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ABSTRACT 29 

Agricultural activities can affect the delivery of nutrients to streams, riparian canopy cover, 30 

and the capacity of aquatic systems to process nutrients and sediments. There are few measures 31 

of nutrient uptake and metabolism from tropical or sub-tropical streams in general, and even fewer 32 

from tropical regions of South America. We examined ammonium (NH4
+) and soluble reactive 33 

phosphorus (SRP) retention in streams in Brazil and Argentina. We selected twelve streams with 34 

relatively little or extensive agricultural activity and conducted whole-stream nutrient additions and 35 

measurements of Gross Primary Production (GPP) and Ecosystem Respiration (ER). We used 36 

multiple linear regression to determine potential drivers of nutrient uptake metrics across the 37 

streams. Nutrient concentrations and retention differed significantly between land use categories. 38 

Both NH4
+ and SRP concentrations were higher in the agricultural sites (means of 161 and 495 µg 39 

L-1, respectively), whereas metabolic rates were slower and transient storage smaller. Our analysis 40 

indicated that agriculture increased ambient uptake lengths and decreased uptake velocities. The 41 

regression models revealed that ambient SRP had a positive effect on NH4
+ uptake and vice-42 

versa, suggesting strong stoichiometric controls. Drivers for nutrient uptake in streams with low-43 

intensity agriculture also included canopy cover, temperature, and ER rates. Nutrient assimilation 44 

in agricultural sites was influenced by a higher number of variables (GPP for SRP, and discharge, 45 

and transient storage for both nutrients). Our results indicate agricultural activity changes both the 46 

magnitude of in-stream nutrient uptake and the mechanisms that control its variation, with 47 

important implications for South American streams under agricultural intensification. 48 

 49 

Keywords: Agricultural watersheds; Aquatic metabolism; Low-order streams; Macronutrient 50 

assimilation; Nitrogen; Phosphorus. 51 
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INTRODUCTION 53 

 In a classic citation from the 1960s, Leopold et al. (1964) stated that rivers and streams are 54 

“the gutters down which flow the ruins of continents”. These aquatic systems are still frequently 55 

used as the final destination for point source and non-point source effluents from human activities, 56 

with negative implications for their structure and function. Because rivers and streams provide a 57 

wide range of direct and indirect benefits to humans (Arthington et al. 2015), there has been a 58 

paradigm shift in recent years towards direct estimations of those services rather than solely 59 

relying on traditional measures of water quality and biotic community structure for assessing lotic 60 

conditions (Cosgrove and Loucks, 2015). Ecosystem services provided by rivers and streams 61 

include the provision of drinking water, food, and water for industrial and agricultural activities, as 62 

well as navigation, recreation, and pollution abatement (Dodds et al. 2013). The retention and 63 

processing of organic matter, nutrients, and other pollutants by these water bodies reduce export 64 

of pollutants and thus mitigate their undesirable effects on downstream water quality (Peterson et 65 

al. 2001). 66 

Smaller streams can be especially active in nutrient cycling as compared to their high-order 67 

counterparts (Alexander et al. 2000, Yeakley et al. 2016). Phosphorus and nitrogen uptake rates in 68 

streams are associated with a suite of physical and chemical (e.g., sedimentation, adsorption and 69 

volatilization) and biological (e.g., assimilation and transformation by aquatic biota) processes 70 

(Valett et al. 2008, Potter et al. 2010, Webster et al. 2016). The contribution of biological activity to 71 

nutrient retention is expected to vary with rates of metabolic activity of the aquatic ecosystem 72 

(Fellows et al. 2006, Arce et al. 2014). Ecosystem metabolism consists of gross primary 73 

production (GPP) and ecosystem respiration (ER) and is most often derived from diel changes in 74 

dissolved oxygen concentrations. Chronic inputs of sewage effluent (Gücker et al. 2006, Sánchez-75 

