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The Euler equations for the chemical graphs are an extension of such equations
for the polyhedra. These equations admit several potential forms of molecular descrip-
tors that can be used in the characterizations of the properties of polycyclic aromatic
hydrocarbons (PAH) in a typical Quantitative Structure Property–Activity Relation-
ship (QSPR-QSAR). In this paper we describe the nature of these Euler relations for
hydrocarbon graphs and the descriptors they admit, applying them to predict 37 boiling
points (BP), 26 n-octanol/water partition coefficients (log(kow)), and 47 retention time
indexes (RI) for reversed-phase liquid chromatography analysis. Final results suggest
that these new descriptors can be used to complement others in a QSPR-QSAR study.

KEY WORDS: QSPR theory, polycyclic aromatic hydrocarbons, Euler equations, Schl-
aefli indexes

1. Introduction

The polyhedra are described in one way by their symmetry properties. Such
symmetry analyses of the polyhedra have proven to be useful for the elucidation of
the electronic structure of molecular fragments, or molecules, that possess vestiges
of the shape and symmetry of the various polyhedra. These symmetry aspects of
molecular electronic structure have been elucidated, in one particular example of
the subject, by F.A. Cotton in his classic text on group theory applied to molecules
which was published originally in the 1960’s [1]. Alternatively, the topology of the
various polyhedra, taken in the form of a relationship between their numbers of
vertices, V , edges, E , and faces, F , has already been cast by Euler in his famous
1758 paper to the Saint Petersburg Academy [2].

The familiar Euler relation, which is applicable to any of the innumerable
polyhedra, reads as follows:

V − E + F = 2. (1)
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It is said from this result that the Euler characteristic for the sphere, from which
all of the polyhedra are derived, is just equal to 2.

One can identify other topological parameters, in addition to the primary
ones of V, E , and F that can be derived from these primary parameters, and that
furnish additional useful information. Therefore, one can identify the polygonality,
n, of the various polyhedra, that is defined as the averaged number of sides of the
polygonal faces in the polyhedron considered. This is defined mathematically as

n = 2E

F
, (2)

and because each edge is shared by two faces in all of the polyhedra, this rela-
tionship is rigorous for them. In a similar way, one can identify a characteristic
connectivity, p, of the polyhedra, that is defined as the averaged number of edges
(or sides) meeting at each polygonal vertex of a given polyhedron. In analogy to
n, the value of the connectivity is given

p = 2E

V
, (3)

and because each edge terminates at two vertices in each and every polyhedron,
this relationship is rigorous over all of them as well.

The German mathematician, Schlaefli, pointed out these definitions in the
19th century [3–16]. The significance of these so-called Schlaefli symbols (n, p),
the ordered pair of numbers for each polyhedron formed from the values of the
polygonality, n, and the connectivity, p, for each of them, was stated by him
through the so-called Schlaefli relationship shown below in equation (4). This
Schlaefli relationship, can be derived from the Euler relation, shown in (1), by
simple substitution

1
n

− 1
2

+ 1
p

= 1
E

. (4)

Quite some time later, in the 1970’s, it was the crystallographer Wells who
pointed out a further significance to the Schlaefli symbols (n, p) as an ordered
pair of numbers that specified an identity and relative location for the map-
ping of all of the innumerable polyhedra in a kind of Cartesian space called
a Schlaefli space. The Schlaefli space is the space of n and p. Wells mapping
of some of the polyhedra, termed the regular polyhedra, or the Platonic solids,
which he described in his important monograph of 1977 [15], is shown below in
figure 1.

This new topological mapping of these objects, has become increasingly
important in the characterization of the various polyhedra, as their scope has
been vastly expanded by the discovery of the innumerable 3-connected fulle-
renes (n ranges between 5 and 6, while p = 3 for the various fullerenes)[17], and
the innumerable, so-called topologically irregular polyhedra [18–21] that possess



P.R. Duchowicz et al. / Molecular descriptors based on Euler equations for chemical graphs 195

Figure 1. Partial topology map of the polyhedra and 2D regular structures.

more than one type of polygonal vertex, and simultaneously more than one type
of polygonal face. This newly discovered class of polyhedra have been called the
Wellsean polyhedra by Bucknum et al. [22] as the name comes as an extension of
the concept and terms for the semi-regular Archimedean and Catalan polyhedra,
in which, respectively, the polygonality, n, and the connectivity, p, is fractional or
irregular in the Schlaefli symbol (n, p).

