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Abstract. The scalability of modern Web applications has become a key aspect 
for any business in order to support thousands of concurrent users while reduc-
ing its computational costs. However, existing model driven web engineering 
approaches have been focus on building Web applications that satisfy function-
al requirements while disregarding “technological” aspects such as scalability 
and performance. As a consequence, the applications derived from these ap-
proaches may not scale well and need to be adapted. In this paper we present 
the LiquidML environment, which allows building Web applications using a 
model-based approach. In contrast with existing approaches, aspects that help  
to improve the scalability of a Web application are modeled as first class  
citizens and as a consequence the applications obtained scale better than its  
counterparts. 
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1 Introduction 

Scalability is the ability of a system to handle a growing amount of work in a capable 
manner or its ability to be enlarged to accommodate that growth [2]. Scalability prob-
lems in the applications derived using Model-Driven Web Engineering (MDWE) 
tools may not appear as soon as they are deployed, but rather after they has been “liv-
ing” in production for some time. Fixing scalability issues requires a detail diagnosis 
and consumes many human resources [4] and it has been shown to take 50-70% of the 
development time [1]. 

In the Web engineering research area [6], MDWE approaches [5,3,7] have become 
an attractive solution for building Web applications as they raise the level of abstraction 
and simplify the Web application development. However, according to [8], little atten-
tion has been put to non-functional requirements such as scalability issues as they have 
been considered a technological aspect that does not need to be modeled. In the same 
line, the Web applications derived from MDWE approaches pose a rigid/static architec-
ture that cannot be easily changed thus limiting the size of the Web applications that can 
be built with them. In addition, diagnosing and fixing these problems in production sys-
tems (which are the ones that present overload symptoms) becomes cumbersome and 
impossible to be done in the models thus forcing teams to deal with the generated code 
losing the high level of abstraction provided by the design models. 
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Fig. 3. Deployment view 

4 Conclusions 

In this demo paper, we have presented the LiquidML environment as a place where 
Web applications can be either derived from MDWE models or manually created 
from our “low level” LiquidML models. These models can be then interpreted and 
dynamically reconfigured at runtime. The environment is web based and it only re-
quires a browser to be used. 
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