Pérez et al. 2009) or nutrient enrichment from agricultural runoff (Gücker et al. 2009) alter GPP 76 

and ER and these effects have been well documented in rivers and streams. In contrast, fewer 77 

studies have focused on the relationship between metabolic activity and the capacity of streams to 78 

retain nutrients (but see Hall and Tank 2003, Dodds et al. 2008, and Stutter et al. 2010).  79 

Geomorphic, hydrologic, and hydraulic factors such as discharge, channel size, and 80 

transient storage are also relevant for nutrient uptake because they influence water residence time 81 
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and therefore the contact time between dissolved nutrients and reactive substrates (Valett et al. 82 

1996, Gücker and Boëchat 2004, Thomas et al. 2005, Ensign and Doyle 2006, Tromboni et al. 83 

2017, Cunha et al. 2018). Increasing hydrologic connectivity between the channel and the 84 

hyporheic zone and promoting hydrological exchange between the stream and its floodplain 85 

increase nutrient retention through biological assimilation, denitrification and/or adsorption to clay 86 

particles. Increasing the dimensions and activity of the hyporheic zones has been identified as 87 

important restoration techniques for nutrient-impacted streams (Klocker et al. 2009, Johnson et al. 88 

2016). 89 

Agricultural activities alter stream features associated with nutrient uptake. These impacts 90 

include increased loading of fine sediment (Naden et al. 2016), direct nutrient enrichment from 91 

fertilizer application and runoff (Mulholland et al. 2008, Connolly et al. 2015), and changes in 92 

canopy cover and riparian vegetation (Goss et al. 2014, Feijó-Lima et al. 2018). Significant 93 

reduction of nutrient retention efficiency in streams draining agricultural landscapes is expected 94 

(e.g., see Royer et al. 2006, Weigelhofer et al. 2013). Increases in incident light due to riparian 95 

deforestation, often associated with agricultural activity, can lead to higher rates of GPP and 96 

influence in-stream nutrient uptake (Feijoó et al. 2018). The loss of riparian vegetation also alters 97 

the temperature regime, supply of terrestrial leaf litter and large wood, and bank stability (Burrell et 98 

al. 2014), with significant consequences for aquatic metabolism and processing of phosphorus and 99 

nitrogen (Niyogi et al. 2007, Bleich et al. 2015). In addition, agricultural development often results 100 

in flashier hydrographs, and altered baseflow compared to undeveloped segments due to channel 101 

straightening, bank stabilization and hardening, water withdrawals, and water storage (Laws and 102 

Roth 2004, Poff et al. 2006). 103 

A reasonable number of investigations have already linked agricultural practices with lower 104 

capacity of whole-stream nitrogen and phosphorus uptake, but the vast majority of these were 105 

conducted in the Northern Hemisphere (e.g., Bernot et al. 2006, Mulholland et al. 2008, 106 

Weigelhofer et al. 2012). In developing countries like Brazil and Argentina, the impacts of 107 

agricultural expansion and increasing fertilizer use on the ability of streams to mediate external 108 

nutrient loads remains unclear (but see Gücker and Boëchat, 2019), and there is a pressing need 109 

to assess stream functioning across a gradient of nutrient supply and stream conditions. More 110 

This article is protected by copyright. All rights reserved.



specifically, many regions in South America have been largely converted to arable land for 111 

sugarcane, maize, coffee, cotton, rice, soybean, and vegetable production over the last few 112 

decades (Tabarelli et al. 2010, Piquer-Rodríguez et al. 2018, Rodriguez et al. 2018), establishing 113 

countries as Brazil and Argentina among the world leaders in agricultural production. 114 

Hydrologically, low-order streams respond rapidly to precipitation and extreme weather events, 115 

which are more intense and frequent in tropical and sub-tropical areas in comparison to higher 116 

latitude zones (Taniwaki et al. 2017). Also, the influence of land use changes on water quality 117 

might be especially relevant in the tropics because organic matter mineralization is more rapid, 118 

and erosion and sedimentation rates are usually greater in such regions (Connolly and Pearson 119 

