
Parallel Matrix Multiplication
and LU Factorization

on Ethernet-Based Clusters

Fernando G. Tinetti, Mónica Denham, and Armando De Giusti

Laboratorio de Investigación y Desarrolo en Informática (LIDI),
Facultad de Informática,

UNLP,
50 y 115, 1900 La Plata, Argentina,

Tel.: +54 221 4227707, Fax: +54 221 4273235,
{fernando,mdenham,degiusti}@lidi.info.unlp.edu.ar

Abstract. This work presents a simple but effective approach for two
representative linear algebra operations to be solved in parallel on Ether-
net-based clusters: matrix multiplication and LU matrix factorization.
The main objectives of this approach are: simplicity and performance
optimization. The approach is completed at a lower level by including a
broadcast routine based directly on top of UDP to take advantage of the
Ethernet physical broadcast facility. The performance of the proposed
algorithms implemented on Ethernet-based clusters is compared with
the performance obtained with the ScaLAPACK library, which is taken
as having highly optimized algorithms for distributed memory parallel
computers in general and clusters in particular.

Keywords: Cluster Computing, Parallel Linear Algebra Computing,
Communication Performance, Parallel Algorithms, High Performance
Computing.

1 Introduction

The field of parallel computing has evolved in several senses, from computing
hardware to algorithms and libraries specialized in particular areas. The pro-
cessing basic hardware used massively in desktop computers has also increased
its capacity in orders of magnitude and, at the same time, it has reduced its
costs to end users. On the other hand, costs associated to a specific (parallel)
computer cannot always be afforded, and remained almost constant since many
years ago. From this point of view, clusters have the two main facilities needed
for parallel computing: 1) Processing power, which is provided by each computer
(CPU-memory), 2) Interconnection network among CPUs, which is provided by
LAN (Local Area Network) hardware, usually Ethernet [7] at the physical level.

Traditionally, the area of problems arising from linear algebra has taken
advantage of the performance offered by available (parallel) computing architec-
tures. LAPACK (Linear Algebra PACKage) [1] and BLAS (Basic Linear Algebra

A. Veidenbaum et al. (Eds.): ISHPC 2003, LNCS 2858, pp. 431–439, 2003.
c Springer-Verlag Berlin Heidelberg 2003

432 Fernando G. Tinetti, Mónica Denham, and Armando De Giusti

Subroutines) [3] definitions represent the main results of this effort. Parallel al-
gorithms in the area of linear algebra have been continuously proposed mainly
because of their great number of (almost direct) applications and large number
of potential users. Two immediate examples are: 1) Matrix multiplication has
been used as a low-level benchmark for sequential as well as parallel computers
[6] or, at least, as a BLAS benchmark. In some way or another, results are still
being reported in relation to matrix multiplication performance in parallel and
sequential computers, and 2) LU factorization is used to solve dense systems
of linear equations, which are found in applications such as [5] airplane wing
designs, radar cross-section studies, supercomputer benchmarking, etc.

In the field of parallel (distributed) linear algebra, the ScaLAPACK (Scal-
able LAPACK) library has been defined [2]. ScaLAPACK is no more (and no
less) than LAPACK implementing high quality (or optimized) algorithms for
distributed memory parallel computers. Matrix multiplication and LU factoriza-
tion will be analyzed in detail for Ethernet-based clusters, and they will also be
taken as representatives of the whole LAPACK-ScaLAPACK libraries.

The main project of which this work is part of focuses on a methodology
to parallelize linear algebra operations and methods on Ethernet-based clusters,
taking into account the specific constraints explained above. The methodology
involves optimizing algorithms in general, and communication patterns in partic-
ular, in order to obtain optimized parallel performance in clusters interconnected
by Ethernet.

2 Algorithms for Matrix Multiplication
and LU Factorization

Being parallel matrix multiplication and LU factorization implemented in very
well known, accepted, and optimized libraries such as ScaLAPACK, is it nec-
essary to define another parallel matrix multiplication and LU factorization?
Parallel algorithms selected for implementation and inclusion in ScaLAPACK
are assumed to have optimized performance in parallel computers with dis-
tributed memory and good scalability. However, as the performance is usually
strongly dependent on hardware, the algorithms selected are also influenced by
the current distributed memory parallel computers at the time ScaLAPACK was
defined (the ’90s). Those computers follow the guidelines of the traditional dis-
tributed memory parallel (super)computers, i.e.: 1) High-performance CPUs, the
best for numerical computing, and sometimes designed ad hoc for this task, 2)
Memory directly attached to each processor, with message passing necessary for
interprocess-interprocessor communication, and 3) Low latency (startup)-High
throughput (bandwidth) processor interconnection network. But clusters are not
(at least a priori) parallel computers.

