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I. Introduction 

Some general notions from complexity theory. Complexity of Lie algebras 

Let U,V,W be finite dimensional vector spaces over a field k and let 

: U x V ~ W be a bilinear mapping. The (multiplieative) complexity 

L(~) of ~ is defined as the least r 6~ such that there are linear 

forms Ul,...,u r , Vl,...,v r 6 (U xV) and elements Wl,...,w r 6 W 

satisfying 
r 

~(x,y) = ~ Up(X,y) Vp(X,y) Wp for all (x~y) £ U× V . 
p=1 

The r-tuple ((Up,Vp,Wp)6(U×V)×(U×V) × W, IS p5r) is then called an 

o p t i m a l  quadratic algorithm f o r  9 .  

L(~) is the number of non linear arithmetic operations that are neces- 

sary and sufficient to compute ~(x,y) from x,y by a straight line 

program (cf. [Strassen 1973] and [deGroote 1987] for further details). 

We shall use a somewhat coarser but more feasible computational model: 

A bil inear algorithm for ~ is an r-tuple 

B = ((Up,Vp,Wp) 6 U × V × W , 1~p~r) with the property that 

r 
@(x,y) = Z Up(X) Vp(y)Wp for all (x,y) 6 U x V . 

p=1 

Writing L(B) := r for the length of B , 

R(@) := min { L(~) ; ~ bilinear algorithm for ~ } 

is called the 6ilinear complexity or rank of ~ [Strassen 1973]. 

In case L(B)= R(@) we call B an optimal bilinear algorithm for @ . 
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Obviously we have L(~) ~ R(#) , and it is easy to see that R(~) S 2 L(¢). 

Hence the complexity measures L(~) and R(~) have the same size. 

The main theme of the complexity theory of bilinear mappings, e.g. the 

multiplication in algebras, is the determination of lower bounds for 

L(~) and R(#) . 

Another problem, closely related to the rank problem for bilinear map- 

pings, is the determination of the isotropy group of a given bilinear 

mapping. 

Isotropy groups belong to the decisive tools in the investigation of 

varieties of all optimal algorithms for bilinear mappings (cf. [de Groo- 

te 1978]). 

Let GL(U) , GL(V) , GL(W) be the groups of k-linear automorphisms of 

U , V , W respectively. Then the group of all ~ ® ~® X £ GL(U~®V~®W) 

with ¢ 6 GL(U) , @ 6 GL(V) , X 6 GL(W) such that 

¢(x,y) = X(~(¢(x),~(y))) for all (x,y) 6 U × V 

is called the proper isotropy group of ¢ and denoted by F(¢) (cf. 

[de Groote 1978]). (Here we write ~,~* for the dual mappings of ¢ , 4.) 

The elements of F(@) transform bilinear algorithms for ¢ of length r 

into bilinear algorithms of the same length : 

Let B = ((Up,Vp,W@)£ U~xV*xW, ISQSr) be a bilinear algorithm for @ of 

length r . Then for (x,y) 6 U × V we have 

r 
@(x,y) = p=II Up(X) vp(y) w@ = X(¢(¢(x) , ~(y))) 

r r 
= P=IZ Up(¢(x))Vp(~(y)) X(W@) = p~1 ¢*(Uo)(X) ~*(v )(y)w X 

So, ((@*(Up) ,~(vp) , X(Wp))6 U~xv~×w , 1SpSr) is a new bilinear algorithm 

for ~ of length r . 

In particular, F(@) can be considered as a group operating on the va- 

riety A@ of optimal algorithms for # . 

Let r := R(~) and denote by S r the symmetric group of permutations 

of r elements. 

For any optimal algorithm B = ((Up,Vp,Wp) 6 U~×V~×W , 1~psr) for ¢ and 

any ~ 6 S r , 6z-z:= ((U~(p),Vz[D),wz(pl)6 U*×V~×W , Isp~r) is also an optimal 

algorithm for # . Hence S r operates on A@ . Looking at F(#) as a 

group acting on A¢ , we see that S r and F(~) commute elementwise. 

The compositum of S r and F(#) is called the extended isotropy group 

of ~ (of. [deGroote 1978]). 
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In this paper we extend the results of [deGroote - Heintz 1986] on 

the complexity of certain classes of Lie algebras. 

A Lie algebra over a field k is a (finite dimensional) k-vector 

space g , together with a bilinear mapping 

to g such that 

(i) [X,X] = 0 

(~) [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] 

(X,Y) ~ [X,Y] from g × g 

= 0 

for all X 6 g and 

for all X,Y,Z 6 g • 

The rank of the bilinear mapping (X,Y) ~ IX,Y] , which we consider as 

a bilinear mapping [,] : g × g ~ [g,g] , is called the rank of g , and 

we denote it by R(g) . The notions "bilinear algorithm for g " and 

"isotropy group of g " always refer to the bilinear map (X,Y) ~ [X,Y] . 