2007, Rodrigues et al. 2018). An assessment of nutrient transformations in streams and rivers in 120 

South America is needed to guide water resources planning and land use management. Alteration 121 

of ecosystem processes is often influenced in regionally-specific ways. Currently, it is unclear how 122 

accurately conclusions from the United States and Europe extend to South-American water 123 

bodies. 124 

Here, we quantified the effects of agricultural activity on retention of ammonium (NH4
+) and 125 

soluble reactive phosphorus (SRP), and on metabolic rates in headwater streams located in 126 

South-America. Agricultural production in tropical and sub-tropical regions differs from temperate 127 

areas in that different crops are grown (e.g. sugar cane), different strains of cattle are used, 128 

tropical soils are poorer in nutrients, growing seasons are longer or year-round, and pests may be 129 

more intense. We conducted whole-stream nutrient additions and measured metabolic rates in 130 

twelve streams in Brazil and Argentina with contrasting land use in their watersheds. We used 131 

regression models to analyze potential drivers of nutrient uptake in these streams, including GPP 132 

and ER rates, and examined the influence of agricultural activity on these relationships. We 133 

hypothesized that the agricultural streams in South America would become less efficient in 134 

retaining NH4
+ and SRP, indicated by longer uptake lengths, lower areal uptake rates, and reduced 135 

uptake velocities compared to sites with low-intensity agriculture. We also expected that drivers of 136 

variation in nutrient uptake would differ among streams located in different land use categories 137 

(intensive, hereafter referred to as “agricultural”, or low-intensity agricultural) as they have 138 

contrasting conditions regarding water chemistry, metabolic rates and geomorphological features.  139 

This article is protected by copyright. All rights reserved.



METHODS 140 

Study sites 141 

We studied reaches of 12 streams located in Minas Gerais and São Paulo States (Brazil) 142 

and Buenos Aires Province (Argentina), with four streams in each state/province (two agricultural 143 

and two with low-intensity agriculture). Photographs of each stream are available as online 144 

Supplementary Material. We determined the relative composition of land use for the watersheds of 145 

each stream using ArcGIS 10.1 (ESRI) geographic information systems (GIS) software. The 146 

watershed boundaries were delineated using flow path analysis of digital elevation models and 147 

1:25,000 topographic maps. The percentage of land use in each watershed was determined using 148 

maximum likelihood classification with data from U.S. Geologic Survey (LANDSAT 8 Thematic 149 

Mapper, obtained at: https://earthexplorer.usgs.gov/) for the following classes: water, agriculture, 150 

urban area and natural vegetation. In general, half of the streams were predominantly agricultural, 151 

with intensive agriculture on 37-65% of the catchment area and low contributions of natural 152 

vegetation (25-44%). The other half was less impacted and with greater contributions of natural 153 

areas (55-87% natural vegetation; 0-28% agricultural area with low mechanization and also 154 

smaller fields interspersed with pasture and forest), hereafter referred to as low-intensity 155 

agricultural streams (Table 1). The studied aquatic systems spanned a wide range of water depths 156 

(averages from 0.03-0.36 m) and wetted widths (from 0.63-2.81 m) (Table 1). The Brazilian 157 

streams had denser riparian vegetation (canopy cover >60%), while the Argentinian ones were 158 

less shaded (canopy cover <20%), in accordance with the terrestrial biome in which they are 159 

embedded. Fine sediments (e.g., silts and clay) were more abundant in the Argentinian sites, 160 

whereas sand was predominant in the Brazilian sites. 161 

Four streams are located in São Paulo State in the São Carlos municipality and 162 

representative of the Cerrado biome. The climate is tropical semi-humid with dry winters (Aw 163 

according to Köppen-Geiger classification, Kottek et al. 2006). Total precipitation is usually about 164 

