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1. Introduction

Some general notions from complexity theory. Complexity of Lie algebras

Let U,V,W be finite dimensional vector spaces over a field k and let
® : UxV - W be a bilinear mapping. The (multiplicative) complexity
L(®2) of ¢ is defined as the least r €IN such that there are linear

E3
forms u1,...,u , v A € (UxV) and elements w ’Wr €W

r g g1

satisfying
d(x,y) = up(x,y) vp(x,y) W for all (x,y) € UxV .

1 0

©
H™ME

* *
The r-tuple ((up,v ,wp)E(UxV)x(UxV) xW, 1< p<r) is then called an

P
optimal quadratic algorithm for ¢ .

L(®) is the number of non linear arithmetic operations that are neces-
sary and sufficient to compute ©&(x,y) from =x,y by a straight line
program (cf. [Strassen 1973] and [de Groote 1987] for further details).
We shall use a somewhat coarser but more feasible computational model:
A bilinean algoniihm for ¢ is an r- tuple

p,vp,wp) € U*x V*x W, Tgp<r) with the property that
r
z

= oI up(x) vp(y) LA for all (x,y) € UxV .

B = ((u

®(x,y)

Writing L(B) := r for the Length of B,
R(®) := min {L(B) ; B bilinear algorithm for ¢ }
is called the bilineanr complexity or ramnk of & [Strassen 1973].

In case L(B)=R(?) we call B an optimal bilinear algorithm for ¢.
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Obviously we have L(4) <R(d) , and it is easy to see that R(9) $2L(a).

Hence the complexity measures L(¢) and R(®) have the same size.

The main theme of the complexity theory of bilinear mappings, e.g. the
multiplication in algebras, is the determination of Zower bounds for
L{®) and R(®} .

Another problem, closely related to the rank problem for bilinear map-
pings, is the determination of the {40fropy group of a given bilinear
mapping.

Isotropy groups belong to the decisive tools in the investigation of
varieties of alf optimal algorithms for bilinear mappings {(cf. [de Groo-
te 19781).

Let GL(U) , GL(V) , GL(W) be the groups of k- linear automorphisms of
U,V,W respectively. Then the group of all q>*x> w*a X € GL{U% e v* o W)
with ¢ €GL(U} , Yy €GL(V) , x€ GL(W) such that

o {x,v) = (2o (x),Pp(¥)) for all (x,y) € UxV
is called the proper Lisotropy group of & and denoted by T (&) (cf.

[de Groote 19781). (Here we write ¢',y* for the dual mappings of ¢, V.)

The elements of T (¢) transform bilinear algorithms for ¢ of length r
into bilinear algorithms of the same length:

Let B = ((up,vp,wp)E U*xv*xw, 12psr) be a bilinear algorithm for ¢ of
length r . Then for (x,y) €U xV we have

o (x,y) = up(X) Vp(y) v, x{(e{d(x), vy

i
p=1

H

i
1l

z up(¢ {(x) vp(tb {y» x(wg)

r
r ¢* * .
0=1 01 ¢ (up)(x) Y (Vp)(y) x(wo)

so, (<¢*(up) ,w*(vp> P x(w )€ U*xv*xW, 1<p<r) is a new bilinear algorithm

for ¢ of length r .

In particular, T (%) can be considered as a group operating on the va-

riety A@ of optimal algorithms for ¢ .

Let 1r := R{®) and denote by Sr the symmetric group of permutations

of r elements.

For any optimal algorithm B8 = ((up,vp,wp) € u*xvtxy ; 1gpgr) for ¢ and
* ok . .

ump,,vmm,wmp))GU xV'xW , 1gp<r) is also an optimal

algorithm for ¢ . Hence Sr operates on Aq) . Looking at T'(9} as a

any TTESr v Bo-p=

group acting on A@ , we see that Sr and T (¢) commute elementwise.
The compositum of Sr and T(®) 1is called the exfended isotropy ghoup
of ¢ (cf. [deGroote 19781).
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In this paper we extend the results of [de Groote - Heintz 1986] on
the complexity of certain classes of Lie algebras.

A Lie algebra over a field k is a (finite dimensional) fk-vector
space g, together with a bilinear mapping (X,Y)= [X,Y] from gxg
to g such that

(1) [x,x] = o© for all X € g and
(i) (X,[y,211 + [¥,[2,X1) + [Z,[X,¥Y]] = O for all X,Y,Z€g .

