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Abstract This paper focuses on the specific growth rate

estimation problem in a Polyhydroxybutyrate bioplastic

production process by industrial fermentation. The kinetics

of the process are unknown and there are uncertainties in

the model parameters and inputs. During the first hours of

the growth phase of the process, biomass concentration can

be measured online by an optical density sensor, but as cell

density increases this method becomes ineffective and

biomass measurement is lost. An asymptotic observer is

developed to estimate the growth rate for the case without

biomass measurement based on corrections made by a pH

control loop. Furthermore, an exponential observer based

on the biomass measurement is developed to estimate the

growth rate during the first hours, which gives the initial

condition to the asymptotic observer. Error bounds and

robustness to uncertainties in the models and in the inputs

are found. The estimation is independent of the kinetic

models of the microorganism. The characteristic features of

the observer are illustrated by numerical simulations and

validated by experimental results.

Keywords Bioplastics � Observer � Estimation � PHB �
Software sensor

Introduction

Plastic materials have become an indispensable component

of modern industry and society, being widely used in dif-

ferent application areas. As an alternative to synthetic

plastics, research on new materials such as biopolymers

and new fabrication methods is being done [20]. One of

these research lines aims to use microorganisms to produce

easily degradable materials, requiring less energy for its

production and generating less waste and pollution. Par-

ticularly, research is being done in the field of polyhy-

droxyalkanoates (also known as PHA), which are

polyesters that can be produced by industrial fermentation.

Polyhydroxybutyrate (PHB) is a PHA that can be produced

by bacterias such as Cupriavidus necator (previously

known as Alcaligenes eutrophus and Ralstonia eutropha)

and is fully biodegradable and biocompatible. This kind of

material offers attractive characteristics for thermopro-

cessing applications [4, 26].

Production of PHB can be accomplished in a two-phase

fed-batch process utilizing the microorganism Cupriavidus

necator [22, 24], which has specific growth and PHB

production rates inhibited by the excess of nitrogen and

carbon sources [11, 17, 24]. The first phase of the process,

or growth phase, involves producing a large amount of

cells, while the second phase, or production phase, involves

generating a large amount of PHB while keeping the total

amount of cells in the bioreactor constant. Since PHB

production is heavily inhibited by nitrogen, the PHB pro-

duction phase is done under nitrogen starvation conditions,

which at the same time prevent cell proliferation. The main
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goal of each phase is achieving the highest productivity,

which means maximizing the growth and production rate,

respectively.

Although at a laboratory scale, the optimal pure sub-

strate concentrations can be identified from experimental

data, uncertainties in the models and variability over time

may lead to suboptimal operation and, moreover, to pro-

cess instability. A solution to this problem is the imple-

mentation of growth and production rate closed-loop

controllers. However, this requires online information of

the process states, particularly about the growth and pro-

duction rates. As these variables cannot be measured by

any existing sensor, software sensors must be designed to

estimate them from the measurement of other variables.

Previous studies on PHB production have proposed state

observers to estimate some variables of the process and to

adjust kinetic parameters online. Many works propose

observers to estimate biomass, substrate and PHB con-

centration based on online measurement of some substrate

concentration [7, 13, 25]. Other works use biomass online

measurements to obtain product and substrate concentra-

tions and growth rate estimations [6]. In [19] lactate and

glucose consumption rates are estimated by measuring

their concentrations. In [14] an extended Kalman filter is

used to estimate many process concentrations based on the

measurement of influent and outgoing oxygen and carbon

dioxide, dissolved oxygen and cell concentration. A similar

approach is taken in [2] with asymptotic observers. Despite

the many attractive characteristics of these observers, such

as tunable convergence speed or high noise rejection, its

applicability requires instruments which are not usually

available in a typical laboratory. Specific and expensive

sensors are required and even if available at laboratory

scale they are not economically viable at an industrial

scale.