1,300 mm year-1, with drier periods from April to September, and mean air temperatures usually 165 

range from 19-25oC. Macrophytes were absent in the São Paulo streams, with sand and silt as the 166 

dominant substrate types. The streams were typical meandering channels with alternating runs 167 

and pools. Benthic chlorophyll-a is usually not greater than ~35 mg m-2 (Saltarelli et al. 2018) Four 168 
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other sites are located in the State of Minas Gerais, in the Campo das Vertentes region 169 

(municipalities of São João del-Rei, Tiradentes, Prados, and Resende Costa), in the 170 

Cerrado/Atlantic Rainforest transition. Climate type is humid subtropical climate (Cwa, Köppen), 171 

also with drier months from April to September. Total precipitation is higher in comparison to São 172 

Paulo sites (~1,470 mm year-1) and air temperatures typically vary between 16-22oC. There were 173 

no macrophytes in these Minas Gerais run-pool type mountain streams, and dominant sediments 174 

ranged from silt to medium sands in pools, and fine sands to cobbles in runs. Benthic chlorophyll-a 175 

in the studied streams ranges from 6 to 54 mg m-2 (unpublished data).  176 

Finally, four streams are located in the Pampas biome, Buenos Aires Province, which has 177 

39% of total Argentinian population and where more than 50% of country’s industrial activities 178 

(e.g., metal and leather production) are established (INDEC, 2010). These streams have low slope 179 

gradients, but limited connection with wetlands along the floodplains and riparian corridors. Also, 180 

the streams are characterized by the lack of riparian forest vegetation (i.e., grasslands 181 

predominate on the banks), low current velocities, alternating wet and dry periods, and the 182 

development of dense and rich macrophyte communities, mainly palustrine species (Giorgi et al. 183 

2005; Feijoó and Lombardo 2007). 184 

All field activities were carried out two times in each stream to roughly encompass 185 

seasonal variations in precipitation and air temperatures, including dry and rainy periods. Besides 186 

general characterization of the streams, we conducted nutrient additions and whole-stream 187 

metabolism estimates (see details below) over the year 2017: January and July (São Paulo), May 188 

and August (Minas Gerais), and February and September (Buenos Aires). 189 

 190 

General characterization of the streams 191 

We estimated the canopy cover percentage (CC, %) in each stream reach using a concave 192 

densiometer (Forestry Suppliers Inc., Jackson, MS, USA) following Lemmon (1956, 1957).  We 193 

used salt dilution gauging (Webster and Valett, 1996) to quantify stream discharge (Q, L s-1) and 194 

mean water velocity (v, m s-1) within each experimental reach. Salt breakthrough curves used in 195 

the discharge calculations were also analyzed using a one-dimensional advection-dispersion 196 

model (OTIS, Runkel 1998) to estimate the cross-sectional area of the stream channel (A, m2) 197 
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using direct measures of wetted widths (w) and depth (h), the cross-sectional area of the transient 198 

water storage zone (AS, m2) and the exchange rate between the channel and the transient storage 199 

zone (α, s-1). Using the OTIS model outputs, we also calculated the ratio between the cross-200 

section of the transient storage zone and advective channel (AS/A), as well as the storage zone 201 

exchange rate (α).   202 

 203 

Aquatic metabolism estimation 204 

We estimated whole-stream metabolism for each stream reach, always under stable base-205 

flow and clear sky/sunny weather conditions, by measuring diel changes in dissolved oxygen 206 

concentration (DO), water temperature, and light intensity at 10-min intervals over 1- to 3-d 207 

deployment periods with an optical dissolved O2 and temperature probe (Onset-HOBO® U26-001) 208 

and a light logger (Onset-HOBO® UA-002- 64, Onset Computer Corporation, Bourne, 209 

