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The Hamiltonian limit of the ANNNI model in (i + i) 
dimensions is studied by using the Quantum Statistical 
Monte Carlo method. Even if recent results suggest that 
Monte Carlo calculations may prove unreliable in the 
study of this system, the phase diagram of the quantum 
version of the model was successfully obtained. In partic- 
ular, the elusive transitions between the disordered, the 
floating incommensurate and the degenerate (2, 2) are 
determined by analysing the correlation length behav- 
iour in finite lattices. 

The numerical analysis of the critical properties of quan- 
tum spin Hamiltonians can be carried out using essen- 
tially two alternative methods. One of them consists in 
the direct simulation of the quantum system [1] while 
the other one exploits the equivalence of the original 
problem with an adequate classical system [2]. 

In this paper we present the study of the ANNNI 
model [3] performed by using the second alternative 
above. We are particularly interested in the quantum 
ANNNI model because it implies competing interactions 
between first and second neighbours and displays several 
interesting physical features. We could mention for ex- 
ample the presence of: modulated magnetic structures, 
incommensurate-commensurate transitions, a multicriti- 
cal point, a Lifshitz point and a disorder line. Notice 
that the ANNNI Hamiltonian is useful in understanding 
systems that present sinusoidal magnetic order as for 
erbium and other rare earth elements. It could also be 
related to cerium antimonide which exhibits ordered 
magnetic layers with periods commensurate with the lat- 
tice [4]. 

This model with competing interactions has been in- 
tensively studied in the literature, in particular, its one 
dimensional quantum version [5-7] and its classical Ha- 
miltonian in two and three dimensions. For a recent 
review see [5]. 

We have carefully analysed the phase diagram of the 
quantum ANNNI model in 1-dimension by means of 
the so called Quantum Statistical Monte Carlo Method 
[2]. For this purpose we have used the equivalence, via 
the Trotter formula, between the model of interest and 
the corresponding 2-dimensional anisotropic classical 
system. 

It should be mentioned that there exists a quite long 
controversy with respect to the present system. In fact, 
previous results [8] suggested that numerical methods, 
such as Monte Carlo and Transfer Matrix, were unreli- 
able, but later the scaling transfer matrix [6] and a dyn- 
amical Monte Carlo [7] have produced good results. 
We have, in some sense, clarified this controversial situa- 
tion: we have found that both the correlation function 
and the correlation length obtained by Monte Carlo 
techniques, allow us to distinguish correctly the disor- 
dered and floating incommensurate phases of the model 
(called floating fluid and floating solid by some authors 
[6]). In general we have obtained the full phase diagram 
of the (1 + l) ANNNI model that agrees very well with 
some exact [9] and recent numerical results [6, 7, 103. 

Quantum statistical Monte Carlo method 

We briefly sketch here the appropriate numerical tech- 
nique for the study of quantum statistical problems, 
which has been used in solving the ANNNI model. It 
is based on the Trotter formula which allows one to 
establish the equivalence between the partition function 
corresponding to a d-dimensional quantum system and 
that of a d + 1-dimensional classical one [23. 

Let the partition function for the quantum ANNNI 
model in a lattice of 1 dimension and N sites be 

{ ]} ~e=Tr exp /~ Z (J, Ai+J2Bi+FC~) (1) 
i = 1  

with 
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and where as usual ~ ( e = z ,  x) are the standard Pauli 
matrices representing the spin operator at the site i. 

We use now the Trotter formula, which in its simplest 
version and for any operators O~ and Oa reads 

exp(Ot + 02)= lim (exp(Offm) exp(O2/m))" 
m ~  oo 

(3) 

in order to factorize the partition function in the form: 

= lim ~,. (4) 
7tl  --* O0 

where clearly 

~,,= Tr {exp[fl/m ~ (Jx A,+ J2 B,)] 

(5) 

Being interested in the ground state properties of the 
model one has to study its behaviour at temperature 
T--0. This limit is conveniently obtained by considering 
the parameter n(= flF) ~ oo by integer values such that 

= lira ~(,,. (6) 
m - * o o  

?1 ---~ o 9  

with 

�9 ]1 N N 
~""=Tr{[cXP(m-Fi~=lAi) exp[J2 \mFi:l ] 

exp i ~  C (7) 

We use, next, the identity 

= [21 s ink ( 2 ) ] 1 / 2  exp { ~  In [ c o t h  ( 1 ) ] }  (8) 

with 

a=Is)= +Is)  (9) 

after inserting the complete set of states Is) in Eq. (7). 
In this way one obtains, for m and n sufficiently large, 
an approximation to the quantum partition function (1) 
that reads 

Nm, 

where  

2  fs,js,+lj+ s,js +2j+J3s, s j+,, 
i = 1  j ~ l  

with 

1 1 

The Monte Carlo simulation is now performed with 
this classical model. It is defined on a square lattice hav- 
ing N horizontal spins and m n vertical spins as sketched 
in Fig. 1. Periodic boundary conditions were used. No- 
tice that m n is the so called Trotter dimension. 