As regards clusters interconnected by Ethernet networks, the interconnection
network implies strong performance penalties when processes running on differ-
ent computers of the cluster are communicated. From this point of view, parallel
algorithms have not been designed for the parallel architecture of the clusters,

Parallel Matrix Multiplication and LU Factorization 433

they have been rather used as designed for distributed memory parallel comput-
ers. Furthermore, there has been and there is a strong emphasis on leveraging
the interconnection network, so as to approach the interconnection network of
the traditional parallel (super)computers.

Taking into account the characteristics of clusters with Ethernet network
interconnection, some guidelines have been devised in order to design parallel
algorithms for linear algebra operations and methods:

– SPMD (Single Program, Multiple Data) parallel execution model, which is
not new in the field of linear algebra numerical computing. Also, the SPMD
model is very useful for simplifying the programming and debugging task.

– The Ethernet hardware defined by the IEEE standard 802.3 [7] almost di-
rectly leads to: 1)Unidimensional data distribution, given that every in-
terconnected computer is connected at the same “logical bus” defined by
the standard, and 2) Broadcast based intercommunication among processes,
given that the Ethernet logical bus makes broadcast one of the most natural
messages to be used in parallel applications. Also, every cabling hardware
is IEEE 802.3 compliant and, thus, broadcast has to be physically imple-
mented.

2.1 Matrix Multiplication

The basic parallel matrix multiplication algorithm (C = A × B) proposed is
derived from the algorithm already published in [10] for heterogeneous clusters,
and can be considered as a direct parallel matrix multiplication algorithm [11].
It is defined in terms of data distribution plus the program that every computer
has to carry out for the parallel task. The (one-dimensional) matrix distribution
is defined so that: 1) Matrices A and C are divided into as many row blocks as
computers in the cluster, and every computer holds one row block (row block
partitioning [8]); computer Pi has row blocks A(i) and C(i), 2) Matrix B is
divided into as many column blocks as computers in the cluster, and every
computer holds one column block (column block partitioning [8]); computer
Pi has column block B(i), 3) Each computer Pi has only a fraction of the data
needed to calculate its portion of the resulting matrix C(i), i.e. C(ii) = A(i)×B(i).

Fig. 1 shows the pseudocode of the program on each computer, which has
only local computing plus broadcast communications for processor Pi, where 1)
Cˆ(i_j) stands for C(ij), Aˆ(i) for A(i), and Bˆ(j) for B(j), and 2) The oper-
ations send_broadcast_o and recv_broadcast_o are used to send and receive
broadcast data in “background”, i.e. overlapped with local processing in the
computer, where available.

2.2 LU Factorization

Currently used parallel LU factorization algorithm is derived from the com-
bination of [5]: a) the traditional right-looking LU factorization algorithm, b)

434 Fernando G. Tinetti, Mónica Denham, and Armando De Giusti

if (i == 0)
send_broadcast Bˆ(i)

for (j = 0; j < P; j++)
{

if (j != i)
{

recv_broadcast_b Bˆ(j)
if ((j+1) == i)

send_broadcast_b Bˆ(i)
}
Cˆ(i_j) = Aˆ(i) * Bˆ(j)

}

Fig. 1. Matrix Multiplication with Overlapped Communications.

data processing made by blocks (block processing), and c) two dimensional ma-
trix data partitioning. Following the guidelines stated previously, the selected
matrix partitioning is chosen following the so-called row block matrix distribu-
tion [8]. To avoid the unacceptable performance penalty of unbalanced workload
maintaining the one-dimensional data distribution among computers, the ma-
trix is divided in many more blocks than computers and assigned cyclically to
processors. In this way: 1) One dimensional data partitioning is made, there is
no defined neighborhood for each processor according to its position in a pro-
cessor mesh, and 2) When the number of blocks is large enough (bs � p), every
processor will have data to work with in most of the iterations.

2.3 Broadcasting Data Using UDP

The algorithms explained are strongly dependent on the broadcast performance.
In particular, the broadcast performance of PVM [4] is not acceptable, since
it is implemented as multiple point-to-point messages from the sender to each
receiver when processes are running on different computers. In general, MPI
[9] implementations do not necessarily have to optimize broadcast performance
and/or optimize the availability of the Ethernet logical bus since the MPI stan-
dard itself does not impose any restriction and/or characteristic on any of the
routines it defines.

When the previously mentioned broadcast-based guideline is used for paral-
lelization, the design and implementation of an optimized version of the broad-
cast communication between processes of parallel programs is highly encouraged.
Ethernet networks are based on a logical bus which can be reached from any
attached workstation [7], where the method to access the bus is known as mul-
tiple random access. Basically, in every data communication, the sender floods
the bus, and only the destination/s will take the information from the channel.
The destination/s might be a group of computers and, in this case, the sender
uses a multicast/broadcast address, sending data only once. All the referenced
computers will take the data from the channel at the same time.