Massachusetts, USA).  Oxygen probes were calibrated to water-saturated air prior to deployment, 210 

and post deployment calibrations were used to correct sensor drift. While longer deployments 211 

would have been optimal, the threat of theft or vandalism in these areas precluded extended 212 

unattended deployments. We estimated daily gross primary production (GPP), net primary 213 

production (NPP) and ecosystem respiration (ER) rates and the gas-exchange coefficient (KO2) by 214 

fitting a one-station model to diel O2 curves, following procedures from Riley and Dodds (2013) 215 

and Dodds et al. (2013). Values of barometric pressure were obtained from nearby climatologic 216 

stations for each stream.  217 

 218 

Stream nutrient uptake  219 

We used the Tracer Additions for Spiraling Curve Characterization (TASCC) approach 220 

(Covino et al. 2010) to estimate ambient uptake metrics from a pulsed nutrient addition. We 221 

calculated the ambient uptake metrics: uptake length (Swamb), areal uptake rate (Uamb), and uptake 222 

velocity (Vfamb) for NH4
+ and SRP following the nutrient spiraling concept (Stream Solute 223 

Workshop, 1990). We simultaneously added NH4
+ (as NH4Cl), and SRP (as K2HPO4), both as 224 

bioavailable reactive tracers to characterize nutrient dynamics, and Cl− (as NaCl) as a 225 

conservative tracer to account for dilution and to characterize stream hydrodynamics. In our study, 226 
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we used pulsed additions which estimate ambient uptake rates with results that are comparable to 227 

multiple level nutrient additions or isotopic methods (Trentman et al. 2015) to characterize general 228 

patterns of nutrient retention across the studied sites and obtain uptake metrics to compare the 229 

extent of agricultural influence. 230 

The added mass of the conservative tracer was calculated prior to each experiment in 231 

order to increase in-stream electrical conductivity (EC) to detectable levels (i.e., 5–10-fold of 232 

background EC), while the added mass of nutrients was calculated to raise in-stream 233 

concentrations to promote saturation (Covino et al. 2010). For each experiment, we dissolved all 234 

salts in a 5 L bucket with stream water and then poured the solution carefully into a well-mixed run 235 

section of the stream at the top of the experimental reach over one minute. EC was measured 236 

over the experiment using a multiparameter probe at the downstream end of the reach (Model HI 237 

9829, HANNA Instruments, Woonsocket, RI, USA). At this station, we took water samples over the 238 

full pulse, with sampling frequency as a function of EC rate of rise or decline, resulting in 21–26 239 

samples per experiment, in order to obtain well-characterized breakthrough curves. Immediately 240 

before the additions, we collected three water background samples to determine ambient nutrient 241 

concentrations (Camb). All water samples were filtered immediately upon collection (GF/C Glass 242 

Microfiber Membranes, 0.45 µm, Whatman International, Kent, UK) and frozen until analysis. 243 

Nutrient concentrations were determined, always in triplicates, via colorimetry methods. The 244 

analytical method used for NH4
+ (as N) was based on Solórzano (1969), modified for a 7 mL 245 

sample volume, and the one used for SRP (as P) followed APHA (2012). The detection limits for 246 

NH4
+ and SRP analyses were 1.7 and 0.7 µg L-1, respectively 247 

 248 

Statistical analyses 249 

For statistical analyses, data from streams were pooled regardless their location in 250 

Brazilian or Argentinian regions, but considering agricultural influence (i.e., land use) as an 251 

independent, categorical variable. The discrimination between low-intensity agricultural and 252 

agricultural sites was based on the percentages of land use categories in their respective drainage 253 

areas (Table 1). All data were transformed [ln (data+1)] to meet normality assumption. Differences 254 

among low-intensity agricultural and agricultural streams regarding their physical, chemical, and 255 
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biological variables, as well as their nutrient uptake metrics and metabolism, were tested through 256 

nested design general linear mixed model (GLMM) with a confidence level of 95% (p < 0.05). 257 

