

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 519–522, 2014.
© Springer International Publishing Switzerland 2014

LiquidML: A Model Based Environment
for Developing High Scalable Web Applications

Esteban Robles Luna1, José Matías Rivero1,2, and Matias Urbieta1,2

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{esteban.robles,mrivero,matias.urbieta}@lifia.info.unlp.edu.ar

2 Also at Conicet

Abstract. The scalability of modern Web applications has become a key aspect
for any business in order to support thousands of concurrent users while reduc-
ing its computational costs. However, existing model driven web engineering
approaches have been focus on building Web applications that satisfy function-
al requirements while disregarding “technological” aspects such as scalability
and performance. As a consequence, the applications derived from these ap-
proaches may not scale well and need to be adapted. In this paper we present
the LiquidML environment, which allows building Web applications using a
model-based approach. In contrast with existing approaches, aspects that help
to improve the scalability of a Web application are modeled as first class
citizens and as a consequence the applications obtained scale better than its
counterparts.

Keywords: Scalability, Model driven development, Web engineering.

1 Introduction

Scalability is the ability of a system to handle a growing amount of work in a capable
manner or its ability to be enlarged to accommodate that growth [2]. Scalability prob-
lems in the applications derived using Model-Driven Web Engineering (MDWE)
tools may not appear as soon as they are deployed, but rather after they has been “liv-
ing” in production for some time. Fixing scalability issues requires a detail diagnosis
and consumes many human resources [4] and it has been shown to take 50-70% of the
development time [1].

In the Web engineering research area [6], MDWE approaches [5,3,7] have become
an attractive solution for building Web applications as they raise the level of abstraction
and simplify the Web application development. However, according to [8], little atten-
tion has been put to non-functional requirements such as scalability issues as they have
been considered a technological aspect that does not need to be modeled. In the same
line, the Web applications derived from MDWE approaches pose a rigid/static architec-
ture that cannot be easily changed thus limiting the size of the Web applications that can
be built with them. In addition, diagnosing and fixing these problems in production sys-
tems (which are the ones that present overload symptoms) becomes cumbersome and
impossible to be done in the models thus forcing teams to deal with the generated code
losing the high level of abstraction provided by the design models.

520 E.R. Luna, J.M. Rive

In this paper we present
ble Web applications that c
be either derived from MD
inside the environment by m
ing tools is that we do no
aspects are modeled; as a c
the models at runtime in a s

2 LiquidML Mod

The LiquidML environmen
Web applications requests
cludes: logging and profili
quence execution modes, m
application is a compositio
need to happen within a W
has a payload (body) and a
identified by an icon and
Elements happens by mean

To exemplify the concep
E-commerce web applica
represents the Message sou
case, it will receive HTTP
ment connected to the Mes
behaves like a choice/switc
processor if the request com
another router that gets inf
product info from the DB:
product’s rank, which invol
“Get product reviews”) and
(“Compute product rank”).
and used for rendering a W

As aforementioned, to i
ments suggested in [4] has
modified version of the Pro

ero, and M. Urbieta

LiquidML, an environment that helps building high sca
an be manipulated at runtime. A LiquidML application

DWE models such as WebML, or it can be built strai
manually creating models. The main difference with ex
ot impose a rigid architecture and those “technologic
consequence we can keep track of their changes and a
safe way.

els

nt allows engineers to model a set of features that han
as first class citizens. A non-exhaustive list of features
ing, caching, service calls, parallel, asynchronous and

message queuing and the deployment process. A LiquidM
on of Flows and a Flow describes a sequence of steps t
Web request (called Message in our approach). A Mess
a list of properties while each step in the Flow is visua

d constitutes an Element of it. Communication betw
s of Message interchanges.
pts, we present a Flow for the product’s detail page of

ation (Fig. 1). The Element with no incoming arr
urce listener that will receive incoming requests – in
request and will transform them in to Messages. The E
sage source named “Route path” is a ChoiceRouter, wh

ch statement and it will route the message to the “Get in
mes to a URL starting with “/product/*”. The “Get info
formation in parallel from multiple sources. It obtains

(“Get product info”) and triggers the computation of
lves two database (DB) queries (“Get user reputation”

d a Processor that computes the rank from this informat
Finally, the information gets composed (“Compose dat

eb page in the “Render template” processor.