Parallel Matrix Multiplication and LU Factorization 435

3 Experimental Work

The proposed parallel algorithms (for matrix multiplication and LU factoriza-
tion) plus the new broadcast routine optimized for Ethernet interconnected clus-
ters are used in two homogeneous clusters of eight PCs each: the PIII cluster and
the Duron Cluster. The characteristics of PCs in each cluster are summarized in
Table 1. Mflop/s was taken by running the best matrix multiplication sequen-
tial algorithm on single precision floating point matrices. The interconnection
network on each cluster is a fully switched 100 Mb/s Ethernet. Algorithms per-
formance is compared with that obtained by the ScaLAPACK library, which is
installed on both clusters on top of MPICH. A third cluster is considered, which
will be called 16-PC: both previous clusters interconnected and used as a cluster
with sixteen homogeneous PCs of 580 Mflop/s with 64 MB each.

Table 1. Clusters Characteristics.

Cluster CPU Clock Mem Mflop/s
PIII Pentium III 700 MHz 64 MB 580

Duron AMD Duron 850 MHz 256 MB 1200

3.1 Matrix Multiplication Performance

The algorithm proposed for parallel matrix multiplication on Ethernet-based
clusters (Section 2.1 above) was implemented and compared with the one pro-
vided by the ScaLAPACK library. Fig. 2 shows the best five ScaLAPACK per-
formance values in terms of speedup on the PIII cluster and the speedup ob-
tained for the parallel matrix multiplication proposed in this. Two matrices
of 5000x5000 single precision floating point numbers are multiplied. Given that
ScaLAPACK performance depends on some parameters values, a range of values
was used for testing ScaLAPACK matrix multiplication performance: a) Square
blocks: 32x32, 64x64, 128x128, 256x256, and 1000x1000 elements, and b) Pro-
cessors meshes: 1x8, 8x1, 2x4, and 4x2 processors on the clusters with 8 PCs,

Fig. 2. Matrix Multiplication on PIII Cluster.

436 Fernando G. Tinetti, Mónica Denham, and Armando De Giusti

and 2x8, 8x2, and 4x4 processors on the cluster with 16 PCs. Each bar of Fig.
2 is labeled according to the algorithm and parameters used (when required).
ScaLAPACK matrix multiplication is identified by the values for the three pa-
rameters on which it depends upon: processors per row, processors per column,
and block size. Performance of the parallel matrix multiplication proposed is
labeled as “Prop”.

a) Duron Cluster b) 16-PC Cluster

Fig. 3. Matrix Multiplication on the Duron and 16-PC Cluster.

Fig. 3 a) shows the best five ScaLAPACK performance values in terms of
speedup on the Duron cluster and the speedup obtained for the parallel matrix
multiplication proposed in this work, and matrices of 10000x10000 elements.
Also, Fig. 3 b) shows the best five ScaLAPACK performance values in terms of
speedup on the 16-PC cluster as well as the speedup obtained for the parallel
matrix multiplication proposed in this work. Matrices are of 8000x8000 elements.
Table 2 summarizes performance results on the three clusters.

Table 2. Matrix Multiplication Performance Summary.

Cluster Sc-Best Prop-Best % Better Perf. Opt. Perf.
PIII 5.9 7.2 23% 8

Duron 5.5 7.0 27% 8
16-PC 10.9 13.7 26% 16

3.2 LU Matrix Factorization Performance

Similar tests for parallel LU factorization were carried out on the same clusters.
In this case, the proposed parallel algorithm is also defined in terms of a (row)
blocking size according to Section 2.2 above. The blocking sizes for ScaLAPACK
as well as for the proposed algorithm were: 32, 64, 128, 256, and 1000. The
proposed algorithm was tested with other intermediate blocking sizes (as blocks
of 100 rows) in order to verify its dependence on row block size.

Parallel Matrix Multiplication and LU Factorization 437

Fig. 4. LU Factorization on PIII Cluster.

a) Duron Cluster b) 16-PC Cluster

Fig. 5. LU Matrix Factorization on the Duron and 16-PC Cluster.

Table 3. LU Matrix Factorization Performance Summary.