Here, we considered “stream” nested in “land use”, and “region” as a random factor. We 258 

performed multiple linear regressions using ambient uptake metrics for NH4
+ and SRP as 259 

dependent variables (only those metrics with significant differences between low-intensity 260 

agricultural and agricultural streams, based on the previous GLMM). The tested independent 261 

variables were relevant uptake drivers based on a literature review (e.g., Dodds et al. 2002, Hall 262 

and Tank 2003, Gibson et al. 2015) and included all variables shown in Table 2 (AS/A, α, v, Q, 263 

NH4
+, Camb, SRP Camb, GPP, ER, DO, T, and CC). We used a backward stepwise strategy to select 264 

the most influential variables (p < 0.05 and adjusted R2 ≥ 0.60) and controlled for multicollinearity 265 

through the VIF (Variance Inflation Factor) calculation in each model. We carried out all statistical 266 

analyses with Statistica 10 (Statsoft, Tulsa, OK, USA). 267 

 268 

RESULTS 269 

Streams’ physical and chemical characteristics 270 

The raw dataset used in this paper is fully available as online Supplementary Material. 271 

Low-intensity agricultural and agricultural sites were significantly different (p < 0.05, GLMM) with 272 

respect to some of the variables analyzed (Table 2). Low-intensity agricultural sites had 273 

significantly higher AS/A ratios (p < 0.05) than agricultural ones. Conversely, ambient NH4
+ and 274 

SRP concentrations were about 3.1 and 9.4 times higher (p < 0.05) in agricultural sites. Mean daily 275 

dissolved oxygen and water temperature were relatively similar among sites (Table 2). Canopy 276 

cover percentages differed among streams, but not between the land use categories (p = 0.072), 277 

with averages around 60%. Mean discharges were around 11.2 L s-1 in agricultural sites and 19.2 278 

L s-1 in low-intensity agricultural sites, with significant difference among land used types (p < 0.05), 279 

while average water velocities were similar in low intensity agricultural and agricultural sites (0.09 280 

m s-1) (Table 2). 281 

 282 

 283 

 284 
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Ecosystem metabolism and nutrient dynamics 285 

As for the metabolic rates, ER was 3.1 times greater in the low-intensity agricultural sites 286 

than in agricultural sites (p < 0.05, Table 2). Rates of GPP were not affected by land use (p > 287 

0.05). All streams were net heterotrophic, with GPP:ER ratios varying between 0.0 and 0.27 and 288 

0.0 and 0.57 in the agricultural and low-intensity agricultural streams, respectively. In general, 289 

ambient uptake lengths were longer, and ambient uptake rates and velocities were lower in 290 

agricultural streams (Figure 1). Both Swamb for NH4
+ and SRP were significantly different (p < 0.05) 291 

among low-intensity agricultural and agricultural sites (mean Swamb values for NH4
+ and SRP were 292 

about three times shorter in low-intensity agricultural sites) (Figure 1A). Uamb values were not 293 

statistically different among land use categories (p = 0.942 and 0.667, respectively for NH4
+ and 294 

SRP) (Figure 1B). Vfamb was significantly different between land use categories for SRP but not for 295 

NH4
+, with low-intensity agricultural streams removing SRP more than two times more efficiently 296 

than agricultural streams (average Vfamb 22 versus 9 mm min-1, respectively) (Figure 1C). 297 

 The best regression models (p < 0.05 and adjusted R2 ≥ 0.60) revealed different predictors 298 

for nutrient retention metrics associated with agricultural and low-intensity agricultural sites (Tables 299 