In 1997, Bucknum et al., extended this Schlaefli space to include the
three-dimensional structures [23]. As Wells had already abundantly implied in
his work, [15] the Schlaefli symbols (n, p) could be identified for the two-dimen-
sional (2D) and three-dimensional (3D) periodic tessellations, by the identifica-
tion of the corresponding Wells point symbol. The Wells point symbol was an
encoding developed by him for individual structures, that included a compact
and rigorous summary of the constituent connectivities of a structure, in their
various fundamental polygonal circuitries, according to the proper stoichiometry
or ratio of connectivities in the structure. A generic example of a Wells point
symbol for a binary structure would be (Aa)x (Bb)y , where the exponents iden-
tify the vertices as being “a” and “b” connected and the bases “A” and “B” are
the constituent sizes of the polygonal circuits, about the a-connected and b-con-
nected vertices, respectively, within the structure. Finally, the subscripts “x” and
“y” specify the relative stoichiometry of the structure with there being “x/y” a-
connected vertices for every b-connected vertex [22].

Therefore, with the identification of the various n-sided polygonal circuits
in a structure, about the constituent p-connected vertices, and the specification
of their stoichiometry, it thus becomes possible to calculate the corresponding
Schlaefli symbols (n, p) for any arbitrary polyhedron or 2D or 3D structure, as
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Figure 2. Complete topology map for the regular structures.

has been shown previously by the authors [22]. Although, strictly speaking, the
Schlaefli symbols (n, p) for the 2D or 3D periodic tessellations do not follow any
simple Schlaefli-like relation, like that shown in equation (2) for the polyhedra,
they nonetheless are useful for identifying the position and relative location of
various structures in an expanded Schlaefli space as shown in figure 2.

In 2005, Bucknum et al., showed that the ratio n/p, the so-called topologi-
cal form index for structures, could be used to correlate the elementary polyg-
onal circuit area of the polyhedra and the 2D and 3D tessellations with each
other through a simple quadratic equation in n/p [24]. It is not clear whether
the Wells’ conjecture, developed out of this modeling work, implies that there
might be an analog of the Schlaefli relation for the polyhedra, as shown in equa-
tion (2), existing out there for the various 2D and 3D structures in terms of their
Schlaefli symbols (n, p).

In the present communication, we extend these ideas based upon the use
of an Euler relation and corresponding Schlaefli relation for the polyhedra, to
that of the simple graphs as outlined, in this instance for chemical graphs, by
their structural formulae. We treat as an important test case for the proposed
concepts, polyaromatic hydrocarbons (PAH’s) as chemical graphs, as these are
potentially the simplest case and involve no weighting scheme for heteroatoms,
and so they are an important test case for the model. The validity of the pro-
posed scheme is judged on the basis of the QSPR-QSAR theory, where the reli-
ability of the analogous topological quantities V, E, F, n and p, as identified in
the preceding discussion for the polyhedra and 2D and 3D structures, which
can be transferred as rigorous definitions to the various chemical graphs, can be
assessed by the goodness of fit they provide to various properties of PAH such
as BP, log(Kow), and RI.
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2. Graph theory and molecules

In this section we introduce the analogous Equations involving the topo-
logical parameters V, E, F, n and p for graphs. The Euler relation for graphs is
given in equation (5):

V − E + F = 1. (5)

This relationship is entirely analogous to that for the polyhedra, shown as
equation (1), only the characteristic for the polyhedra is 2, while that for the
graphs is 1. The explanation for this difference is that in moving from the poly-
hedra to the graphs, one is, in fact, removing a single face from the polyhedra
(the so-called infinite bounded face) to generate the corresponding graph. There-
fore, the quantity in equation (1) identified as the number of faces, F , is reduced
by 1, and so the right-hand side of equation (1) is reduced by 1 as well, to get
the result in equation (5) for the graphs.

