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Abstract

The Smart Grids paradigm emerged as a response to 
the need to modernize the electric grid and address 
problems related to the demand for better energy qual­
ity. However, there are no fully developed and im­
plemented smart grids. Centralized systems are still 
common, with a low granularity of control and re­
duced monitoring capacity, especially in low-voltage 
networks. In this work, we propose a framework for 
Microgrid Management, providing solutions for three 
main problems: Peak Shaving addressed with a dis­
tributed control algorithm based on Artificial Immune 
Systems for demand-side management; Transformer 
Lifespan Estimation using a thermal model adjusted 
by Genetic Algorithms; Short-Tenn Load Forecasting 
based on Artificial Neural Networks and Genetic Al­
gorithms. Combining these solutions, we can reduce 
peak loads by controlling air conditioners without af­
fecting user comfort, detennine the negative effects 
of overloading on distribution transfonners and pro­
vide demand forecasting. The proposed framework is 
based on autonomous and distributed systems, so the 
Organization Centered Multi-Agent Systems method­
ology was applied for modeling and development. The 
implemented solutions were applied in the Tucumán 
province, Argentina, exposing the system’s benefits 
and the relevance of the information generated by the 
framework.

Keywords: Demand-Side Management, Distributed 
Systems, Lifespan Estimation, Load Forecasting, Or­
ganization Centered Multi-Agent System.

Resumen

Las Smart Grids surgieron como respuesta a la necesi- 
dad de modernizar la red eléctrica y abordar proble­
mas relacionados con la demanda de energia de mejor 
calidad. Sin embargo, no existen Smart Grids total- 
mente desarrolladas e implementadas. Todavia son 
comunes los sistemas centralizados, con baja gran- 
ularidad de control y reducida capacidad de moni- 

torización, especialmente en redes de baja tensión. 
En este trabajo, proponemos un Framework para la 
gestión de Microgrids, resolviendo tres problemas 
principales: Peak Shaving abordado con un algo­
ritmo de control distribuido basado en Sistemas In- 
munológicos Artificiales para gestión de la demanda; 
Estimación de la vida útil del transformador mediante 
un modelo térmico ajustado con Algoritmos Genéticos; 
Predicción del consumo a corto plazo basado en Re­
des Neuronales Artificiales y Algoritmos Genéticos. 
Combinando estas soluciones, podemos reducir los 
picos de carga controlando equipos de aire acondi­
cionado sin afectar al usuario, determinar el impacto 
de la sobrecarga en transformadores y proporcionar 
una predicción de la demanda. El Framework se basa 
en sistemas autónomos y distribuidos, por lo que se 
aplicó la metodología de Sistemas Multi-Agentes Or- 
ganizacionales para modelarlo y desarrollarlo. Las 
soluciones implementadas se aplicaron en la provincia 
de Tucumán, Argentina, exponiendo sus beneficios y 
la relevancia de la información generada.

Palabras claves: Gestión de la demanda, Sistemas 
distribuidos, Estimación de la vida útil, Predicción del 
consumo eléctrico, Sistemas Multi-Agente Organiza- 
cionales.

1 Introduction

The energy consumption and the users’ requirements 
have grown steadily over the last few years. This sce­
nario exposes the need to incorporate new technology 
into the Power Distribution Systems, leading to the 
Smart Grids (SG) paradigm [1], In this context, the 
electrical network is shown as a set of interconnected 
layers [2]: a physical grid, connected by conductors 
and several devices, but also by communication and au­
tonomous control systems. In other words, the network 
can be seen as a set of interconnected layers. Also, the 
view of the network as a whole has changed, migrat­
ing to the concept of smaller networks or Microgrids 
(MG) [3], which are self-controlled, self-regulated, 
and produce their energy, among many other features.
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Although this new paradigm has many advantages, 
such as increasing the quality of the electricity distri­
bution service, it is difficult to find fully developed 
and implemented Smart Grids. Instead, it is common 
to find few field tests to prove concepts and new tech­
nologies on a small or medium scale. Moreover, the 
system developed to manage the energy network is 
focused on a centralized approach. Also, it is common 
to use SCADA Systems whose granularity of control is 
one of its significant issues. Although SG and MG are 
fully compatible with the distributed control approach, 
the current systems are not adequate to respond to this 
requirement properly.