Our equivalent classical two-dimensional system is 
not exactly the same as the standard classical problem 
usually considered. In fact, the case under consideration 
implies in general an anisotropy in the sense that the 
first neighbours interacting in the original direction are 
driven by a different coupling than the equivalent neigh- 
bours in the Trotter direction (see Fig. 2). 

The numerical analysis was carried out by using the 
standard Metropolis algorithm [11]. The lattice size was 
varied between 60 and 200 sites in the horizontal direc- 
tion and between 30 and 70 in the vertical one. The 
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Fig. 1. Equivalence between the quantum (1 + 1) dimensional a and 
the classical (2)-dimensional b models. Both models have N spins 
in the direction where competing interactions are present and the 
classical one has m . n  spins in the Trotter direction 
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Fig. 2. Axis for the phase diagram. The standard classical diagram 
corresponds to 73 =./1. The exact quantum map is for m and n ~ oo 



results here reported correspond to a Trotter index m = 6 
because other cases as m=4,  m = 8  and m=10  do not 
present significant qualitative differences. So we consid- 
ered that the thermalization of the system is reached 
after 3 x 10 3 to 10 4 Monte Carlo steps per spin (MCS). 
On the other hand, the pertinent averages were evaluated 
with 2.5 x 10 4 to 10 5 MCS. All the calculations were 
done using two different starting configurations, namely, 
a ferromagnetic one for values of K = - J 2 / J 1  <0.5 and 
a degenerate one [ (2 )  - (1" 1" ~ +... 1" 1" ,[. +)] for the rest. No- 
tice that the results are insensitive to the use of a com- 
pletely disordered starting configuration. 

In order to simplify the presentation of the results, 
it was decided to deal with the classical magnitudes, 
which are proportional to the equivalent quantum ones 
[2]. The magnitudes that were explicitly considered are: 
the energy E, the horizontal correlation function 
(SooSo+~o)-(Soo) (So+~o) and the vertical one 
(Soo Soo + ~) - (Soo) (Soo + ~) together with its correlation 
lengths ~ II, (.L were also analysed. 

Phase diagram 

The full phase diagram obtained in the present calcula- 
tion is shown in Fig. 3. The lines there were drawn to 
guide the eye and some of the computed points are expli- 
citly reported together with the statistical errors. The 
phase plane structure needs the following comments: 

a) Ferromagnetic-paramagnetic transition line. This line 
separates the regions 1 and 2 of the phase diagram. It 
was obtained finding the position of both the vertical 
and the horizontal correlation length. 

The position of this line agrees very well with an ana- 
lytic expression of the phase boundary obtained by the 
method of Miiller-Hartmann and Zittartz (MH-Z) 
[5, 12]. The boundary is obtained in the MH-Z approxi- 
mation for K =  --J2/J1 < 0.5 from the equation 

sinh [2 (m~Af + 2 m ~ ) ]  sinh 2Js = 1, (12) 

for the m-approximation to the quantum ANNNI mod- 
el. This method is believed to give quite accurate but 
no exact estimates for the phase boundaries 

b) Disorder line (DOL) and one dimensional line (ODL). 
The ODL can be obtained analytically [9]. It is inside 
the disorder region and ends at the multicritical point 
(F/J1 =0 ;  K=0.5).  The line displayed in Fig. 3 near the 
ferromagnetic - paramagnetic transition corresponds to 
the analytical ODL. The presence of this line avoids the 
existence of a Lifshitz point in the ferromagnetic border 
line. 

Our calculation detects this line through the mini- 
mum in the horizontal correlation length. A characteris- 
tic correlation length behaviour is shown in Fig. 4. The 
numerical results obtained agree very well with the ana- 
lytical ODL as can be seen in Fig. 3. 