One can see that just as in the polyhedra, in the graphs, one can identify
V, E , and F as descriptors that characterize the graph. For a typical hydrocar-
bon like benzene, as shown on the left in figure 3, one can polygonalize the
chemical graph, as shown on the right in figure 3, to generate the correspond-
ing chemical graph with the indicated values of V = 12, E = 18, and F = 7. In
a more general illustration of the polygonalization process, shown in figure 4, an
aufbau diagram of the building up of Buckminsterfullerene from its progenitors
is described with a connection halo drawn around each member in the sequence,
see ref. [25] for more details.

This polygonalization procedure has therefore been described previously for
some chemical graphs by Bucknum et al. [25], but in their earlier paper on chem-
ical graphs, Bucknum et al. identify different descriptors for the graphs than
are described here with the use of the Euler equations for graphs. In particular,
Bucknum et al. identify a characteristic value of n as an average over the poly-
gon sizes inscribed within the so-called “connection halo” about the molecular
structure, like that shown in figure 3. So, in the benzene molecule for example,

Figure 3. Polygonalization of the benzene moiety.
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Figure 4. Aufbau molecular structures for icosahedral fullerene with connection halos drawn
around each member.

the parameter n is identified as n = 4.2814, which is just the average over the
polygon sizes within the connection halo in benzene. Unfortunately, this value
of n, that will be identified as npolygon hereafter, is not equal to a simple expres-
sion like the ordinary value of n for the graphs constructed from a ratio of the
number of edges in the graph, E , to the number of faces in the graph, F . In
stark contrast, in the polyhedra we have the relation, npolygon = n, for every
polyhedron. Likewise, in the earlier paper on chemical graphs by Bucknum et al.,
they identify a connectivity, p, as equal to the average over the chemical valences
in the chemical graph. In this scheme the H atoms would have a connectivity
of 1 while the C atoms in aromatic chemical graphs would have a connectivity
of 3. This connectivity index is identified as pvalence hereafter, and is given as
pvalence = 2 in the benzene chemical graph shown in figure 3. But, as we will see
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below, in this paper we will describe, in addition to npolygon and pvalence, another
set of values of (n, p) based on the Euler equations, which will also be used as
descriptors in our eventual QSPR-QSAR analysis.

Turning to equation (5), we see that the Euler characteristic for graphs is 1.
This simply and elegantly means that any valid set of integers for a graph, in the
form of the triplet (V, E, F), will have that combination so specified by equa-
tion (5). Therefore, no matter how we divide up space into compartments of
a bounded figure in the form of a graph, the equality in (5) will always rigor-
ously hold. Furthermore, we can substitute the Schlaefli identities of n = 2E/F
and p = 2E/V , as given above in the polyhedron analysis in equations (2)
and (3), into equation (5) to obtain a Schlaefli relation for graphs, including
the polygonalized chemical graphs of Bucknum et al. [25], that is entirely anal-
ogous to that shown in equation (4) for the polyhedra. This Schlaefli relation
for graphs is shown in equation (6) and relates the characteristic values of (n, p)

for graphs to their corresponding number of edges, E . These edges are shown to
be inscribed within the connection halo, in the case of chemical graphs like that
shown for benzene in figure 3.

1
n

− 1
2

+ 1
p

= 1
2E

. (6)

Equation (6) is entirely rigorous for all the innumerable graphs, and their
consequent realization as chemical graphs, by inscribing a connection halo about
the periphery of any hydrocarbon molecule known, of all the various hydro-
carbons. Therefore, one simply calculates the values of (n, p) from the primary
indexes (V, E, F) according to the Schlaefli identities n = 2E/F and p =
2E/V . One can, also, separately calculate npolygon and pvalence for these struc-
tures, as we have done in this paper, to get a less mathematically rigorous set
of descriptors for chemical graphs, if they are perhaps more chemically intui-
tive. The mathematical basis for the new set of molecular descriptors labeled
as V, E, F, n and p for chemical graphs, as described in this paper, is therefore
the Euler equations for graphs, shown here as equations (5) and (6). The alterna-
tive descriptors of npolygon and pvalence are simply added on here in this instance
to be consistent with the earlier contribution by Bucknum et al. with regard to
chemical graph theory [25].