The objective of this work is to develop an unknown

input observer to estimate the specific growth rate in the

growth phase of the PHB production process using

instruments available in a standard laboratory. A two-

observer switched scheme, specifically designed to be used

in the growth phase of PHB processes with high cell

densities is proposed. For the first hours of the process,

when cell density is low and can be measured, an expo-

nential observer is used to obtain an accurate growth rate

estimation in a short time. Then, when cell density has

grown to a level where its measure is no longer available,

an asymptotic observer is used, initialized with the last

estimations made by the exponential observer. The

asymptotic observer is based on the nitrogen measurement

obtained from a pH control loop. Introducing the asymp-

totic observer in the scheme provides great robustness

against uncertainties in the feeding inputs, yield parameters

and nitrogen concentration, as well as independence from

specific rate models; all achieved without the use of bio-

mass measurement, which makes it suitable for high cell

density cultures.

Materials and methods

Mathematical model

The dynamical model for Cupriavidus necator growth and

PHB production can be obtained from mass balances as

shown in Eqs. (1)–(4) [21]. The nomenclature for the

model is depicted in Table 1.

Since PHB is an intracellular product, the total biomass

is composed both of PHB and active biomass. In this work,

the term active biomass refers to everything in the cells that

is not PHB (organelles, membrane, cytoplasm), which is

sometimes referred to as residual biomass. In the mathe-

matical model (1)–(4), PHB concentration and active bio-

mass are considered as two separate and independent

variables [17, 18, 21] 1.

Table 1 Nomenclature of the variables and parameters used in the

model

Name Description Units

X Residual biomass concentration [g/l]

S Carbon source concentration [g/l]

N Nitrogen source concentration [g/l]

P PHB concentration [g/l]

lxs Carbon-based specific growth rate [h�1]

lxp PHB-based specific growth rate [h�1]

lps PHB specific production rate [h�1]

yxs Carbon to biomass yield [g/g]

yxp PHB to biomass yield [g/g]

yps Carbon to PHB yield [g/g]

yxn Nitrogen to biomass yield [g/g]

Fs Carbon source feeding flow rate [l/h]

Fn Nitrogen source feeding flow rate [l/h]

V Liquid medium volume [l]

Ds Carbon source feeding dilution [h�1]

Dn Nitrogen source feeding dilution [h�1]

D Total dilution (Ds þ Dn) [h�1]

Sin Feeding carbon source concentration [g/l]

Nin Feeding nitrogen source concentration [g/l]

g Feeding nitrogen source correction factor

1 Some other works use two-compartment models and define PHB

and active biomass as fractions of the total biomass. To keep

coherence with previous works [21, 22] and simplify the development

of the observer algorithms this kind of definition is not used here.
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_X ¼ ðlxs þ lxp � DÞX ð1Þ

_S ¼ � lxs

yxs

þ
lps

yps

� �
X � DSþ DsSin ð2Þ

_N ¼ �
lxs þ lxp

yxn

X � DN þ gDnNin ð3Þ

_P ¼ lps �
lxp

yxp

� �
X � DP ð4Þ

The state variables of the process are active or residual

biomass, carbon source, nitrogen source and PHB con-

centrations, X, S, N and P, respectively. The yields and the

feeding carbon and nitrogen concentrations are assumed to

be constant. The control inputs to the system are the carbon

and nitrogen feeding dilutions defined as Ds ¼
Fs

V
and

Dn ¼
Fn

V
, where Fs and Fn are the carbon source and

nitrogen source input flow rates, and V is the liquid med-

ium volume.

The specific growth rates lxs and lxp account for growth

based on the consumption of the feeding carbon source

(glucose or glycerol) and PHB, respectively; their sum lx is

the total growth rate. The rate lps is the PHB specific

production rate based on feeding carbon source consump-

tion (which is the only production rate since it is a non-

growth associated production). The values of these rates

depend on the process concentrations. Several works have

been carried out to model their relation: it has been proved

that they follow Haldane-like kinetics [28] with an inhib-

iting effect due to both carbon and nitrogen excess [17, 24].

Other factors can be added to consider the maximal bio-

mass concentration [23] and maximal PHB content per cell

[11, 17].

Available measurements and control

The fed-batch experiments displayed in this work were

performed at the Flemish Institute for Technological

Research (VITO), Belgium. The laboratory setup includes a

3-l bioreactor (Applikon Biotechnology, the Netherlands),

an EZ-control system (Applikon Biotechnology, the

Netherlands) for data acquisition and online monitoring

and control of the measured variables.