The use of Smart Grids in developing countries 
such as Argentina is incipient [4], The monitoring 
and control barely cover the middle level in the energy 
distribution system, leaving aside the last mile (the 
low-voltage network). The low penetration of the SG 
is due to different factors, mainly the lack of proper 
investment by companies and poor planning in the en­
ergy distribution context. For this situation, the margin 
between installed power and the consumers’ demand 
is reduced year after year, resulting in a progressive 
decrease in service quality. Consequently, the electric­
ity distribution system has a minimum reserve margin. 
As a result, the government of Argentina declared a 
state of energy emergency in 2015 [5].

The Energy Management System (EMS) for any 
MG needs to have a series of features that must be con­
sidered as part of the underlying implementation [3]. 
Among other things, the system must:

• Regulate its consumption and address different 
issues.

• Use distributed approach for the monitoring and 
control systems like the algorithm for Demand- 
Side Management (DSM) proposed in [1],

• Provide helpful information for the decision­
making process implementing techniques like 
Load Forecasting and Transformer Lifespan Esti­
mation.

All these features must be supported by a platform de­
veloped using an adequate paradigm. It must respond 
to the complexity of the monitoring and management 
system, providing adaptive, self-regulated capacities 
and a high level of fault tolerance. The Multi-Agent 
Systems (MAS) paradigm fits this class of problems 
due to all the features required by the Smart Grid, the 
Peak Shaving approach with DSM techniques, and the 
Cyber-Physical Systems.

Some models and systems were proposed by other 
authors, considering the MAS approach for power 
optimization and management problems [6, 7, 8, 9]. 
This work mainly focuses on the Peak Shaving tech­
niques addressed with the Demand-Side Management 
approach [10, 11]. Several works and patents were 

presented considering this approach, but those systems 
have a common feature: a centralized control system.

This paper presents a conceptual framework for Mi­
crogrid Management. It mainly covers the Peak Load 
problem addressed with an autonomous and distributed 
control system based on the Artificial Immune Net­
work for Demand-Side Management [12], The model­
ing of the proposed solution is based on Organizational 
Centered Multi-Agent Systems (OCMAS) [13] devel­
oped under the ASPECS methodology [14], There 
is a previous model focused only on the Peak Shav­
ing problem [8]. The actual model aims to represent 
the control system behavior for Microgrid, which also 
implements some data analysis techniques to support 
decision-making: i) Transformer Lifespan Loss Esti­
mation due to overload using a thermal model adjusted 
by Genetic Algorithms [15], and ii) Short-Term Load 
Forecasting using Artificial Neural Networks and Ge­
netic Algorithms for variable selection [16].

The rest of this work is organized as follows: Sec­
tion 2 presents a brief description of the addressed 
problems related to demand-side management, load 
forecasting, and transformers lifespan estimation; Sec­
tion 3 describes how each solution has been modeled 
and implemented with the Organization Centered Mul­
tiagent System approach; Section 4 presents a brief 
description of the obtained results; Finally, the conclu­
sions and future work are presented in Section 5.

2 Applications for Microgrid Manage­
ment

2.1 Peak Load Problem

The increase in electricity demand that occurs in short 
periods generating electrical peaks for a few hours 
is one problem that significantly impacts the power 
system. It is known as Peak Load Problem [17]. The 
extreme consumption produced by these peaks causes 
damage or reduces the useful life of the devices in­
volved in the distribution grid. In order to avoid these 
problems, power distribution companies need to over­
size the installed power capacity, even if it is only 
needed for a few months of the year (generally in hot 
seasons for warmer subtropical and tropical climates, 
and cold season for colder climates). Also, a signifi­
cant part of existing resources is used for maintenance 
tasks, reducing the investing capacity available to im­
prove the grid.

Many approaches were developed to handle the 
Peak Load Problem, like Load Leveling [18], Bat­
tery Storage [19], or Spinning Reserves [20]. How­
ever, considering the SG principles, the bottom-up per­
spective proposed by the Demand-Side Management 
(DSM) [1] approach fits better. So, in this context, 
there is a solution based on Artificial Immune Network 
(AIN) [21] [22] called the AIN-DSM Algorithm [12], 
This control algorithm exhibits self-regulated, adap­
tive, and autonomous capabilities that are desirable to 
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address this complex problem. It consists of monitor­
ing and controlling the power consumption at a spe­
cific point in the distribution network, called Energy 
Source Node (ESN). The control involves manipulat­
ing the normal operation of some power-shiftable and 
time-shiftable devices connected to the ESN. The AIN- 
DSM algorithm proposes a compromise between the 
distribution network (energy load) and the consumers 
(energy demand).