3. Results and discussion

The data set for BP (◦C), log(kow), and RI of PAH was collected from
the literature [26,27]. These three properties reflect the environmental impact of
PAH, since these compounds are known to be potent pollutants resulting from
combustion processes in which carbon fuel is not completely converted to CO or
CO2, such as the burning of wood and coal, exhaust of gasoline and diesel from
combustion engines, and other sources [28].
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Table 1 displays the numerical values of the seven molecular descriptors
discussed previously: n, p, npolygon, pvalence, E, F, V . The first thing that can be
noted is that the new descriptors are degenerate, having the same values for vari-
ous PAH isomers of the same size, i.e. E = 36 for anthracene and phenanthrene.
This will probably cause the same numerical prediction of the property for any
two isomers considered.

When modeling 37 BP the best relationship found, in terms of the smallest
value of the standard deviation for the model (S), leads to the following statistics:

BP = −712.206 + 301.860 · pvalence + 10.809 · E

N = 37, R = 0.9941, S = 12.980 ◦C, F = 1432.679 (7)

Rloo = 0.9929, Sloo = 13.667 ◦C.

As can be seen from equation (7), the relationship has good predictive abil-
ity in the homologous set, according to the “leave-one-out cross validation” (loo)
parameters, and this trend is also manifested in the predictions of the model,
which are shown in table 2. Among the 37 chemicals, there is only one outlier
of the model exceeding 2S: compound indeno[1,2,3-cd]fluoranthene.

The present subset of descriptors was also able to explain 26 octanol–water
partition coefficients of the PAH’s, given as log(kow), leading to the following
equations which have no-outliers exceeding 2S

log(Kow) = −7.812 + 1.523 · n + 0.113 · E

N = 26, R = 0.9884, S = 0.198, F = 487.648 (8)

Rloo = 0.9850, Sloo = 0.215.

This relationship again performed well in the prediction stage and the fitted
values are presented in table 3.

For the case of 47 chromatographic retention indexes, given as RI, the
model found is

RI = −8.289 + 1.500 · n + 0.085 · E

N = 47, R = 0.9366, S = 0.333, F = 157.279 (9)

Rloo = 0.9307, Sloo = 0.337,

having statistics that are slightly worse than the other property correlations,
but also enabling us to establish a parallelism between the structure and the
property (see table 4). Equation (9) has three outliers: dibenzo[c,g]phenanthrene,
dibenzo[b,def]chrysene, and naphtho[2,1,8-qra] naphthacene. The predictions
achieved with the three models are also represented graphically in figures 5–7.

From the above models it can be concluded that the most important molec-
ular descriptor is always E , the number of edges in the constituent, polygonalized
molecular structures, i.e. the chemical graphs, since it works better than the other



P.R. Duchowicz et al. / Molecular descriptors based on Euler equations for chemical graphs 201

Table 1
Numerical values for the new Euler-based molecular descriptors proposed in the present study.