The variables measured online are pH (AppliSens, The

Netherlands, model Z001023551) and optical density OD

(Optek-Danulat GmbH, Germany, model ASD19-N-EB-

01). The biomass measurement given by the OD sensor is

valid only until the 15th to 20th hour of the process, when

the sensor output saturates due to the high biomass con-

centration (OD = 0.6 AU approximately). Temperature and

dissolved oxygen concentration measurements are also

available. The dissolved oxygen concentration level was

regulated at 55 % of air saturation and temperature was

kept at 30 �C.

The measured bioreactor inputs are the carbon and

nitrogen source flow rates which, after numerical integra-

tion to calculate the volume, are used to determine the

dilution rates. Stirrer speed and influent air flow rate are

also measured, while outgoing gaseous oxygen and carbon

dioxide flow rates and composition are not.

A controller has been implemented in the bioreactor to

regulate pH at 6.8 [22]. Since hydrogen is released into the

liquid medium (making it more acidic) as cells multiply, a

base ammonium hydroxide (20 %NH4OH) solution is then

dosed to increase pH and compensate for the change. The

base solution is also used as nitrogen source for the process

(as ammonia NHþ4 after the ammonium hydroxide com-

bines with the protons). It has been found [22] that there is

a strong linear correlation between the nitrogen pumped

into the bioreactor to regulate the pH and the one that is

stoichiometrically needed to produce the amount of cells

accumulated. As a result, the nitrogen concentration will

remain steady as long as the pH is kept the same. Under

these conditions nitrogen concentration is approximately

constant, as the pH controller will compensate for any

change in its concentration. Based on this, an exponential

feeding law has been developed [22] to regulate the carbon

source concentration, and therefore the specific growth rate

value. The feeding law is described in Eq. (5). The amount

of carbon source that should be fed to the bioreactor is

calculated from the amount of nitrogen that has been fed to

the bioreactor, which has been used to compensate for the

consumption due to growth:

Ds ¼ g
1

yns

1

Sin

NinDn ð5Þ

To include the pumped nitrogen mass losses in gaseous

form, a factor g has been introduced to the model as can be

seen in the last term of Eq. (3). The nitrogen mass losses

are also accounted in the carbon feeding calculation, as can

be noticed by the addition of the g factor in Eq. (5). The

magnitude of g has been empirically determined, but it

shows a considerable degree of variation from one exper-

iment to another.

Specific growth rate observer

In this section, the two-observer switched scheme is

explained. First, an exponential observer is developed for

the first hours of the growth phase, when there is a viable

online biomass measurement. Second, an asymptotic

observer is developed for the remaining part of the growth
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phase, when the biomass measurement is lost. The goal of

the exponential observer is to provide a fast convergence of

the estimate to the real value. Then, when the biomass

concentration reaches a critical value, the asymptotic

observer is started with the last estimate from the expo-

nential. The exponential observer depicted in this work is

an example of how fast convergence with biomass mea-

surement can be executed, and there are extensive pub-

lished examples of this case in the bibliography [6, 14].

Other approaches to the same problem include first- and

second-order sliding mode observers [9, 10]. The main

contribution of this work is the development and design of

the asymptotic observer for the growth phase of high cell

density PHB processes.

Motivation and background

Standard control methods of the growth rate in fed-batch

reactors aim to regulate the substrate concentrations at a

fixed value. Such is the case for exponential feeding or

substrate feedback control. These kinds of controllers are

strongly dependent on the kinetic model, resulting in high

sensitivity to model uncertainties and external distur-

bances. In processes where high substrate concentrations

inhibit growth, any deviation from the optimal substrate

concentration, caused by changes in the microorganism or

errors in the model, will lead the process to operate at

growth rates lower than optimal [3].

A solution to this problem is to directly apply feedback

control on the growth rates. For instance a proportional law

can be used:

DðtÞ ¼ D0ðtÞ þ kðl� lrefÞ ð6Þ

where DðtÞ is the dilution, D0ðtÞ is a predefined dilution

(for example an exponential feeding), k is a design gain, l
is the specific growth rate and lref is the set-point for the

growth rate.2 More complex control laws include adaptive

schemes such as [6, 8, 27] and extremum seeking control

[7, 15, 16].