In this work, the implementation of the control sys­
tem is composed of:

• The ESN represents a distribution transformer 
in the Low-Voltage network. It has sensors for 
reading the consumption level and a broadcast 
unit responsible for transmitting this value and 
other parameter values for the control algorithm 
to all the controlled devices. It is feasible to use 
currently available IoT technologies in order to 
support the coimnunication requirements.

• The Controllable Devices are Air Conditioners 
(AC). They include a Smart Control Unit (SCU) 
with a communication module for receiving in­
formation from the ESN, a processing module for 
computing and determining the new state of the 
device, and implement a mechanism to change 
the operating mode of the AC device from cooling 
mode (consuming) to fan mode (not consuming) 
and vice versa.

Fig. 1 shows a diagram of the proposed implemen­
tation. As can be seen, the system requires a coimnu­
nication infrastructure, which must be adequate and 
provide the necessary services to ensure that all con­
trollable devices receive the data sent by the ESN. It is 
important to note that the coimnunication is unidirec­
tional, since the control algorithm is executed in each 
SCU without any intervention of external elements. 
Each SCU is autonomous, taking its own decisions 
about its operation with local information. This fea­
ture allows the system to incorporate new devices at 
any tune, resulting in easy scalability of the system.

The AIN-DSM algorithm tries to maintain the an­
tibody concentration at a certain level as the immune

Figure 1: Representation of the Energy Source Node 
(the distribution transformer) feeding a set of cus­
tomers and their respective devices.

system would do in nature. In our case, it means that 
the system maintains the energy load of a certain ESN 
below a prelixed limit. In this way, the algorithm can 
prevent cases when the consumption level exceeds the 
rated capacity of the transformer and damage begins. 
The following simplified equations rule its behavior:

£ = [«esnW -k]ai(t) (1)

flESN(i) = [l + eESNEnewW~ESNLtait] (2)

= [1+ eConsumption;^~ESNAv:flable^ 1 (3)

First, Eq. 1 presents the change of the antibody 
concentration. The first term within the brackets sum­
marizes the stimulation among antibodies. This term 
represents the total energy that the ESN is providing. 
It is calculated using the squash function defined by 
Eq. 2, where:

• ESNEnergy(i) is the total energy measured and 
provided by the ESN to all devices in a broadcast 
message at time i,

• ESNnmit is the maximum amount of energy that 
the ESN can handle at time t (i.e., the rated ca­
pacity of the transformer).

The second term in Eq. 1 is a constant value used to 
model the cell’s natural death, equal to k = 0.5. Finally, 
the a,:(i) represents the current antibody concentration 
related to the specific consumption of the device i. It 
is calculated using the squash function defined by Eq. 
3, where:

• Consumption,^) is the energy consumption mea­
sured from the i device at time t.

• ESNAvaiiabie(i) is the available energy, calcu­
lated as the difference between the limit value 
ESNi .imit and the total energy consumed at time 
t, ESNEnergy(t)'

Finally, the AIN cloning process supports the mech­
anism for granting permission to consume energy. Us­
ing the concentration change previously calculated (Eq. 
1), each controlled device decides if it must remain 
in the current consumption state or change it (from 
waiting to consuming or vice versa).

The AIN-DSM algorithm was tested with theoreti­
cal and real data to analyze its behavior in several sce­
narios [12], The energy consumption was restrained 
to 75% or 80% of the maximum value. The algorithm 
controls the energy consumption in all cases, maintain­
ing the load closer to the limit with a small deviation. 
Some results for the AIN-DSM algorithm can be seen 
in Section 4.
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2.2 Lifespan Estimation of Distribution 
Transformers

One of the most important capacities of the SGs is 
the possibility to measure, monitor, and control any­
thing happening in the network. It allows improving 
the management and the quality of the service. In 
this sense, estimating the lifespan of the distribution 
transformers helps to take the necessary actions for 
resource management on time [23]. These actions 
include replacing the transformer with another with 
higher capacity, distributing the electricity consump­
tion to nearby transformers, and expanding the electri­
cal system with a new transformer whenever possible. 
However, the accumulative effects of the transformer 
deterioration are difficult to determine, so estimating 
its expected lifespan is a challenging task, even un­
der strictly controlled conditions [24], For this reason, 
in this work, we limit the causes of deterioration to 
temperature increase due to overloading.