The proper isotropy group of g is denoted by F(g) . 

From now on let k be algebraically closed and of characteristic 0 , 

for simplicity : k = C . 

Lie algebras we are going to consider mostly are semisimple  or Borel 

subalgebras of semisimple Lie algebras over C. Specific attention will 

be paid to the case of simple Lie algebras. (We will freely use defini- 

tions and results from Lie algebra theory and recommend [Humphreys 1980] 

and [Goto - Grosshans 1978] as references.) 

2. Complexity and rank of classical simple Lie algebras and their Borel 

subalgebras 

Let g be a simple Lie algebra over C with n := dim C g , Cartan sub- 

algebra h and £ := dim C h (Usually, £ is called the rank of g . How- 

ever we will use "rank of g " only in the sense of complexity theory.) 

Let g be a c l a s s i c a l  s imple  Lie algebra,  i.e. 

g := si(£+I,C) 

g := o(2~+I,C) 

g := sp(2Z, C) 

or g := o( 2£ , C) 

Concerning the complexity L(g) 

with Dynkin diagram A£ ( £ ~ I ) , 

with Dynkin diagram B£ ( £ ~ 2 ) , 

with Dynkin diagram C£ ( £ Z 3 ) , 

with Dynkin diagram D£ ( £ Z 4 ) 

we have the following lower bounds : 

Theorem I 

(i) L(si(£+I,C) Z 2n - 2£ , 

(~) L(o(2£+I,C) Z 2n - 4£ + 2 , 

(i i i) L(sp( 2Z ,C) a 2n - 4£ + 2 , 

(iv) L( o ( 2£ ,C) Z 2n - 4£ + 4 
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Unfortunately, these lower bounds are unlikely to be reached. 

For example, we have L(sI(2,C))= 5 , whereas our lower bound is 4 in 

this case. 

For the rank R(g) our lower bounds are more realistic. However, we 

haven't yet results for g = sp(2~,C) . 

Theorem 2 

(~) R(g) Z 2 dim C g - dim C h = 2n - £ 

for g = sl(~+1,C) , g = o(2~+I,C), and g = o{2£,C) . 

Moreover, we have g = sl(2,C) iff equality holds in (*). 

In [de Groote - Heintz 1986] the problem to find lower bounds for the 

rank of a semisimple Lie algebra g is reduced to a purely algebraical 

counterpart, namely to find upper bounds for the dimension of so-called 

generic subalgebras of g . 

A subalgebra a of g is called generic iff there exists an element 

A0 £ g such that Cg(A0) = Cg(a) (the centralizer Cg(m) of m c g is 

the set of all X6 g that commute with m ). A 0 is called a generic 

element of a . Generic subalgebras are abelian and a generic subalgebra 

with generic element A0 is contained in the double centralizer 

C2(A0) := Cg(Cg(A0)) . C2(A0) , in turn, is a generic subalgebra with g g 
generic element A0 • Thus we are left with the problem of estimating 

~(A) , A £ g . the dimension of double centralizers Cg 

In case si(£+I,C) we can use the classical double centralizer theorem 

C 2 (A0) = { F(A0) ; F 6 C[T] } gl(~+1,e) 

T an indeterminate over C (cf. [Greub 1981], p. 422). Then it easily 

can be shown that for A0£ sl(Z+1, C) 

C2 (A0) = C 2 (A0) N sl(£+1,e) 
sI(Z+I,C) gI(Z+I,C) 

Z+I 
= { F(A0) ; F6 C[T] , i~I F(li)= 0 } , 

where 11,...,I£+ I £ C are the (not necessarily distinct) eigenvalues 

of A0 • Hence 

dim C C 2 sI(£+I,c)(A0 ) ~ 

From this we infer (~) in case @=sl(Z+ItC) (cf. [de Groote- Heintz 1986]). 

In ease g = o(2Z+I ,C) or g = o(2Z, C) the proof that double centra- 

lizers C ~(A0) have dimension S £ is much more involved and relies 

essentially on the theory of elementary divisors for skew symmetric 

matrices over C . 
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Theorem 3 Let B be a Borel subalgebra of a simple Lie algebra g 

with Caftan subalgebra h . Then 

L(B) ~ 2 dim C [B,B] - dim C h 

The smallest Borel subalgebra among those mentioned in Theorem 3 is 

the non abelian two dimensional Lie algebra, the Borel subalgebra of 

sl(2,C). Its structure can be generalized also in the following way : 

Let g be a finite dimensional vector space and ~ £ g~ a non trivial 

linear form. Then 

[X,Y] := ~(X) Y - ~(Y) X for all X,Y £ g 

defines a Lie structure on g , to which we refer as Lie null algebra g~. 

The name arose from the similarity of g~ with the associative null al- 

gebra, that was treated in [deGroote 1987]. In both cases the rank is 

known. 