Name n p npolygon pvalence E F V

Naphthalene 5.400 3.000 3.400 2.111 27.000 10.000 18.000
Anthracene 5.538 3.000 4.769 2.167 36.000 13.000 24.000
Phenanthrene 5.538 3.000 4.769 2.167 36.000 13.000 24.000
Naphthacene 5.625 3.000 4.875 2.200 45.000 16.000 30.000
Benz[a]anthracene 5.625 3.000 4.875 2.200 45.000 16.000 30.000
Chrysene 5.625 3.000 4.875 2.200 45.000 16.000 30.000
Triphenylene 5.625 3.000 4.875 2.200 45.000 16.000 30.000
Pyrene 5.571 3.000 4.857 2.231 39.000 14.000 26.000
Benzo[c]phenanthrene 5.625 3.000 4.875 2.200 45.000 16.000 30.000
Perylene 5.647 3.000 4.941 2.250 48.000 17.000 32.000
Benzo[a]pyrene 5.647 3.000 4.941 2.250 48.000 17.000 32.000
Benzo[e]pyrene 5.647 3.000 4.941 2.250 48.000 17.000 32.000
Picene 5.684 3.000 4.947 2.222 54.000 19.000 36.000
Pentaphene 5.684 3.000 4.947 2.222 54.000 19.000 36.000
Benzo[b]chrysene 5.684 3.000 4.947 2.222 54.000 19.000 36.000
Dibenz[a,h]anthracene 5.684 3.000 4.947 2.222 54.000 19.000 36.000
Dibenz[a,j]anthracene 5.684 3.000 4.947 2.222 54.000 19.000 36.000
Benzo[b]triphenylene 5.684 3.000 4.947 2.222 54.000 19.000 36.000
Benzo[c]chrysene 5.684 3.000 4.947 2.222 54.000 19.000 36.000
Pentacene 5.684 3.000 4.947 2.222 54.000 19.000 36.000
Dibenzo[c,g]
phenanthrene 5.684 3.000 4.947 2.222 54.000 19.000 36.000
Benzo[a]naphthacene 5.684 3.000 4.947 2.222 54.000 19.000 36.000
Dibenzo[b,def]chrysene 5.700 3.000 5.000 2.263 57.000 20.000 38.000
Dibenzo[def,mno]
chrysene 5.667 3.000 5.000 2.294 51.000 18.000 34.000
Dibenzo[a,j]naphthacene 5.727 3.000 5.000 2.238 63.000 22.000 42.000
Dibenzo[a,l]naphthacene 5.727 3.000 5.000 2.238 63.000 22.000 42.000
Dibenzo[a,c]
naphthacene 5.727 3.000 5.000 2.238 63.000 22.000 42.000
Dibenzo[e,l]naphthacene 5.700 3.000 5.000 2.263 57.000 20.000 38.000
Dibenzo[de,gr]
naphthacene 5.700 3.000 5.000 2.263 57.000 20.000 38.000
Dibenzo[g,p]chrysene 5.727 3.000 5.000 2.238 63.000 22.000 42.000
Benzo[c]picene 5.727 3.000 5.000 2.238 63.000 22.000 42.000
Benzo[ghi]perylene 5.667 3.000 5.000 2.294 51.000 18.000 34.000
Dibenzo[b,k]chrysene 5.727 3.000 5.000 2.238 63.000 22.000 42.000
Dibenzo[c,l]chrysene 5.727 3.000 5.000 2.238 63.000 22.000 42.000
Benzo[b]perylene 5.700 3.000 5.000 2.663 57.000 20.000 38.000
Benzo[a]perylene 5.700 3.000 5.000 2.663 57.000 20.000 38.000
Dibenzo[de,mn]
naphthacene 5.700 3.000 5.000 2.663 57.000 20.000 38.000
Naphtho[2,3-g]chrysene 5.727 3.000 5.000 2.238 63.000 22.000 2.000
Benzo[h]pentaphene 5.727 3.000 5.000 2.238 63.000 22.000 42.000
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Table 1
(Continued)

Name n p npolygon pvalence E F V

Benzo[a]pentacene 5.727 3.000 5.000 2.238 63.000 22.000 42.000
Coronene 5.684 3.000 5.053 2.333 54.000 19.000 36.000
Naphtho[1,2,3,4-def]
chrysene 5.700 3.000 5.000 2.263 57.000 20.000 38.000
Dibenzo[def,p]chrysene 5.700 3.000 5.000 2.263 57.000 20.000 38.000
Benzo[rst]pentaphene 5.700 3.000 5.000 2.263 57.000 20.000 38.000
Benzo[g]chrysene 5.684 3.000 4.947 2.222 54.000 19.000 36.000
2,3:5,6-Dibenzo
phenanthrene 5.684 3.000 4.947 2.222 54.000 19.000 36.000
Naphtho[2,1,8-qra]
naphthacene 5.700 3.000 5.000 2.263 57.000 20.000 38.000
Dibenz[a,e]aceantrylene 5.700 3.000 5.000 2.263 57.000 20.000 38.000
Acenaphthylene 5.455 3.000 4.727 2.200 30.000 11.000 20.000
Dibenzo[a,k]fluoranth-
ene