Cluster Sc-Best Prop-Best % Better Perf. Opt. Perf.
PIII 5.0 6.4 30% 8

Duron 5.0 6.6 32% 8
16-PC 8.2 12.3 50% 16

Fig. 4 shows the best three performance (speedup) values for each of the
algorithms used on the PIII cluster. The proposed parallel LU matrix factor-
ization algorithm is labeled “Prop-rbs” where rbs is the row blocking size used
in the experiment. On each experiment, a matrix of 9000x9000 single precision
elements is factorized into L and U . Fig. 5 a) shows the performance (speedup)
values on the Duron cluster. On each experiment, a matrix of 20000x20000 single
precision elements is factorized into L and U . Also, Fig. 5 b) shows the perfor-
mance (speedup) values on the PC-16 cluster where a matrix of 13000x13000
single precision elements is factorized into L and U on each experiment. Table
3 summarizes performance results on the three clusters.

438 Fernando G. Tinetti, Mónica Denham, and Armando De Giusti

4 Conclusions and Further Work

The main conclusion derived from performance results shown in the previous sec-
tion is that: there is enough room for optimization of linear algebra algorithms
on Ethernet-based clusters. Optimizations are focused to optimize resource us-
age on Ethernet-based clusters. Proposals on this work can be summarized as: 1)
A few guidelines to parallelize linear algebra applications, with two main objec-
tives: simple parallel algorithms, and optimized performance on Ethernet-based
clusters. 2) Two parallel algorithms have been successfully designed and imple-
mented: matrix multiplication and LU matrix factorization. 3) It has been shown
by experimentation that it is possible to obtain better performance than that
obtained by the algorithms implemented in the highly optimized ScaLAPACK
library. 4) It is possible to have optimized performance on Ethernet-based clus-
ters without imposing fully switched interconnections. In this way, the whole cost
of the interconnection network is greatly reduced for clusters with large number
of computers, where the switching cost increases more than linearly when the
number of computers grows.

Even when broadcast messages based on UDP are expected to have very good
scalability, it is important to experiment on clusters with many computers to
verify this assumption. In this sense, experiments should be carried out on cluster
with tens and hundreds of computers interconnected by Ethernet. Also, it should
be highly beneficial to experiment on the recently proposed Gb/s Ethernet in
order to analyze scalability and performance gains. From the point of view of
linear algebra applications, it is necessary to continue with optimization of other
methods and/or operations as those included in LAPACK-ScaLAPACK.

References

1. Anderson E. et al., “LAPACK: A Portable Linear Algebra Library for High-
Performance Computers”, Proceedings of Supercomputing ’90, pages 1-10, IEEE
Press, 1990.

2. Blackford L. et al. ScaLAPACK Users’ Guide, SIAM, Philadelphia, 1997.
3. Dongarra J., J. Du Croz, S. Hammarling, R. Hanson, “An extended Set of Fortran

Basic Linear Subroutines”, ACM Trans. Math. Soft., 14 (1), pp. 1-17, 1988.
4. Dongarra J., A. Geist, R. Manchek, V. Sunderam, “Integrated pvm framework

supports heterogeneous network computing”, Computers in Physics, (7)2, pp. 166-
175, April 1993.

5. Dongarra J., D. Walker, “Libraries for Linear Algebra”, in Sabot G. W. (Ed.), High
Performance Computing: Problem Solving with Parallel and Vector Architectures,
Addison-Wesley Publishing Company, Inc., pp. 93-134, 1995.

6. Hockney R., M. Berry (eds.), “Public International Benchmarks for Parallel Com-
puters”, Scientific Programming 3(2), pp. 101-146, 1994.

7. Institute of Electrical and Electronics Engineers, Local Area Network - CSMA/CD
Access Method and Physical Layer Specifications ANSI/IEEE 802.3 - IEEE Com-
puter Society, 1985.

8. Kumar V., A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing.
Design and Analysis of Algorithms, The Benjamin/Cummings Publishing Com-
pany, Inc., 1994.

Parallel Matrix Multiplication and LU Factorization 439

9. Message Passing Interface Forum, “MPI: A Message Passing Interface standard”,
International Journal of Supercomputer Applications, Volume 8 (3/4), 1994.

10. Tinetti F., A. Quijano, A. De Giusti, E. Luque, “Heterogeneous Networks of Work-
stations and the Parallel Matrix Multiplication”, Y. Cotronis and J. Dongarra
(Eds.): EuroPVM/MPI 2001, LNCS 2131, pp. 296-303, Springer-Verlag, 2001.

11. Wilkinson B., Allen M., Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers, Prentice-Hall, Inc., 1999.

	Parallel Matrix Multiplication and LU Factorization on Ethernet-Based Clusters
	1 Introduction
	2 Algorithms for Matrix Multiplication and LU Factorization
	2.1 Matrix Multiplication
	2.2 LU Factorization
	2.3 Broadcasting Data Using UDP

	3 Experimental Work
	3.1 Matrix Multiplication Performance
	3.2 LU Matrix Factorization Performance

	4 Conclusions and Further Work
	References