The most commonly used method to estimate the ef­
fects of the temperature inside the transformer is based 
on thermal models proposed in loading guides. The 
IEC 60076-7 [25] provides a thermal model that calcu­
lates the hot-spot temperature in the winding using the 
load and ambient temperature measurements. From 
this hot-spot temperature, the lifespan of the wind­
ing is estimated based on expected values obtained 
from tests performed on transformers with different 
construction characteristics.

Based on the loading guides, [15] proposed a 
method to adjust the parameters involved in thermal 
models using Genetic Algorithms (GA). It aims to 
adapt and validate the thermal models to local condi­
tions and equipment, comparing the estimated values 
of top-oil temperature with real measurements from 
315 kVA distribution transformers. In short, the au­
thors used the Deterministic Crowding algorithm, a 
Niching Genetic Algorithm, to determine the possi­
ble combinations to fit the parameters of the thermal 
model with real data.

A general scheme of the lifespan estimation process 
is shown in Fig. 2. The inputs are the load factor K and 
the ambient temperature 0a[°C], and the outputs are 
the lifespan loss rate V and the accumulated lifespan 
loss L. The first step is to calculate the temperature 
of the cooling oil. Eq. 4 describes the dynamics of 
the oil temperature change on the upper level of the 
container. This equation is used to estimate the top­
oil temperature rise. Then, the top-oil temperature d0 
is obtained by solving the differential equation with 
traditional numerical methods. Table 1 describes all 
the parameters involved and their values adjusted us­
ing Genetic Algorithms and real top-oil temperature 
measurements [15].

E sti m ateth e hot-s p otte mperat u re

Figure 2: Block diagram of the procedure for esti­
mating the relative aging rate V and accumulated loss 
of life estimation L, based on the load factor K and 
ambient temperature da [15].

Next, we calculate the hot-spot temperature rise 
above the top-oil temperature Ad/,. For modeling the 
thermal behavior of the winding hot-spot, the men­
tioned loading guides propose Eq. 5 and 6.

, hl = Ir [¿21 Ky Ad/ir - A0/,i] (5)
dt ^22

= — [(¿21 - W Adhr - A6h2] (6)

The hot-spot temperature 0/, is calculated by Eq. 
7, combining the previous equations. Solving these 
equations corresponds to steps 1 to 4 in the block 
diagram shown in Fig. 2.

dh = d0 + (AG/,1 - A0/,2) (7)

Once the hot-spot temperature has been calculated 
over a given period, the transformer insulation’s degra­
dation rate V is calculated using Eq. 8. Finally, the 
total lifespan L from that period is obtained, integrat­
ing the relative aging rate over time (steps 5 and 6 in 
the scheme in Fig. 2).

15000 15000
110 + 273 _ + 273 (8)

d0o
dt

1
¿11 To

1+K2R\
1+R J

X

AOor — do + da (4)

Table 1: Parameters involved in the equations for es­
timating the lifespan loss of 315 kVA transformers 
with the ONAN cooling system, located in Tucuman, 
Argentina.

Parameter Symbol Value

Oil exponent X 0.94
Oil time constant To 106
Top-oil temperature rise Adar 40.6
Hot-spot to top-oil gradient A-Qhr 35.0
Loss ratio R 5.31
Winding exponent y 1.6
Winding time constant T).v 4.0
Thermal constant ¿11 1.0
Thermal constant ¿21 1.0
Thermal constant ¿22 2.0
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The main input variables for calculating the lifes­
pan loss are the load rate and ambient temperature. 
There are more complex models that use other expen­
sive variables such as solar radiation, but it can be 
estimated from other weather variables simpler to mea­
sure [26]. The calculation can be performed near the 
transformer location if each transformer has the ap­
propriate sensors. This interesting possibility would 
improve response times and save bandwidth. In this 
way, there is no need for a central system to collect 
and process the data. This paradigm is known as edge 
computing [27].

Results showed that the parameters obtained by the 
GA were similar to the values recommended by the 
loading guide (Table 1 shows these parameter values). 
However, the error in estimating the oil-top temper­
ature was reduced by 63.7% in validation data. So, 
the proposed model provides more accurate tempera­
ture estimation and more accurate lifespan estimation 
in distribution transformers used in Argentina. Sec­
tion 4 details the temperature curves and lifespan loss 
estimates when the distributed control algorithm for 
demand-side management is applied using real data.