3 and 4). In general, ambient SRP concentration had a strong positive effect on NH4
+ uptake and 300 

ambient NH4
+ concentrations had the same effect on SRP uptake. Overall, our regression models 301 

indicated a greater number of variables significantly related with uptake variation in agricultural 302 

sites compared to low-intensity agricultural sites (Table 5). 303 

Temperature and canopy cover were the dominant predictors and negatively associated 304 

with NH4
+ retention in low-intensity agricultural sites (Table 3, adjusted R2 = 0.61).  Regression 305 

models addressing NH4
+ variation in agricultural sites (adjusted R2 ranging from 0.82 to 0.91) 306 

suggested that canopy cover and a range of hydraulic/geomorphological variables were important 307 

explanatory variables (e.g., AS/A and α had positive effects, while velocity and dissolved oxygen 308 

had negative ones). In contrast, SRP retention in low-intensity agricultural sites was more closely 309 

associated with variation in ER rates through a positive relationship (Table 4, adjusted R2 of 0.61). 310 

Finally, SRP retention in agricultural streams (adjusted R2 from 0.69-0.88) was positively 311 

associated with dissolved oxygen, GPP, AS/A, discharge and canopy cover. 312 

 313 
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DISCUSSION 314 

Trends in South American stream function from a global perspective 315 

Our experimental approach focused on the impacts of agriculture in areas of rapid 316 

development in Brazil and Argentina, regardless the streams’ location in different biomes. We 317 

acknowledge that the small sample size of twelve streams of our study does not allow for testing 318 

biome-driven variations in addition to tests of land use effects. Moreover, the studied streams were 319 

representative of areas with significant agricultural land conversion in South America, for which 320 

scarce information is available to date. The TASCC (Covino et al. 2010) approach we followed 321 

explores the pattern in Sw that occurs as nutrient concentrations rise and fall across the 322 

downstream breakthrough curve and uses that pattern to extrapolate estimates of Sw under 323 

ambient nutrient concentrations thus avoiding, in theory, criticisms associated with traditional 324 

nutrient enrichment methods (see Earl et al. 2007). 325 

The effects of intensive agricultural activity on our study streams in Brazil and Argentina 326 

were clear and included significant nutrient enrichment, changes in geomorphic characteristics, 327 

and shifts in metabolic rates. Agricultural sites had ambient nutrient concentrations (Table 2) that 328 

exceeded water quality reference conditions and guidelines established in South America (e.g., 329 

Brasil 2005). NH4
+ concentrations expected in reference tropical rivers and streams in São Paulo 330 

State, for example, were estimated between 60-100 µg L-1 by Cunha et al. (2011) and the 331 

concentrations in our study agricultural streams were frequently higher (see Feijoó and Lombardo 332 

2007 for nutrient baseline conditions in Argentinian streams). Nutrient enrichment of agricultural 333 

streams from fertilizer runoff is well documented in North America (e.g. Turner and Rabalais, 1991, 334 

Mulholland et al. 2008), but our understanding of fertilizer impacts in South America remains 335 

limited (Martinelli and Filoso 2008). This is because different crops are grown than in more studied 336 

areas, soil fertility is lower requiring more fertilizer input, and production can occur year round. Our 337 

results could serve as a starting point to define nutrient abatement goals in agricultural streams. 338 

The crops in the watersheds examined here mainly consisted of sugarcane, soybean, and 339 

vegetable production, which demand significant nitrogen, phosphorus and potassium 340 

supplementation to increase productivity (Silva et al. 2017). Currently, Brazil and Argentina still 341 

need more detailed management strategies for mitigating the detrimental effects of agricultural 342 
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development and expansion on critical ecosystem services, such as drinking water supply (Rada 343 

2013, Modernel et al. 2016).  344 

The studied agricultural streams also had lower ratios of transient storage areas to stream 345 

channel cross sectional area (AS/A, Table 2) that may be important predictors of ecosystem 346 

function in South American streams (Gücker and Boëchat 2004, Gücker et al. 2009). Ensign and 347 

Doyle (2006) provided a global synthesis of the nutrient spiraling literature and highlighted that 348 

