܲincludes panels that dynami-
cally depend on content or calculations such as lists of breaking news or displays of

current time. Let ܣ be the set of annotations added to ܯ. Then ܥሺܯሻ ൌ |஺||௉ವ| is the

coverage metric of ܯ . In other words, the coverage metric ܥ is the ratio of

01 foreach type Type with access Access in mockups
02 Types.Add Type
03 Accesses.Add (Type, Access)
04 foreach association (Source, Target) in mockups
05 Relationships.AddOrUpdate (Source, Target)
06

07 foreach type Type in Types
08 resource = DGS.CreateResource Type
09 if not Accesses.Contains (Type, "Editing")
10 resource.Deny [POST,PUT,DELETE]
11 resource.SetSchema DefaultXMLSchema(Type)
12 foreach relationship (Source, Target, Card)
13 in Relationships

14 DGS.DefineRelationship (Source, Target, Card)

20 J.M. Rivero et al.

coverage of dynamic panels with MockAPI annotations. The main motivation behind
this metric is to validate how much of the dynamic content can be modeled and fur-
ther API generated automatically using the MockAPI infrastructure. Static content
(ௌܲ) is excluded from the evaluation as it is rendered directly, without making use of
any API. Since some sites adjust static content to user preferences, we checked that
panels remain the same for at least 3 different users to consider them as truly static.

We calculated ܥ for each mockup of the popular websites used for validation. For
the top 10 sites according to Alexa, we created 38 mockups and identified 150 dy-
namic data panels11. 134 of these panels could be covered by our annotations, which
results in an average coverage metric of 89%. This indicates that the majority of dy-
namic panels in the most popular websites can be described using MockAPI annota-
tions. Among those that could not be cover we identified 4 recurring groups: (1)
results of calculations such as counting views, converting units etc., (2) results of
foreign Web Service invocations such as weather information etc., (3) trending enti-
ties that are results of activity monitoring and access statistics such as trending news,
tweets, hashtags etc. and (4) related entities that are results of similarity heuristics
such as related articles, searches, news etc.

The high coverage for the rest of the panels shows that most features in the eva-
luated web applications can be specified as API operations. We found generated APIs
to be surprisingly simple in comparison to the API and infrastructure of real web sites.
However, since MockAPI is meant to speed up the development process, we argue
that the functionality automatically generated from mockups is enough for the devel-
opment team to start creating the application’s front-end without wasting time coding
the operations that the API must implement.

6 Conclusions and Future Work

We presented MockAPI, an approach based on mockup annotations which combines
the advantages of agile and Model-Driven Development and demonstrated how to
derive running API prototypes as starting point for agile development using our anno-
tation metamodel. The brief validation indicated that MockAPI can cover most of the
functionality found in the user interfaces of popular web sites.

In future work, we will focus on improving the ease of use and expressivity of our
annotations. For instance, while currently annotations are simple lists of keywords,
the proposed approach is a first step towards documentation and agile development
support for technically less experienced stakeholders. Therefore, we want to evolve
the annotation syntax to facilitate a semi-natural language description of UI elements
and content in general and the structure of data in particular.

Moreover, we plan to extend the approach to cover additional aspects such as navi-
gation, security or user interaction and consolidate the idea of constraint-based
development with recent advances in mashup research to provide an environment for
rapid development of web applications based on re-usable components.

11 Analyzed data is available at http://agilemdd.lifia.info.unlp.edu.ar/

mockapi/validation

 MockAPI: An Agile Approach Supporting API-first Web Application Development 21

Acknowledgments. This project is partially supported by the DAAD – MINCYT
project 54367460 / DA/11/11.

References

1. VersionOne Inc.: State of Agile Survey (2011)
2. Rodríguez, P., Yagüe, A.: Some findings concerning requirements in Agile methodologies.

Product-Focused Software Process Improvement 32, 171–184 (2009)
3. Leymann, F., Fritsch, D.: Cloud computing: The next revolution in IT. In: Proceedings of

the 52th Photogrammetric Week (2009)
4. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Generation.

Wiley-IEEE Computer Society (2008)
5. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling lan-

guage for designing Web sites. Computer Networks 33, 137–157 (2000)
6. Rivero, J., Grigera, J., Rossi, G., Luna, E., Koch, N.: Improving agility in model-driven

web engineering. In: CAiSE Forum (2011)
7. Constantine, L.L.: Canonical Abstract Prototypes for Abstract Visual and Interaction De-

sign. In: Jorge, J.A., Jardim Nunes, N., Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS,
vol. 2844, pp. 1–15. Springer, Heidelberg (2003)

8. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:
State of the Art and Research Challenges. Computer 40, 38–45 (2007)

9. Kruchten, P.: Software architecture and agile software development. In: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering, ICSE 2010,
pp. 497–498. ACM Press, New York (2010)

10. Abrahamsson, P., Babar, M.A., Kruchten, P.: Agility and Architecture: Can They Coexist?
IEEE Software 27, 16–22 (2010)

11. Eloranta, V.-P., Koskimies, K.: Aligning architecture knowledge management with Scrum.
In: Proceedings of the WICSA/ECSA 2012 Companion Volume on - WICSA/ECSA 2012,
p. 112. ACM Press, New York (2012)

12. Millard, D.E., Davis, H.C., Howard, Y., Gilbert, L., Walters, R.J., Abbas, N., Wills, G.B.:
The Service Responsibility and Interaction Design Method: Using an Agile Approach for
Web Service Design. In: Fifth European Conference on Web Services (ECOWS 2007),
pp. 235–244. IEEE, Halle (2007)

13. Mukasa, K.S., Kaindl, H.: An Integration of Requirements and User Interface Specifica-
tions. In: 6th IEEE International Requirements Engineering Conference, pp. 327–328.
IEEE Computer Society, Barcelona (2008)

14. Medrano, R.: Welcome To The API Economy. Forbes Online: CIO Network (2012)
15. Mulloy, B.: Web API Design: Crafting Interfaces that Developers Love. Apigee (2012)
16. Schwaber, K.: Scrum development process. In: Proceedings of the Workshop on Business

Object Design and Implementation at the 10th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA 1995) (1995)

17. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley (2012)
18. Rossi, G., Schwabe, D., Lyardet, F.: Improving Web information systems with navigation-

al patterns. Computer Networks 31, 1667–1678 (1999)
19. Chudnovskyy, O., Gaedke, M.: Development of Web 2.0 Applications using WebCompo-

sition/Data Grid Service. In: The Second International Conferences on Advanced Service
Computing (Service Computation 2010), pp. 55–61. Xpert Publishing Services (2010)

20. Alexa: Alexa Top Sites, http://www.alexa.com/topsites

	MockAPI: An Agile Approach Supporting API-first Web
Application Development

	1 Introduction
	2 Background and Related Work
	2.1 State of the Art in Web Applications Development
	2.2 Agile Development Style Meets Service-Oriented Architecture

	3 The MockAPI Approach
	3.1 The Approach in a Nutshell
	3.2 MockAPI Process
	3.3 Mockup Building and Annotation
	3.4 Generating APIs from MockAPI

	4 Implementation
	4.1 The Interactive Annotation Tool
	4.2 Generating APIs from MockAPI

	5 Validation
	6 Conclusions and Future Work
	References