5.700 3.000 5.000 2.263 57.000 20.000 38.000

Naphtho[2,3-k]
fluoranthene 5.700 3.000 5.000 2.263 57.000 20.000 38.000
Fluoranthene 5.571 3.000 4.857 2.231 39.000 14.000 26.000
Dibenzo[k,mno]
fluoranthene 5.667 3.000 5.000 2.294 51.000 18.000 34.000
1,2-Dihydroacenaphthyl-
ene

5.455 3.000 4.727 2.200 30.000 11.000 20.000

9H-fluorene 5.500 3.000 4.417 2.182 33.000 12.000 22.000
Benzo[b]fluorene 5.600 3.000 4.867 2.143 42.000 15.000 28.000
Benzo[c]fluorene 5.600 3.000 4.867 2.143 42.000 15.000 28.000
Benzo[ghi]fluoranthene 5.600 3.000 4.933 2.286 42.000 15.000 28.000
Benzo[a]aceanthrylene 5.647 3.000 4.941 2.250 48.000 17.000 32.000
Indeno[1,2,3-cd]pyrene 5.667 3.000 5.000 2.294 51.000 18.000 34.000
Indeno[1,2,3-cd]
fluoranthene 5.684 3.000 5.053 2.333 54.000 19.000 36.000
Cyclopenta[cd]pyrene 5.600 3.000 4.933 2.286 42.000 15.000 28.000
Benzo[j]fluoranthene 5.647 3.000 4.941 2.250 48.000 17.000 32.000
Benzo[k]fluoranthene 5.647 3.000 4.941 2.250 48.000 17.000 32.000
Benzo[a]fluorene 5.500 3.034 4.750 2.207 44.000 16.000 29.000
Dibenz[e,k]
acephenanthrylene 5.700 3.000 5.000 2.263 57.000 20.000 38.000
Benzo[b]fluoranthene 5.647 3.000 4.941 2.250 48.000 17.000 32.000
Benzene 5.143 3.000 4.286 2.000 18.000 7.000 12.000
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Table 2
Observed and predicted BP (◦C) for 37 polyaromatic hydrocarbons (PAH’s) according to the

Euler-based scheme.

No. Name BP exp. BP pred. Diff.a

1 Naphthalene 218 216.4 1.55
2 Anthracene 340 330.3 9.61
3 Phenanthrene 338 330.3 7.61
4 Naphthacene 440 437.6 2.37
5 Benz[a]anthracene 435 437.6 −2.62
6 Chrysene 431 437.6 −6.62
7 Triphenylene 429 437.6 −8.62
8 Pyrene 393 382 10.9
9 Perylene 497 485 11.9

10 Benzo[a]pyrene 496 485 10.9
11 Benzo[e]pyrene 493 485 7.92
12 Picene 519 541.5 −22.5
13 Dibenz[a,h]anthracene 535 541.5 −6.53
14 Dibenz[a,j]anthracene 531 541.5 −10.5
15 Benzo[b]triphenylene 535 541.5 −6.53
16 Dibenzo[b,def]chrysene 596 586.2 9.74
17 Dibenzo[def,mno]chrysene 547 530.7 16.2
18 Benzo[ghi]perylene 542 530.7 11.2
19 Coronene 590 574.9 15
20 Naphtho[1,2,3,4-def]chrysene 592 586.2 5.74
21 Dibenzo[def,p]chrysene 595 586.2 8.74
22 Benzo[rst]pentaphene 594 586.2 7.74
23 Acenaphthylene 270 275.5 −5.58
24 Fluoranthene 383 382 0.936
25 1,2-Dihydroacenaphthylene 274 275.5 −1.58
26 9H-fluorene 294 302.5 −8.52
27 Benzo[b]fluorene 398 388 9.96
28 Benzo[c]fluorene 406 388 17.9
29 Benzo[ghi]fluoranthene 422 430.9 −8.99
30 Indeno[1,2,3-cd]pyrene 534 530.7 3.25
31 Indeno[1,2,3-cd]fluoranthene 531 574.9 −43.9
32 Cyclopenta[cd]pyrene 439 430.9 8
33 Benzo[j]fluoranthene 480 485 −5.07
34 Benzo[k]fluoranthene 481 485 −4.07
35 Benzo[a]fluorene 403 428.8 −25.8
36 Benzo[b]fluoranthene 481 485 −4.07
37 Benzene 80.1 85.8 −5.7