The rank of the bilinear mapping (X,Y¥) e [X,Y] , which we consider as
a bilinear mapping [,]1: gxg->1[g,9], is called the rank of g, and
we denote it by R{g) . The notions "bilinear algorithm for g " and
"isotropy group of g " always refer to the bilinear map (X,¥Y) e~ [X,¥] .
The proper isotropy group of g is denoted by TI'{g) .

From now on let & be algebraically closed and of characteristic O,
for simplicity: k = C.

Lie algebras we are going to consider mostly are semisimple or Borel
subalgebras of semisimple Lie algebras over €. Specific attention will
be paid to the case of simple Lie alfgebras. (We will freely use defini=-
tions and results from Lie algebra theory and recommend [Humphreys 1980]

and [Goto - Grosshans 1978] as references.)

2. Complexity and rank of classical simple Lie algebras and their Borel

subalgebras

Let g be a simple Lie algebra over € with n:= dim ; Cartan sub-

c9
algebra hn and 2 := dimch . (Usually, £ is called the rank of g . How-

ever we will use "rank of g " only in the sense of complexity theory.)

Let g be a classical simple Lie algebra, i.e.

g := sl{2+1,C) with Dynkin diagram Ay >1 ),
g = 0{22+1,C) with Dynkin diagram BQ‘ >2 )
g = spf{24, C) with Dynkin diagram CR (223 ) .
or g :=o{2%, C) with Dynkin diagram D, { 24 ) .

Concerning the complexity L{g) we have the following lower bounds :

Theorem 1

(i) L{sl(g+1,C) = 2n - 2% '
(i) L{o{2%+1,C) = 2n - 42 + 2 ’
(ii) Li{sp(22 ,€) =2 2n - 48 + 2 P
(iv) L{o(2%,C) = 2n - 4% + 4
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Unfortunately, these lower bounds are unlikely to be reached.

For example, we have L(sl(2,C))=5 , whereas our lower bound is 4 in
this case.

For the rank R{g) our lower bounds are more realistic. However, we
haven't yet results for g= sp(22,C).

Theorem 2

(*) R(g) > 2 dim, g - dlmC h = 2n - &

for g=8l(2+1,€), g= 0(22+1,€), and g= 0{2%,C) .
Moreover, we have g= sl(2,C) iff equality holds in (*) .

In [de Groote - Heintz 1986] the problem to find lower bounds for the
rank of a semisimple Lie algebra g is reduced to a purely algebraical
counterpart, namely to find upper bounds for the dimension of so-called
generic subalgebras of g .

A subalgebra a of g is called generdic iff there exists an element
Ay, €g such that C (Ay) = Cg(a) (the centralizer C (m} of mcg is
the set of all X€g that commute with m). A, is called a generic
element of a , Generic subalgebras are abelian and a generic subalgebra
with generic element A, is contained in the double centralizen

Cg (Bg) &= Cg(cg (Ay)) . C2(Ay) , in turn, is a generic subalgebra with
generic element A, . Thus we are left with the problem of estimating
the dimension of double centralizers C; () , Aeg.

In case sl(#+1,C) we can use the classical double centralizer theorem
2 = .
Cgl(£+1,C)(A°) = { F(AD) r FE C[T] } 7

T an indeterminate over € (cf. [Greub 1981], p. 422). Then it easily
can be shown that for A,€sl(2+1,C)

2 = 2
CSl(,Q,“f"],C)(AO) - cgl(z,_'_—l’c)(Ao) n sl(L+1,C)

2+1
{F@y) ; FeclTl, g, Fl)=01}

1
1,...,k2+1 € € are the (not necessarily distinct) eigenvalues
of A, . Hence

where X

3 2
dlmc CSI(Q-H,C)(AO) < L.

From this we infer (*) in case g=s1(2+1,C) (cf. [de Groote - Heintz 1986]).

In case g= o0{(24+1,C}) or g= o(2%,¢€) the proof that double centra-
lizers C;(Ao) have dimension <% is much more involved and relies
essentially on the theory of elementary divisors for skew symmetric
matrices over C .
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Theorem 3 Let B be a Borel subalgebra of a simple Lie algebra g4
with Cartan subalgebra # . Then

L(B) 2 2 dimC [B,B] - dimC h
The smallest Borel subalgebra among those mentioned in Theorem 3 is
the non abelian two dimensional Lie algebra, the Borel subalgebra of

s1(2,C). Its structure can be generalized also in the following way :

Let g be a finite dimensional vector space and w € g* a non trivial

linear form. Then
[X,¥] = w(X)Y - w(¥Y)X for all X,Y € g

defines a Lie structure on ¢, to which we refer as Lie null algebra g,.
The name arose from the similarity of 9 with the associative null al-
gebra, that was treated in [de Groote 1987]. In both cases the rank is
known.