To apply this kind of feedback control, online infor-

mation of the growth rate is needed. Since this variable

cannot be measured by any existing sensor, state observers

must be designed to estimate it from the measurement of

other variables of the process. In addition, even if feedback

control is not used, the capability of estimating variables

such as the specific growth rates allows for a better mon-

itoring of the process, which is useful to prevent undesired

metabolic paths, overfed bioreactors or for fault detection.

As depicted in Fig. 1, a state observer is a system which

estimates state variables or unmeasured outputs of a

process based on the process inputs, measured outputs and

a model of the process. The basic observer structure con-

sists of a model of the process being fed by the process

inputs, which ideally would have the same outputs and

state variables as the process (open loop estimation). As

models have uncertainties and errors which degrade open

loop estimations, it is required to feedback the estimation

error, defined as the difference between the outputs and

their estimations [1, 5, 12]. The main design requirement is

convergence of the estimated variables to the real ones.

Asymptotic observer

As explained before, despite the availability of an optical

density sensor, the biomass measurement is not always

valid due to sensor saturation when cell concentration is

too high. This shortcoming is inherent to the measurement

method, which loses sensitivity as biomass increases. In

this section, an asymptotic observer [2] is stated for the

case without biomass measurement. Even though the

observer convergence cannot be made as fast as in the case

of an exponential or high-gain observer, the estimation

error can be bounded to its initial condition.

In the field of bioprocesses, asymptotic observers are

generally used to estimate substrates, biomass and product

concentrations. Their main strength is that there is no need

to know the model of the specific growth rates to perform

the estimations. The price is that the convergence speed

cannot be manually adjusted and depends on the dilution

rate. For that reason, a persistent dilution is needed to

stabilize the estimate.

To formulate the proposed growth rate observer, two

steps are required. First, an auxiliary variable z is defined

and estimated. Then, the growth rate estimation is obtained

using the estimated auxiliary variable ẑ. The auxiliary

variable z is defined by the following change of variables

[2, 12]:

z ¼ X

yxn

þ N ð7Þ

Fig. 1 Observer scheme, u: process inputs; x: unmeasured variables;

y: measured variables; x̂, ŷ: estimated variables

2 Note that when applying control laws like (6) the kinetic model is

not required, thus resulting in a more robust control.
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This change of coordinate is a tool used to hide the kinetics

of the process. It should be noticed that by definition, z is

always positive.

The dynamics of the new variable can be obtained as:

_z ¼
_X

yxn

þ _N ð8Þ

_z ¼ �Dzþ DnNing ð9Þ

Equation (9) is obtained by replacing (1) and (3) in (8).

Then, from the previous change of variables the following

observer equation can be stated to estimate z:

_̂z ¼ �Dẑþ DnNing ð10Þ

It can be observed that both the steady state values of z and

ẑ are:

lim
t!1

z ¼ lim
t!1

ẑ ¼ Dn

D
Ning ð11Þ

Defining the estimation error as ~z ¼ z� ẑ, it can be shown

that the convergence error equation of this observer is:

_~z ¼ �D~z ð12Þ

Equation (12) has a single eigenvalue k ¼ �D and its

solution is an exponential with time constant equal to D�1.

From the fact that the dilution D is always positive, it

follows that the exponential is stable, which means that the

error converges to zero exponentially. From this result, it

can be concluded that a large dilution rate is needed for a

fast convergence.

In addition, from the estimation of ẑ a biomass estima-

tion can be obtained:

x̂ ¼ ðẑ� NÞyxn ð13Þ

This estimation can be used for monitoring, but it is not the

most reliable one because it is easily affected by errors in

the parameter yxn or changes in the expected nitrogen

concentration.

Up to this point, an asymptotic observer has been

developed to estimate the auxiliary variable z. The next

step is to obtain the growth rate estimation. From Eq. (3), it

can be seen that:

lxX ¼ ð�DN þ DnNing� _NÞ � yxn ð14Þ

Then, the growth rate lx can be calculated from (14) and

(7):

lx ¼
DnNing� DN � _N

z� N
ð15Þ

The following growth rate observer equation is, therefore,

proposed:

l̂x ¼
DnNing� DN

ẑ� N
ð16Þ

Finally, the error for the growth rate estimation can be

calculated as follows:

~lx ¼ lx � l̂x ¼
DnNing� DN � _N

z� N
� DnNing� DN

ẑ� N

ð17Þ

Equation (11) states that both z and ẑ have the same limit,

thus it is straightforward to conclude that the limit for the

growth rate estimation error in Eq. (17) is:

lim
t!1

~lx ¼ �
_N

z� N
¼ �

_N

X=yxn

ð18Þ

As was explained in Sect. 2.2, the control loop that keeps

the pH constant also regulates the nitrogen concentration,

which means that _N ¼ 0 and so the error converges to zero.