aDiff.: Difference experimental-predicted property.
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Table 3
Observed and predicted log(kow) for 26 polyaromatic hydrocarbons (PAH’s) according to the

Euler-based scheme.

N Name log(kow) exp. log(kow) pred. Diff.

1 Naphthalene 3.33 3.45 −0.123
2 Anthracene 4.54 4.67 −0.136
3 Phenanthrene 4.55 4.67 −0.126
4 Naphthacene 5.96 5.82 0.136
5 Benz[a]anthracene 5.91 5.82 0.0861
6 Chrysene 5.84 5.82 0.0161
7 Triphenylene 5.45 5.82 −0.373
8 Pyrene 5.14 5.06 0.0749
9 Benzo[c]phenanthrene 5.84 5.82 0.0161

10 Perylene 6.3 6.19 0.103
11 Benzo[a]pyrene 6.3 6.19 0.103
12 Dibenz[a,h]anthracene 6.75 6.93 −0.181
13 Benzo[b]triphenylene 7.19 6.93 0.258
14 Pentacene 7.19 6.93 0.258
15 Benzo[a]naphthacene 6.81 6.93 −0.121
16 Benzo[ghi]perylene 6.87 6.56 0.304
17 Coronene 6.75 6.93 −0.181
18 Acenaphthylene 4 3.87 0.126
19 Fluoranthene 5.22 5.06 0.154
20 1,2-Dihydroacenaphthylene 3.92 3.87 0.0467
21 9H-fluorene 4.18 4.28 −0.1
22 Benzo[b]fluorene 5.75 5.44 0.302
23 Benzo[k]fluoranthene 6 6.19 −0.196
24 Benzo[a]fluorene 5.4 5.52 −0.127
25 Benzo[b]fluoranthene 5.8 6.19 −0.396
26 Benzene 2.13 2.05 0.0739

six descriptors studied for any of the three physicochemical properties considered
in the QSPR-QSAR analysis. This fact can be explained in terms of E being a
composite of (n, p) as referenced in the Schlaefli relation, thus providing a global
index of the structural content of both descriptors.

The seven new variables introduced here obey many desired attributes for
molecular descriptor design [29,30]; being able to correlate with at least one
property, change with size and molecular ramification, being easy to compute,
having a direct structural interpretation, being linearly independent of other de-
scriptors, etc. The fact that these descriptors include degeneration for isomeric
structures can be surmounted if combining such definitions of molecular descrip-
tors with other more elaborated variables, such as geometrical or electronic ones
derived from a quantum chemical calculation.
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Table 4
Observed and predicted RI for 47 polyaromatic hydrocarbons (PAH’s) according to the Euler-based

scheme.

No. Name RI exp. RI pred. Diff.

1 Naphthalene 2 2.11 −0.116
2 Anthracene 3.2 3.09 0.108
3 Phenanthrene 3 3.09 −0.0915
4 Naphthacene 4.51 3.98 0.521
5 Benz[a]anthracene 4 3.98 0.0111
6 Chrysene 4.1 3.98 0.111
7 Triphenylene 3.7 3.98 −0.288
8 Pyrene 3.58 3.39 0.183
9 Benzo[c]phenanthrene 3.64 3.98 −0.348