The ANNNI  model must also have a line that sepa- 
rates the fluid phase 2, where the horizontal correlation 
function behaves as exp(-r/~ll), from the disordered in- 
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Fig. 3. Full phase diagram of the (1 + t)-dimension quantum ANN- 
NI model. Phases: 1 - Ferromagnetic, 2 - Fluid, 3 - Disordered, 
4 - Floating incommensurate, 5 - Degenerate (2). This phase dia- 
gram was obtained with the rn = 6, n = 10 approximation. This was 
chosen as a good approximation because other values of m, n do 
not present significative differences. The analytical ODL is also 
indicated 
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Fig. 4. Hor izon ta l  correla t ion length  for F/E1 = 1.20 showing  a mira-  
m u m  for the  range  0.2_<K_<0.3 

commensurate phase 3 where that function behaves as 
exp( - r /~  ll) cos(q.r). This line is called disorder line 
(DOL) [9, 13]. Evidently, the transition between these 
two phases could be identified by detecting the vanishing 
of q. The above mentioned change of behaviour of the 
horizontal correlation function across the DOL is exhib- 
ited in Fig. 5. 

The differences between the results presented here and 
the theoretical expectations are due to the finite size of 
the lattice. Figure 5 a, b are similar in the sense that they 
do not present zeros. This corresponds to a q = 0  value 
and for that reason the oscillations in Fig. 5 b are differ- 
ent from those in Fig. 5 c or d. We find that by increasing 
the lattice dimension the oscillations of Fig. 5 b decrease 
and it becomes like Fig. 5 a, which means that these oscil- 
lations are higher order effects due to the proximity of 
the second neighbour interaction zone. 

We could detect the ODL through the minimum of 
the correlation length and the DOL through the correla- 
tion function. These two lines cannot be clearly differen- 
tiated numerically. For that reason the error bars around 
the analytical ODL indicate both the ODL and the DOL 
simulation results. 

c) Disordered- floating incommensurate-( 2 )-transitions. 
The determination of the critical lines between regions 3, 
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Fig. 5a-d. Correlation function behaviour when going through the 
disorder line (DOL) for F / J  1 = 1.2. a net fluid phase: K=0; b fluid 
phase nearer the DOL: K=0.10; c disordered phase immediately 
after the DOL: K=0.25; d net disordered phase: K=0.5 
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Fig. 6. Vertical correlation lengths behaviour in the disordered- 
floating incommensurate-(2) transition showing the effect for 
K=0.8. The corresponding transition points are indicated by the 
arrows and they occur when (• m.n. = 30, the vertical dimen- 
sion 
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Fig. 7. Finite size scaling results for the vertical correlation function 
as a function of the lattice size in the Trotter direction: ooo disor- 
dered phase; + + + floating incommensurate phase. Lines are for 
guiding the eyes 

4 and 5 of the phase plane is the most elusive one because 
it implies to numerically distinguish between an expo- 
nential and a power decay in the behaviour of the corre- 
lation function. Moreover, the behaviour, expected in 
the thermodynamic limit, is masked in the present case 
of a finite lattice for an exponential. For  this reason, 
the distinction between both phases implies the distinc- 
tion between two different correlation lengths driving 
the corresponding exponentials. In the disordered phase 
and in the ( 2 )  phase, this length has a finite value while 

in the floating incommensurate, being a critical zone [10] 
it diverges. This expected divergence manifests itself in 
finite lattice calculations when the correlation length ap- 
proaches the size of the lattice. This fact is clearly seen 
in the examples of Fig. 6. It is important  to stress that 
we calculated the vertical correlation function because 
in this Ising-like direction thermalization problems are 
avoided. 

Another  test of the above conclusions is given by 
the analysis of the correlation length when the vertical 
dimension is changed. In the disordered phase it remains 
constant while in the floating incommensurate phase it 
increases proportionally to the lattice size. This is shown 
in Fig. 7. 

Summary 

The entire phase diagram of the quantum (1 + I) dimen- 
sion A N N N I  model has been obtained by Monte Carlo 
simulation techniques. The present analysis clearly 
shows the existence of a disorder line (DOL) and a one- 
dimensional line (ODL) in agreement with the analytical 
predictions [-9]. This goal ensures a phase configuration 
without conflict with exact calculations. On the other 
hand, the differentiation between the disordered, the 
floating incommensurate, and the ( 2 )  phases has been 
successfully coped by the analysis of the correlation 
length. This technique seems to be well adapted for 
studying similar situations in other spin systems, special- 
ly those with competing interactions. 

We would like to emphasize that it was possible to 
determine the phase-diagram by using the vertical corre- 
lation function behaviour. In this way we were able to 
avoid the thermalization problems related with compet- 
ing interactions in the horizontal direction. In any case, 
all the necessary checks were performed. 

We warmly acknowledge helpful comments of H. Ceva, H. Fan- 
chiotti and S. Sciutto. C.A. Garcia Canal acknowledges the J.S. 
Guggenheim foundation for a fellowship. 
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