Fig. 1. Product details flow

improve the scalability of the Web application some e
 been modeled as first class citizens. In Fig. 2 we show

oduct details flow of Fig 1, were some elements for cach

ala-
can
ight
xist-
cal”
alter

ndle
 in-
se-

ML
that

sage
ally

ween

f an
row
this
Ele-
hich
nfo”
o” is

the
the
and
tion
ta”)

ele-
w a

hing

A Model Based Envi

purposes have been added
In LiquidML, these change
in the diagram or by mean
on-the-fly while the applica

Fig. 2. Produ

3 LiquidML Envi

The LiquidML environmen

• LiquidML edito
to deploy them
ply dynamic tr
with the scalabi
formation on-th
(DEV, QA or ev

• LiquidML serv
definitions, the
applications are
ing deployment
deploys it.

LiquidML do not impo
complete Web application c
which can be integrated by
each application, e.g. the f
combined by load balancer
of the application. As an ex
gram, which allows us to u
logging and it also support
the scalability of the Web a

Both, the editor and the
the JEE stack. We have use
ping, Spring MVC and Twi
part of this development, w
diagram editors, which is p
to visit the LiquidML site
code and the demonstration

1 https://github.com/e

ironment for Developing High Scalable Web Applications

to improve the overall scalability of the Web applicati
es can be applied at design time by adding the eleme

ns of runtime transformations that change model eleme
ation is running.

uct details flow improved with caching elements

ronment

nt is composed of 2 applications:

or: it allows defining the applications, modelling Flows
to the LiquidML servers. It also, allows developers to
ansformations to the deployed diagrams in order to d
ility problems and watch for performance and logging

he-fly in any environments where the application is runn
ven Production).
er: The server is responsible for holding the applicat
LiquidML interpreter and notifying the editor about h

 running. In addition, it regularly checks if it has any pe
ts and if so, it fetches the Application and automatic

se any rigid implementation architecture. For instance
can be split in 1 front-end app and 2 different service ap
y sending messages to their REST endpoints. In additi
front-end app, can be instantiated in multiple servers
rs to distribute the load and improve the overall scalabi
xample, in Fig. 3 we present the deployment view of a d
use the diagnostic tools of LiquidML such as profiling
ts performing runtime transformations oriented to impr
application.

server have been built using open source technologies
ed Spring and Hibernate for basic service and ORM m
itter bootstrap for UI and Jersey for the LiquidML API.
we have built the CupDraw framework1 for building W
ublicly available. For the technical readers, we invite th
http://www.liquidml.com and check the project’s sou

n videos.

estebanroblesluna/cupDraw

521

ion.
ents
ents

and
ap-

deal
g in-
ning

tion
how
end-
ally

e, a
pps,
ion,
and
ility
dia-
and

rove

s of
map-
. As

Web
hem
urce

522 E.R. Luna, J.M. Rivero, and M. Urbieta

Fig. 3. Deployment view

4 Conclusions

In this demo paper, we have presented the LiquidML environment as a place where
Web applications can be either derived from MDWE models or manually created
from our “low level” LiquidML models. These models can be then interpreted and
dynamically reconfigured at runtime. The environment is web based and it only re-
quires a browser to be used.

References

1. Boehm, B.W.: Software engineering economics. Prentice-Hall, Englewood Cliffs (1981)
2. Bondi, A.: Characteristics of scalability and their impact on performance. In: Proceedings of

the 2nd International Workshop on Software and Performance (WOSP 2000), pp. 195–203.
ACM, New York (2000)

3. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Model-ing Lan-
guage for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137–157
(2000)

4. Hull, S.: 20 Obstacles to Scalability. Queue 11(7), 20 (2013)
5. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering, An

Approach Based On Standards. In: Web Engineering, Modelling and Implementing Web
Applications, pp. 157–191. Springer, Heidelberg (2008)

6. Rossi, G., Pastor, O., Schwabe, D., Olsina, L.: Web Engineering: Modelling and
Implementing Web Applications. Springer (2007)

7. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using OOHDM.
In: Web Engineering, Modelling and Implementing Web Applications, pp. 109–155.
Springer, Heidelberg (2008)

8. Toffetti, G.: Web engineering for cloud computing (web engineering forecast: cloudy with a
chance of opportunities). In: Proceedings of the 12th International Conference on Current
Trends in Web Engineering (ICWE 2012), pp. 5–19. Springer, Heidelberg (2012)

	LiquidML: A Model Based Environment for Developing High Scalable Web Applications
	1 Introduction
	2 LiquidML Mod els
	3 LiquidML Envi ronment
	4 Conclusions
	References