2.3 Short-Term Load Forecasting

The data availability provided by SGs allows the imple­
mentation of many data analysis techniques to support 
decision-making for planning tasks like energy alloca­
tion and maintenance schedules. Load forecasting is 
one of the most widely used approaches among these 
techniques, although electricity demand prediction is 
a complex problem. It is a non-stationary process 
that depends on many conditions and factors, such 
as climatic, economic, cultural, random correlated, 
and uncorrelated effects [16]. The degree of random­
ness in the power consumption also varies according 
to the scale, being smoother as the aggregation level 
rises [28]. Load forecasting can be separated into 
three categories depending on the period under consid­
eration. In the Long and Intermediate terms (weeks, 
months, or years), forecasting allows long-range plan­
ning, and it can be used to purchase energy in a city or 
state. On the other hand, Short-Term Load Forecasting 
(STLF) comprises a range from a few minutes up to 
7 days ahead. It allows scheduling optimization of 
shorter-range planning like maintenance and human 
resources management.

Many machine learning models have been devel­
oped to forecast electricity consumption [29] and the 
model selection depends on each particular scenario. 
For example, there is a linear relationship between 
temperature and electricity consumption in some lo­
cations, while this relationship has a significant non­
linear component in other locations. In this work, we 
use the model and methodology proposed in [16] since 
it produced accurate results when applied in the north­
western region of Argentina.

A general scheme of this methodology is shown in

Figure 3: General scheme of the Short-Tenn Load 
Forecasting method [16].

Fig. 3. First, data are collected and pre-processed, 
preparing it for use in a machine learning model. The 
input includes variables derived from the electricity 
consumption, weather, information about the day type, 
and time (temporal variables). Lag variables were also 
added, obtained from the main variables considering 
three different points in the time series (2 backward 
and 1 forward). Thus, after the Input Vector Construc­
tion step in the forecasting methodology, there are 101 
variables in total.

Then, noisy or redundant variables are removed in 
the Variable Selection process. A combination of a 
Simple Genetic Algorithm with Multi-Linear Regres­
sion (GA-MLR) is used in this step. The candidate 
solutions for the variable selection problem are en­
coded in a binary vector, indicating which variables 
will be used. Eq. 9 defines the fitness function used 
by the GA. It combines the Root Mean Squared Error 
(RMSE) with the Pearson’s Correlation Coefficient 
(R) between real and predicted data. Also, it adds 
a penalization factor to force the GA to select the 
solutions (S) that provide fewer variables, avoiding 
complex forecasting models. That is, solutions with 
a high number of variables are penalized by reducing 
their fitness value. The parameter a controls the effect 
of the penalty. An appropriate compromise between 
solutions with few variables and low error is archived 
with a = 0.1. This value reduces the size of the input 
vector to approximately 20% of the total variables.

f(S) = 1 -
RMSE

R
1 N

11 a^Ç‘s'' (9)

Once the appropriate variables are ready, the predic­
tion model is built from the data in a training process. 
Finally, the generated model is tested using a portion 
of the data not used for training. The methodology was 
tested using three models in the forecasting process: 
Multi-Linear Regression (MLR), Feed-forward Back- 
propagation Neural Networks (FFNNs), and Radial 
Basis Function Neural Network (RBFNN), but the last 
one provides more accurate predictions in our case.
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Figure 4: Ontology Diagram. It provides a general overview of the context of the application for our problem. This 
diagram shows the main concepts that describe certain aspects of Microgrid management and the relationships 
among these concepts, which were previously expressed in the system’s requirements by the stakeholders.

3 OCMAS Modeling for Microgrid 
Management

The Multi-Agent Systems (MAS) paradigm [30] is a 
relatively novel approach that has dramatically grown 
over the last decades. It is a methodological frame­
work that is well-adapted for analyzing and modeling 
complex, distributed, and open systems (open refers 
to the property of allowing the dynamic integration of 
new agents into an existing system). It regards systems 
as societies consisting of independent and autonomous 
entities, called agents, which interact to solve prob­
lems. The MAS has been successfully used in a wide 
range of domains, including the management and dis­
tribution of energy. Several works deal with different 
areas of the electric grid (production, transmission, 
and distribution) [31, 9].