10 Perylene 4.33 4.27 0.0521
11 Benzo[a]pyrene 4.53 4.27 0.252
12 Benzo[e]pyrene 4.28 4.27 0.00218
13 Picene 5.18 4.84 0.334
14 Pentaphene 4.67 4.84 −0.175
15 Benzo[b]chrysene 5 4.84 0.154
16 Dibenz[a,h]anthracene 4.73 4.84 −0.115
17 Dibenz[a,j]anthracene 4.56 4.84 −0.285
18 Benzo[b]triphenylene 4.4 4.84 −0.445
19 Benzo[c]chrysene 4.45 4.84 −0.395
20 Dibenzo[c,g]phenanthrene 4.07 4.84 −0.775
21 Benzo[a]naphthacene 4.99 4.84 0.144
22 Dibenzo[b,def]chrysene 6 5.12 0.875
23 Dibenzo[def,mno]chrysene 5.08 4.56 0.516
24 Dibenzo[de,gr]naphthacene 4.92 5.12 −0.204
25 Benzo[ghi]perylene 4.76 4.56 0.196
26 Benzo[b]perylene 5.04 5.12 −0.0847
27 Naphtho[1,2,3,4-def]chrysene 4.97 5.12 −0.154
28 Dibenzo[def,p]chrysene 4.89 5.12 −0.234
29 Benzo[rst]pentaphene 5.73 5.12 0.605
30 Benzo[g]chrysene 4.27 4.84 −0.575
31 2,3:5,6-Dibenzophenanthrene 4.33 4.84 −0.515
32 Naphtho[2,1,8-qra]naphthacene 5.87 5.12 0.745
33 Dibenz[a,e]aceantrylene 4.9 5.12 −0.224
34 Dibenzo[a,k]fluoranthene 4.9 5.12 −0.224
35 Fluoranthene 3.37 3.39 −0.0268
36 9H-fluorene 2.7 2.77 −0.0779
37 Benzo[b]fluorene 3.84 3.69 0.144
38 Benzo[c]fluorene 3.49 3.69 −0.205
39 Benzo[a]aceanthrylene 4.22 4.27 −0.0578
40 Indeno[1,2,3-cd]pyrene 4.84 4.56 0.276
41 Indeno[1,2,3-cd]fluoranthene 4.93 4.84 0.0847
42 Benzo[j]fluoranthene 4.24 4.27 −0.0378



206 P.R. Duchowicz et al. / Molecular descriptors based on Euler equations for chemical graphs

Table 4
(Continued)

No. Name RI exp. RI pred. Diff.

43 Benzo[k]fluoranthene 4.42 4.27 0.142
44 Benzo[a]fluorene 3.72 3.71 0.00394
45 Dibenz[e,k]acephenanthrylene 5.27 5.12 0.145
46 Benzo[b]fluoranthene 4.29 4.27 0.0121
47 Benzene 1 0.962 0.037
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Figure 5. QSAR-QSPR of boiling point data for various PAH’s according to the Euler scheme.
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Figure 6. QSPR-QSAR of octanol–water partition coefficients in various PAH’s according to the
Euler scheme.
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Figure 7. QSPR-QSAR of chromatographic retention indices in various PAH’s according to the
Euler scheme.

4. Conclusion

Although there exist a large number of molecular descriptors reported in
the literature, there still exits the need for new descriptors, because each class
of such descriptors encode some specific structural feature. The molecular de-
scriptors deduced from graph considerations using the Euler relations for graphs
as described in equations (5) and (6), can be employed to properly character-
ize physicochemical and biological activities of chemicals. In the present study,
we were able to correlate BP, log(kow), and RI with E, n, and pvalence for a
model set of PAH, achieving good predictions with solely 2-parameter models.
Although the proposed descriptors include degeneration over isomers, they can
be complemented with other types of variables to explain a given property and
surpass this problem.

It is our purpose to continue exploring the present ideas based upon a topo-
logical analysis of graphs and to apply them to more sophisticated chemical graph
and polyhedral structures, such as fullerenes, helicenes, etc. exhibiting different
type of physicochemical properties of interest. The introduction of heteroatoms
and multiple bonds in the definitions of the present descriptors should also be
addressed, and derived QSPR-QSAR results will be published soon elsewhere.
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