However, even if N is not regulated perfectly, this error

will be small because the derivative _N cannot be large (this

would imply an abrupt change of N). In addition, the

dividing factor z� N or X=yxn represents the amount of

nitrogen that was used to produce active biomass, which

increases as the process develops.

To conclude the development of the asymptotic obser-

ver, uncertainties in the parameters yxn and g are analyzed.

When including the uncertain parameters, Eqs. (9), (10)

and (12) change to:

_z ¼ �Dzþ DnNing� _yxn

X

y2
xn

ð19Þ

_̂z ¼ �Dẑþ DnNinĝ ð20Þ

_~z ¼ �D~zþ DnNin ~g� _yxn

X

y2
xn

ð21Þ

where ŷxn and ĝ are the estimated parameters, and ~g is the

error in the nitrogen coefficient. From this, the error of the

auxiliary variable z would not converge to zero:

lim
t!1

~z ¼ DnNin

D
~g� _yxn

X

y2
xnD

ð22Þ

Then, Eq. (16) is rewritten as:

l̂x ¼
DnNinĝ� DN̂

ẑ� N̂
ð23Þ

where N̂ is an estimation of the unmeasurable nitrogen

concentration; we take its value directly as the optimal

nitrogen concentration, thus the estimation error is the

deviation of the real concentration from the optimal value.

The error for the growth rate estimation can be calculated

as follows:
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~lx ¼ lx � l̂x ¼
DnNing� DN � _N

z� N
� DnNinĝ� DN̂

ẑ� N̂

ð24Þ

~lx ¼ DnNin

g
z
� ĝ

ẑ

� �
þ

DnNing
z

N � DN � _N

z� N

0
B@

1
CA

�

DnNinĝ
ẑ

N̂ � DN̂

ẑ� N̂

0
B@

1
CA ð25Þ

From Eqs. (19) and (20), the limits for
g
z

and
ĝ
ẑ

can be

obtained:

lim
t!1

g
z
¼ D

DnNin

1

1� c

� �
c ¼ _yxnX

y2
xngDnNin

ð26Þ

lim
t!1

ĝ
ẑ
¼ D

DnNin

ð27Þ

Then, the limit for the error in Eq. (25) is:

lim
t!1

~lx ¼
Dc

1� c
1þ N

z� N

� �
�

_N

z� N
ð28Þ

From Eq. (28), it can be seen that although the uncertain

parameters g and yxn affect the magnitude of the error, they are

not its cause. In fact, if the derivatives _yxn and _N are zero the

error will also be zero, no matter the value of ĝ and ŷxn,

demonstrating that the observer is robust against the uncertain

parameters. For instance, having _yxn 6¼ 0 is not a probable

situation in a controlled process because it means that the yield

is constantly changing, that could be the case of a gradual

metabolic change, for example. In a more realistic case, the

yield is assumed constant, and the only error term present

would be the one that depends on _N. It should be noticed again

that as nitrogen is being regulated, its variations occur slowly

( _N is low) and that as the process develops and biomass is

produced, the variable z will increase making the error smal-

ler. Finally, it should be noticed that the production rate lps

does not appear in any of the terms of the observers, thus if

there is some PHB production in the growth phase (as indeed

occurs in practice) it will not affect the estimations.

Exponential observer for the first hours

Since there is a valid biomass measurement for the first

hours of the process, a classical exponential observer can be

proposed [1, 2, 5] to estimate lx during that period and give

a better initial condition to the asymptotic observer. The

main advantage of this kind of observer is its fast conver-

gence, since the convergence speed can be adjusted by

changing its gains. Also, the error converges exponentially

to a neighborhood of zero in finite time, and to zero if the

estimated variable remains constant.