Theorem 4 

R(g~) = 2 dim C g~ - 2 

Proof : Certainly R(g~) S 2 dim C g~- 2. Now consider an optimal bill- 

near algorithm for g~ 

((u~,v~,wp) ~ ~j~gj~ [~,~], 1~p~r) 

and let n := dim C g~ . After a suitable renumbering we may assume that 

the restrictions of Ul,...,Un_ I to [g~,g~] form a basis of [ge,ge]~ 

with dual basis X1,...,Xn_ I of [g~,g~] . 

We denote by a the orthogonal complement of Vn,...,v r a is not 

contained in [g~,ge] = ker e , for the converse would imply 

a ~ 1~p~rN ker Vp = O and therefore O = dim C a _> 2n-I - r , which con- 

tradicts the choice of r . 

Thus for some element A0 6 a ~ker ~ : 

[Xi,A 0] = - ~(A0)X i = vi(A 0) W i ~ O for i ~ n-1 , 

showing that {WI,...,Wn_ I} is a basis of [g~,g~] . In this case, how- 

ever, a is even a generic subalgebra of g~ and forthwhith abelian. 

But abelian subalgebras of g~ containing A0 are one dimensional, 

i.e. I = dim~ a ~ 2n- I - r . [] 
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3. The isotropy group 

Let k be any field and g be an arbitrary, finite dimensional Lie al- 

gebra over k . Let ~,~,X 6 GL(g) such that ~®~® X 6 F(g) . 

As one easily sees ~o~ -I is an endomorphism of the k-vector space g, 

symmetric in the sense that 

[ ~ o~-1(X) , Y ] = [X , ~o~-1(y)] holds for all X,Y 6 g • 

So, in a first attempt to characterize F(g) , one has to determine the 

symmetric mappings of g . These are special cases of the transposable 

mappings of g: 

We call a k - v e c t o r  space endomorphism o: g ~ g t r a n s p o s a b l e ,  if there 

exists a k-vector space endomorphism T: g ~g such that 

[ a(X) , Y ] = [ X , T(Y) ] holds for all X,Y 6 g . 

If g has trivial centre, then T is uniquely determined by o , and we 

write o8 := T The transposable mappings form a finite dimensional 

associative k-algebra T(g) with involution ~ 

A k- linear endomorphism a : g ~ g is symmetric iff ~* = ~ . 

Now let us assume that g is a semisimple Lie algebra over C . Then 

m 
g -- • ( gie ... e gi ) 

i=I 

n. summands 
i 

where the g i  a r e  s i m p l e  L i e  a l g e b r a s  s u c h  t h a t  g i  ~ g j  f o r  i ¢ j 

a n d  g l  - s l ( 2 , C )  . 
m 

Let B be a Borel subalgebra of g . Then B ~ • (Bie...eB i) (n i sum- 
i=I 

mands), where B i i s  a n  i d e a l  o f  B b e i n g  a B o r e l  s u b a l g e b r a  o f  g i  " 

With this notation we have 

Theorem 5 

(i) 

(A) 

T ( g )  - C s 

T ( B )  _ ]M2(C) n l  x ( C[T]/(T 2) ) s-nl 

m 

where s = iZ__1 n i , ~2(e) is the associative C-algebra of 

2 x 2-matrices over C , and T is an indeterminate over C. 

0 6 T ( g )  symmetric iff 0 6 C idg I • ... • C idg s and 

o 6 T(B) symmetric iff o £ C idB1 • ... • C idBs 
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For the isotropy group of g we have 

Theorem 6 

(i) 
m m 

F(g) ~ ~I Sni K (c0sx GLCgl) x ... ×GL(gl)x i=2X(Aut(gi) ..... Aut(gi)) ) 

n 1 f a c t o r s  n i f a c t o r s  

for m > I 

s+1 
(A) F(g) ~ Snl K (~0 x (GL(gl) ×... ×GL(gl))/C0) for m = I, 

v 

n I factors 
m 

where s := n I - 2 + 2 ~ n, and C O := C TM {0} 
i=2 1 

In particular, for g simple we obtain 

F(g) ~ Aut(g) if g ~ sl(2, C) 

and F(g) ~ GL(g)/c 0 if g ~ sl(2, C) 

(compare [deGroote - Heintz 1986], [Mirwald 1986]). 

The same results hold, if we replace in the above formulae each Lie al- 

gebra by its Borel subalgebra. 

Finally let us mention that the extended isotropy group operates tran- 

sitively on the algorithm variety of sl(2,C) . This means that there 

exists essentially only one optimal bilinear algorithm which computes 

the bilinear mapping [,] : sl(2,C) x sl(2,C) --~ sl(2,C) . 

This is by now the only case of a Lie algebra of which the algorithm 

variety is known ([Mirwald 1986]). 
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