As mentioned above, our proposal comprises many 
and varied aspects of the Microgrid administration. 
Some examples are the assessment of energy con­
sumption, prediction, interaction with existing external 
systems (useful for collecting data that allow better 
internal control of the grid), device monitoring, and 
control interfaces. The design of our solution was 
done using the ASPECS methodology [32, 14], As 
in any software development process, the first step 
of ASPECS is to carry out surveys of the require­
ments to define the system’s scope and establish a 
reference language, unifying terms and concepts. In 
this first step, the diagrams of Domain Requirement 
Description, similar to the UML Use Case Diagrams 
and Problem Ontology Description are defined (Fig. 

4). The latter, the only one we will illustrate due to 
the document length restrictions, highlights the most 
relevant concepts of the problem and its relationships. 
Each concept can be stereotyped according to the three 
available types: << concept », « action », and 
<< predicate ». The diagram was designed based 
on the concept of Microgrid, which, by definition, 
is composed of a group of interconnected heteroge­
neous devices representing the sources and electric 
loads. The diagram expands/grows until it represents 
the concept of Energy Supply Node (ESN), the con­
cepts related to the lifespan of the transformers, load 
forecasting, and sensors, among others.

Fig. 5 shows the organizations identified from the 
requirements. Here is a brief description of each of 
them:

• Peak Shaving: provides answers to the require­
ment of keeping the level of energy consumption 
below a set threshold.

• Artificial Immune Network (AIN) implements 
the bio-inspired algorithm adapted to the context 
of energy demand management to determine the 
device’s state (demand control).

• Lifespan Estimation: determines the lifespan of 
an energy distribution device (e.g., transformer) 
using thermal models and genetic algorithms.

• Energy Forecasting: generates estimation models 
and predicts energy consumption.

• Sensor System: provides information from the 
database and other external devices that capture
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Figure 5: Organizational Diagram (partial). The global objectives of the system, arising from the requirements, 
are defined in this diagram. In order to solve the energy management problems described in this work, different 
technologies are used, most of which are bio-inspired algorithms, such as Artificial Immune Systems and Genetic 
Algorithms, among others.

data (SCADA and legacy systems) necessary for 
decision making.

• Monitoring and Management System: contin­
uously tracks the electric grid producing rele­
vant information, like consumption limits, for 
decision-making. It also acts as an interface be­
tween the system and the users.

The system dynamics implies the performance of 
activities within each organization and an interchange 
of data among organizations through the different el­
ements provided by the methodology. For example, 
to achieve its purpose of maintaining the consump­
tion level, the Peak Shaving organization needs the 
results of the AIN and Energy Forecasting organiza­
tions. These also serve to estimate the reduction of 
the ESN lifespan using the Lifespan Estimation orga­
nization. The Sensor System organization provides all 
the data used for the different organizations. Finally, 
the Monitoring and Management System organization 
establishes the high standard working parameters for 
the complex system. It provides the necessary means 
for monitoring and controlling the resident module in 
the Microgrid.

The organizational approach allows us to address the 
modeling of a complex system through a series of char­
acteristics such as (i) the possibility of using different 
languages in each interaction group, (ii) modularity in 
order to separate the behaviors embodied in organiza­

tions, necessary to achieve the objectives of the system, 
(Hi) the possibility of defining multiple agent architec­
tures and, finally, (iv) the elimination of centralized 
global control by allowing each group/organization to 
define its admission policies and/or control. It is cor­
rect to consider organizations as “blueprints” that can 
be easily reused in future developments. From a user 
and maintenance viewpoint, the use of MAS allows 
the user simpler and clearer maintenance, automated 
testing, easier and higher level introduction of changes, 
among other advantages.

4 Experimental results

The two main aspects among the requirements and 
features provided by the proposed framework are the 
Demand-Side Management and the Transformer Lifes­
pan Estimation. Regarding the first one, the AIN-DSM 
control algorithm was tested with hypothetical and real 
cases to prove its flexibility and capacity to adapt to 
different scenarios. This work reports only the results 
obtained with simulations using real data from a 315 
kVA transformer installed in a residential neighbor­
hood. The data correspond to the day with the highest 
electricity consumption register in 2013, provided by 
the local distribution company from Tucuman, Ar­
gentina.