The observer equations are the following:

_̂
X ¼ l̂x � Dð ÞX � k1ðX � X̂ÞX ð29Þ

_̂lx ¼ k2ðX � X̂ÞX ð30Þ

where X̂ and l̂x are the estimated cell concentration and the

estimated specific growth rate, respectively. Parameters k1

and k2 are the observer gains, which must be chosen to

ensure stability and fast convergence. The stability of this

observer can be analyzed on the estimation errors, being

defined as ~X ¼ X � X̂ and ~l ¼ lx � l̂x. Then, the dynam-

ics of the error can be calculated:

_~X
_~lx

� �
¼ k1X X

�k2X 0

� �
þ

~X
~lx

� �
þ 0

1

� �
_lx ð31Þ

The dynamical system (31) has eigenvalues k1 and k2 such

that:

k1 þ k2 ¼ k1X k1k2 ¼ k2X2 ð32Þ

Since X and X2 are always positive, the sign and magnitude

of the eigenvalues can be set by properly adjusting the

gains k1 and k2. To ensure that the error is stable and

converges to zero, it is sufficient to make both eigenvalues

negative. The more negative the eigenvalues are, the faster

the convergence will be. Nevertheless, the measurement

noise should be taken into account when choosing the

gains, since if they are too high it may introduce noise in

the estimation. In this work k1 ¼ k2 ¼ �X which gives

k1 ¼ �2 and k2 ¼ 1.

The choice of an exponential observer is made out of

simplicity, since this is not the main matter of this work.

Other approaches can be followed to estimate the growth

rate when there is biomass measurement, such as second-

order sliding mode observers [9, 10], which exhibit stron-

ger convergence and robustness properties.

Results

In this section, the simulation and experimental results for

the designed observers are displayed. The simulations are

aimed at depicting the general operation of the observer as

described by the equations and to analyze the effect of

different uncertainties in the lx estimation. The objective

of the experimental results is to test and validate the growth

rate observer in a real scenario.

The simulations were performed trying to imitate, as

identically as possible, the experimental conditions in the

real bioreactor; the same control laws and carbon and

nitrogen source input concentrations (Sin and Nin) were

562 Bioprocess Biosyst Eng (2015) 38:557–567
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used. The models and parameters used for the growth rates

and PHB production rate are described by Eqs. (33)–(35),

all of which have been validated experimentally [21]. The

kinetic expressions include Haldane, Monod, saturation

and inhibition factors.

lxs ¼ lmax
xs �

S

ks þ Sþ S2

kis

� N

kn þ N þ N2

kin

� 1� X

Xm

� �a� �

ð33Þ

lxp ¼ lmax
xp �

fphb

kphb þ fphb

� N

kn þ N þ N2

kin

� 1� X

Xm

� �a� �

ð34Þ

lps ¼ lmax
ps �

S

ks þ Sþ S2

kpis

� 1� fphb

fphbm

� �b
 !

� kpin

N þ kpin

ð35Þ

fphb ¼
P

X
ð36Þ

It is important to remark that these models are exclusively

used to simulate the process and are not used in the

observer equations. The estimation is independent of these

models and will converge even if the expressions for the

growth rates are different or their parameters change. The

parameters used to simulate the process and the observer

are listed in Table 2. Many of the same parameters are used

later in the experimental validation of the observer.

Simulation results

The model of the process is depicted by Eqs. (1)–(4). The

models for the specific growth and production rates are the

ones described by Eqs. (33)–(35). Both S and N were

regulated at 12 and 0.7 g/l, respectively. The switching

from the exponential observer to the asymptotic observer is

done when biomass concentration reaches 7.67 g/l = 0.6

AU.

The top graph in Fig. 2 shows the simulation results for

the specific growth rate estimation when an error of �25 %
is introduced in the input nitrogen concentration coefficient

g, which has a nominal value of gN ¼ 0:75. The dashed

black curve is the real value of lx (overlapped by the blue

curve), the solid blue curve corresponds to the estimation

when there is no error in the parameter, and the red dot-

dashed and green dashed lines correspond to the cases with

�25 % errors, respectively. The bottom graph shows the

biomass concentration and its estimations obtained from

Eq. (13), the same nomenclature for color and line pattern

is used. The switching instant from one observer to the

other is labeled as tswitch.