Theorem 4

R(g,) = 2 dim, g,

Proof : Certainly R{g,} = 2 dimc 9~ 2. Now consider an optimal bili-
near algorithm for 9
* *
(ugrvgewy) € g xg, x L 9,1, 1sesr)

and let n := dimc 9y - After a suitable renumbering we may assume that

the restrictions of Ugreeesd, 4 to [gw,gw] form a basis of [gm,gw]*

with dual basis LU ERRN2 S of [gm,gw] .

We denote by a the orthogonal complement of VareestVy . @ is not

contained in [gw,gm] = ker @ , for the converse would imply

ac n ker v_= 0 and therefore 0 =dim,a » 2n-1-r , which con-
1<psr Y C

tradicts the choice of r.
Thus for some element Ay € 4 “~ker w :
[Xi'AB] = - w(AO)Xi = Vi(AO) W, # 0 for i g n-1 ,

showing that {W,,...,W _,
ever, & 1is even a generic subalgebra of 9 and forthwhith abelian.

} is a basis of [gw,gw] . In this case, how-

But abelian subalgebras of 8 containing Ay are one dimensional,

i.e. 1=dimma z 2n-1-1r .
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3. The isoctropy group

Let k be any field and g be an arbitrary, finite dimensional Lie al-
gebra over k. Let ¢,¥,x € GL(g) such that ¢*etv*ey € T(g) .

As one easily sees ¢°1]J_1 is an endomorphism of the k-vector space g,
symmetrdic in the sense that

[ ¢°¢—1(X) F Y1 = Ix, ¢°1P_1(Y)] holds for all X,Y € g

So, in a first attempt to characterize T (g) , one has to determine the
symmetric mappings of g . These are special cases of the transposable
mappings of g:

We call a k-vector space endomorphism o¢:g-g ZLransposable, if there

exists a k-vector space endomorphism T: g -g such that

[o(X), Y] = [ X,1(0)] holds for all X,Y € g

If g has trivial centre, then T is uniquely determined by o, and we
write o¢*:= 1 . The transposable mappings form a finite dimensional
associative fk-algebra T(g) with involution *

A k-linear endomorphism o0:g -»g is symmetric iff o= 0.

Now let us assume that g is a semisimple Lie algebra over € . Then
. m
g = j21 (gie...eb gi)
- ———
n, summands

where the g; are simple Lie algebras such that 95 % gj for i # j
and g4 = sl(2,C) .

m
Let B be a Borel subalgebra of g. Then B = ¢ (Bie...e Bi) (n.:.L sum-—
i=1

mands) , where Bi is an ideal of B being a Borel subalgebra of gi -

With this notation we have

Theorem 5

s

(i) T(g) = ¢
(i) T = 0" x (elrl/(@)STM
where s = 121 n, o, ]Mz(C) is the associative C=~algebra of
2x2 -matrices over € , and T is an indeterminate over C.
(iii) o € T(g) symmetric iff o € C id, & ...e® C id and

91 Js
o € T(B) symmetric 1iff o € C idg1e...e C ist .
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For the isotropy group of g we have

Theorem 6

m m
. ~ =}
(1) Ig) = i>=<1 Sn; * (€y x GL(gy) x ... xGL(gy) i>=<2(Aut(gi)x -eex But(g.))
B e ] ~ '
ny factors n, factors
for m > 1
(i) Ig) = Sy % (€57 % (GLg,) x... x LGN/ ) for m =1,
n, factors
m
where s := n, -2+ 2 I n, and €, := €c~1{0} .
1 3.:2 1 0
In particular, for ¢ simple we obtain
T(g) = aut(g) if g ¢ s1(2,0)
and I'(g) = GL(Q)/CO if g = si(2,¢€)

{compare [de Groote - Heintz 19861, [Mirwald 19861).

The same results hold, if we replace in the above formulae each Lie al-

gebra by its Borel subalgebra.

Finally let us mention that the extended isotropy group operates tran-
sitively on the algorithm variety of sl1(2,C) . This means that there
exists essentially only one optimal bilinear algorithm which computes
the bilinear mapping [,1 : s1(2,C) xsl(2,C) — sl(2,C) .

This is by now the only case of a Lie algebra of which the algorithm
variety is known ([Mirwald 1986]).
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