First, the AIN-DSM algorithm is analyzed from the 
viewpoint of consumption reduction at the transformer

-7-



Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

600

300 H
--------- AIN-DSM Consumption 

------- Limit Consumption 
—- Normal Consumption

(a) Load curves

200
00:00 02:20 04:40 07:00 09:20 11:40 14:00 16:20 18:40 21:00 23:20 

Time

Time

(b) Internal Temperature

Time

(c) Lifespan Loss Speed

Time

(d) Lifespan Estimation

Figure 6: Results for the distributed demand control 
with the AIN-DSM algorithm and the transformer lifes­
pan estimation using real data from Tucuman.

substation. Fig. 6a shows the electricity consumption 
from the transformer with and without applying the 
control algorithm. Two different behaviors can be seen. 
In the first part of the day, where the consumption re­
mains below the limit, both regular and controlled 
consumption by the AIN-DSM algorithm matches per­
fectly. In the second part, the demand level increases, 
where both curves exceed the prefixed power limit. 
However, the controlled consumption remains close 
enough to the limit. The average deviation is about 1 % 
of the peak consumption most of the tune.

Next, the method for transformer lifespan estima­
tion described in Section 2.2 was applied to the same 
data used to test the AIN-DSM algorithm. Fig. 6b 
presents the temperature curves, including the ambient 
temperature and the two estimated temperatures from 
the top-oil and hot-spot in the transformer. These tem­
perature curves correspond to real consumption data, 
with and without using the AIN-DSM control algo­
rithm. Fig. 6c shows the calculated loss rate values, 
which indicates how fast the insulating material inside 

the transformer is degraded due to overload. Finally, 
Fig. 6d presents three curves for the accumulated lifes­
pan loss: (i) the expected or nominal lifespan that is 
estimated to be 20 years for an ordinary distribution 
transformer (equivalent to approximately 0.014% in 
a day); (ii) the accumulated loss in the case without 
applying the control algorithm is 0.115% for all the 
analyzed period; (Hi) the accumulated loss when the 
AIN-DSM algorithm is used. The value for the whole 
period is about 0.03%.

The proposed test scenario considers that the dis­
tribution transformer runs at full capacity the whole 
time, except for the peak days where the limit is ex­
ceeded. Furthermore, analyzing the available data, at 
least 30 days in the year present peak loads exceeding 
the maximum. The lifespan loss of the transformer 
without considering those 30 days is 4.59% in a year. 
Now, when considering those days into the calculation, 
the lifetime loss would be 8.04% in a year, reducing 
to 5.49% if the AIN-DSM algorithm is used. If the 
environment and consumption conditions are the same 
over time, the transformer's whole life will be about 
12.44 years. In contrast, the total lifespan with the 
AIN-DSM algorithm is about 18.21 years. Table 2 
summarizes the results described above.

This situation is hypothetical because, in real cases, 
the transformer is not working at 100% of its capacity 
all the time. The transformer lifespan may reach more 
than 20 years in many cases. However, the present 
analysis allows us to evaluate the impact of the AIN- 
DSM algorithm.

From the customer’s viewpoint, it is important to 
analyze the periods when the AC’s consumption is con­
trolled by the AIN-DSM algorithm. Remember that 
this algorithm allows or denies the energy consump­
tion of controlled devices. The period when the con­
trol algorithm denies the AC’s consumption is called 
’’waiting time”. Fig. 7 shows the system behavior, con­
sidering only the part of the analyzed period when the 
control is active (12:00 to 23:59). First, the Gantt dia­
gram in Fig. 7a shows the distribution of both states by

Table 2: Comparison using real data and the simula­
tion results of the AIN-DSM algorithm to analyze the 
lifespan loss from a 315 kVA transformer.

Accumulated Real AIN-DSM
Lifespan Loss [%]

N(j!Ulf till
data data

Day with high con- 0.014 0.115 0.03
sumption
Month with high 0.41 3.45 0.90
consumption
The rest of the year 4.59 4.59 4.59
A complete year 5.00 8.04 5.49

Ratio from nominal 1.00 1.61 1.10

Expected lifespan 20.00 12.44 18.21
[year]
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(a) Gantt Diagram of waiting times.

(b) Total waiting time of each AC device in the analysis 
period.