As soon as the process is started, it can be seen that the

exponential observer converges quickly to the real value

despite the large initial overshoot that can be observed in

the small box. When the asymptotic observer is started at

tswitch, two different situations can be observed:in the case

without error in g, the estimation remains equal to the real

value; in the cases with error in g, a difference appears in

lx at the switching point, which is mainly dominated by the

first term in Eq. (25). However, the estimation still

approaches the real value asymptotically as expected. The

slow convergence speed is caused by the low dilution rate

that is used in the simulation, mainly due to the high

concentrations of carbon source and nitrogen source (Sin

and Nin) used to feed the bioreactor. It should be also

noticed that the steady state errors in the biomass con-

centration estimation are not reflected in the growth rate

estimation, which is the variable of interest.

Figure 3 shows simulation results when there is a vari-

ation in the nitrogen to biomass yield. The yield remains

Table 2 Values of the parameters used in the simulations

Name Description Value Units

yxs Carbon to biomass yield 0:48 [g/g]

yxp PHB to biomass yield 0:88 [g/g]

yps Carbon to PHB yield 0:3 [g/g]

yxn Nitrogen to biomass yield 8:9 [g/g]

Sin Feeding carbon source 650 [g/l]

concentration

Nin Feeding nitrogen source 164 [g/l]

concentration

g Nitrogen correction factor 0:75� 25 %

lmax
xs Maximum carbon source 0:46 [h�1]

-based growth rate

lmax
xp Maximum PHB-based growth rate 0:126 [h�1]

lmax
ps Maximum PHB production rate 0:126 [h�1]

ks Kinetic parameter 1:2 [g/l]

kis Kinetic parameter 16:728 [g/l]

kn Kinetic parameter 0:254 [g/l]

kin Kinetic parameter 1:5 [g/l]

kps Kinetic parameter 4:1 [g/l]

kpis Kinetic parameter 80 [g/l]

kphb Kinetic parameter 0:148 [g/l]

kpin Kinetic parameter 0:262 [g/l]

a Kinetic parameter 5:85

b Kinetic parameter 3:85

fphbm Maximum PHB ratio 3:3 [g/g]

Xm Maximum biomass concentration 68 [g/l]
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constant until the 20th hour when it is intentionally

decreased linearly up to the 30th hour, then it remains

constant again. The top graph shows the specific growth

rate in dashed black and the estimation in solid blue, while

the middle graph shows the biomass evolution in dashed

black and the estimated value from Eq. (13) in solid blue.

The bottom graph shows the value of the yield normalized

to its nominal value.

The slope in the yield change was made steep to make

more visible the errors introduced in the growth rate esti-

mation, however, this should be considered as a pessimistic

scenario. When the yield starts changing, the estimation

starts to converge to a value different from the real one as

described by Eq. (25); however, when the yield stops

changing, the observer converges again to the real value

despite the yield being different from the initial one or the

one expected by the observer. This is in line with the fact

that the estimation error for z depends on the derivative of

the yield and not on its value (Eq. (21)).

Figure 4 shows the simulation results when the nitrogen

concentration is not regulated correctly. The top graph

shows the growth rate in dashed black and its estimation in

solid blue, while the middle graph shows the biomass

concentration in dashed black and the value corresponding

to the estimated rate in solid blue. The bottom graph shows

the nitrogen concentration in dashed black and its expected

value in solid blue.

It can be seen that when nitrogen concentration starts

decreasing, the growth rate estimation shows a small per-

turbation and separates from the real value (10th hour).

However, even though the nitrogen concentration keeps

falling, the lx estimation quickly starts converging to a

value very close to the real one. This steady state error is

described by Eq. (18). The biomass estimation error is also

very small, although it depends directly on the nitrogen

concentration error (~x ¼ ð~z� ~NÞyxn). The two reasons for

this are that ~z is zero as it is independent of the estimated

nitrogen concentration (Eq. (21)), and that the magnitude

of ~N � yxn is small compared to the cell concentration at the

end of the growth phase.

Fig. 2 lxs-Observer response for different values of g. Simulation

results
Fig. 3 lxs-Observer response for a time-varying yxn. Simulation

results

Fig. 4 lxs-Observer response for a time-varying nitrogen concentra-

tion. Simulation results
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Experimental results

In this section, experimental validation of the observer is

performed. The experimental inputs used are the carbon

source dilution rate Ds, the nitrogen source dilution rate Dn

and the optical density measurement before it saturates (for

the first 15–20 h). The switching from the exponential to

the asymptotic observer is made when biomass concen-

tration is around 7.67 g/l (0.6 AU).

As the equipment available at the laboratory setup is

only capable of driving the pumps at a fixed flow rate, a

duty cycle is used to obtain different flow rate values. In

that way, the substrates are fed into the bioreactor in pulses,

with several minutes of difference between doses, espe-

cially for the carbon source because of its high concen-

tration in the reservoir. To smooth the estimates, a digital

FIR filter was used to distribute each pulse over time.

Figures 5 and 7 show the growth rate observers response

for two different experiments (experiment 1 and experi-

ment 2, respectively); different values for the nitrogen

concentration coefficient g were used to make the con-

vergence of the estimation more explicit. As in the simu-

lations, three values were used, the nominal value

gN ¼ 0:75 and a �25 % variation over the nominal value

(gN � 25 %). The black curve in each graph is the lx

estimation made by the observer when g is at its nominal

value, the red and blue curves are the estimations with

variations in the coefficient of �25 %, respectively. The

graphs include in cyan color a noisy growth rate reference

curve obtained from Eq. (1) by solving it for lx and dif-

ferentiating the OD measurement. Besides being extremely

noisy, this estimation loses accuracy as the OD sensor

saturates. This explains the discrepancy between the

reference and the estimation after the switching point.

Fig. 5 Observer response for different values of g. Experimental

results. Experiment 1

Fig. 6 Process concentrations. Experimental results. Experiment 1

Fig. 7 Observer response for different values of g. Experimental

results. Experiment 2

Fig. 8 Process concentrations. Experimental results. Experiment 2
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Figures 6 and 8 show the biomass, glucose, nitrogen and

PHB concentrations for the two experiments, as well as the

OD measurement.

The first thing that can be noticed in Figs. 5 and 7 is that,

as expected from the theoretical analysis, the exponential

observer response is the same for all values of g. At the

switching point (marked as tswitch), differences appear due

to the variation of g. Although these variations have the

same percent magnitude as the error in g, they tend to

disappear asymptotically as described by Eq. (28), simi-

larly to what happened in the simulation results. Note that,

the observer shows a satisfactory performance in the pre-

sence of nitrogen variations as shown in Figs. 6 and 8.

Finally, to highlight the convergence of the exponential

observer, Figs. 9 and 10 show the response of the observer

when varying the growth rate estimation initial condition

for the same experiments shown before. As it can be seen,

in all the cases, the observer converges to the same curve

approximately 7 h after starting the process.

Conclusions and future studies

In this work state, observers were developed to estimate the

specific growth rate of a PHB production process in a real-

life scenario, by the use of biomass measurement in the

first hours of the growth phase and nitrogen variations in

the later hours of the same. Simulation examples confirmed

the convergence of the growth rate estimation despite

uncertainties in the model parameters. Experimental results

validated what was developed in the theory and predicted

by simulations.

The proposed asymptotic observer was able to accu-

rately estimate the growth rate without measuring the

biomass, which cannot be performed in this particular case

due to the high cell density. It was found that the observer

is robust against the gaseous mass loses of the nitrogen

input (correction factor g) and poor nitrogen regulation.

Furthermore, drifts in the nitrogen to biomass yield yxn

introduce just small errors that disappear after the yield

establishes at a new value. The proposed switched observer

is simple enough to be implemented with few code lines

using typical laboratory control software.

The process conditions in the PHB production phase are

different from the ones in the growth phase and the

observer is not designed to operate under those conditions.

However, as there is no growth during the PHB production

phase, there is no need to estimate the growth rate. Nev-

ertheless, a different kind of observer should be designed to

estimate the specific production rate during the PHB pro-

duction phase. Future work includes the design of such an

observer. By the use of the observers, extremum seeking

algorithms will be applied to optimize the growth rate and

the production rate in each respective phase.
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