Figure 7: AC distribution of waiting times for each 
device.

all the controlled devices (normal consuming in white, 
waiting in black color). It shows a clear distribution of 
the consuming permissions determined by the control 
system. When AC devices are turned off (or placed in 
non-consumption mode), they remain in this state for 
no more than 6.6 minutes on average before returning 
to their normal operating mode (7.3 minutes in the 
worst case). This value ensures that the customer’s 
thermal comfort is not affected. Fig. 7b shows the 
accumulated waiting time of each device, calculated 
over the last 12 hours of the test period. The horizontal 
line represents the average waiting time. This value 
indicates that the AC devices were forced to turn off 
11.97% of the operating time.

Although the test case includes controlled A.C. de­
vices and other non-controlled appliances, the system 
can adapt to any energy demand change. The dis­
tributed system requires a low level of interaction be­
tween the controlled devices, and yet the results are 
remarkable. The AIN-DSM algorithm implemented 
can adequately address the Peak Load Problem de­
scribed in Section 2.1.

Regarding the STLF problem, the methodology de­
scribed in Section 2.3 was tested using data from Tu- 
cuman in the interval between January 2014 and De­
cember 2015. The weather data are provided by a 
meteorological station located about 5 km from the 
distribution transformers selected to analyze. The fore­
casting variable is the phase current provided by a 
SCADA system. Its values were recorded from a 
three-phase transformer substation in the Low-Voltage 
distribution grid. The method was applied on 11 sub­
stations, predicting the current magnitude from one of 
its phases. Table 3 summarizes the average accuracy 
obtained using different error metrics on the validation 
dataset. One of the most commonly used metrics for

Table 3: One-Day-Ahead Load Forecasting results 
obtained with Radial Basis Function NN for the vali­
dation set.

Error
Metric

Average Min. Max.
Standar

Desviation

MBE -0.49 -1.48 0.33 0.63
R 0.93 0.92 0.95 0.01
RMSE 16.14 9.84 21.03 3.74
MAPE [%] 8.24 6.89 10.10 0.94

error quantification is the average Mean Absolute Per­
centage Error (MAPE). In our case, its average value 
is 8.25%, similar to the results obtained with other 
methods applied in the same region [33]. Fig. 8 shows 
a comparison of the real data vs. the predicted values 
obtained using RBFNN as the prediction algorithm in 
the validation dataset (a week of data, between 12-13- 
2015 and 12-19-2015). Only one case is shown since 
the result is similar to the others. The curve profiles 
are consistent with the error level reported in Table 3.

5 Conclusions and Future Work

In this work, a conceptual framework for Microgrid 
Management was presented. Three problems and their 
possible solutions were identified, exposing its func­
tionalities: (i) The Peak Load Problem was addressed 
with a distributed algorithm for demand-side man­
agement inspired on Artificial Immune System (AIN- 
DSM algorithm) that controls AC devices, (ii) Lifespan 
Loss Estimation of distribution transformers by using 
a model based on loading guides, adjusted using Ge­
netic Algorithms (Deterministic Crowding), and (Hi) 
Short-Tenn Load Forecasting addressed with Simple 
Genetic Algorithms and Multi-Linear Regression (GA- 
MLR). The proposed solutions and their main aspects 
were modeled based on the distributed paradigm of 
Organizational-Centered Multi-Agent Systems (OC- 
MAS).

Using the AIN-DSM algorithm prevents a prema­
ture reduction of the lifespan by around six years, indi­
cating that the network is being protected. The savings 
generated by the use of the control algorithm could be 
invested in improvements and expansion of the current

Time [day]

Figure 8: Load profile and one day-ahead forecast­
ing from a Substation Transformer with residential 
consumption.

-9-



Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

features of the distribution network instead of using 
the company resources in unnecessary repairing tasks. 
On the other hand, the estimation of the transformer 
lifetime loss allows us to evaluate the results of the 
previous approach. This feature, combined with the 
proposed method for load forecasting, provides help­
ful information about the transformer’s condition. The 
proposed solutions provide remarkable results, promis­
ing the development of a whole system based on the 
presented approaches. They can provide essential in­
formation for the decision-making process and serve 
as input to other systems.

Future work will be on the same line, combining the 
Lifespan Estimation and the Short-Term Load Fore­
casting procedures. This combination would allow 
estimating when a given transformer will be affected 
and its lifespan shortened due to overloads, consider­
ing the uses and all the aspects proposed by the two 
mentioned methods. Also, we will implement the 
proposed framework using SARL, an Agent-Oriented 
Programming Language [34],
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