AS/A represents generic transient storage information and that limited evidence of a causative 349 

relationship between transient storage and nutrient uptake was available in the analyzed datasets. 350 

The authors reinforced the importance to refine these data and characterize the mechanisms of 351 

storage (e.g., dead zones, biofilms or hyporheic contribution). Our study did not address these 352 

mechanisms, but as transient storage represented by AS/A values correlates with the residence 353 

time of water, we assumed less exposure of dissolved nutrients to biochemically reactive 354 

substrates in the case of our agricultural sites. Similarly, Sheibley et al. (2014) reported small 355 

amounts of transient storage in seven agriculturally influenced streams in the United States and 356 

found AS/A values between 0.020 and 0.111, which are even lower than our values (Table 2). 357 

Values of AS/A reported by Gücker et al. (2009) and Tromboni et al. (2017) for agricultural 358 

Brazilian Cerrado and pristine Atlantic rainforest streams were in the range of the values found in 359 

the present study (from 0.12 to 0.31, and from 0.04 to 0.61, respectively). 360 

In contrast to the global trend, agricultural streams in our study had lower rates of GPP and 361 

ER than their low-intensity agricultural counterparts. Silva-Junior (2016) performed a systematic 362 

review to evaluate land use effects on stream metabolism worldwide and found that most studies 363 

reported increases in GPP and ER rates associated with agriculture. While Gücker et al. (2009) 364 

found lower rates of ER in agricultural Cerrado streams as a result of increased bottom shear 365 

stress that decreased benthic microbial biomass in the central streambed, we did not find 366 

significant differences in current velocity between agricultural and low-intensity agricultural streams 367 

in the present study. We suspect this counterintuitive trend in our streams is in part due to the lack 368 

of a significant difference in variables expected to increase metabolic rates (temperature and 369 

canopy cover) between agricultural and low-intensity agricultural sites. Particularly, the lack of 370 

differences in canopy cover between the studied stream types probably influenced our results, 371 
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since canopy cover significantly drives metabolic rates (Bunn et al. 1999). We also speculate that 372 

higher ER rates in the low-intensity agricultural sites result from higher channel complexity and 373 

potential differences in the composition and abundance of benthic biofilms (e.g., algae, bacteria 374 

and fungi) (Saltarelli et al. 2018), although we did not include biofilm characteristics in this study. 375 

Also, herbicides and siltation can be an important issue in agricultural streams as turbidity can 376 

absorb light and sediments can scour algae, as highlighted in other studies (e.g., see Wantzen 377 

and Mol 2013). 378 

  The low-intensity agricultural systems we studied in South America had shorter ambient 379 

uptake lengths compared to our agricultural sites, and to streams in North America, Europe or 380 

Oceania with similar ranges of stream discharge (e.g., Niyogi et al. 2004, Bernot et al., 2006; 381 

Gücker and Pusch, 2006). In their review of 969 nutrient uptake measurements, Hall et al. (2013) 382 

observed that nutrient uptake lengths were generally longer in human-impacted streams than in 383 

undisturbed systems. The same authors used this global dataset to perform scaling of uptake 384 

length with specific discharge (discharge divided by stream width) to examine the relationships 385 

between stream size and Sw in a standardized way. When we plotted our data together with the 386 

same dataset from Hall et al. (2013), we observed our low-intensity agricultural sites had 387 

proportionally shorter Swamb values, falling below their regression lines of both NH4
+ and SRP 388 

Swamb against specific discharge. In this study, we were not able to identify the causes of the high 389 

uptake efficiency of our low-intensity agricultural streams. We speculate this could be related with 390 

the relatively higher and more stable temperatures and insolation throughout the year (see Boulton 391 

et al. 2008) in comparison to the streams reported by Hall et al. (2013), which are mostly from the 392 

Northern hemisphere. This would lead to more stable biological communities, as well as to 393 

possible differences in stoichiometry and nutrient limitation (e.g., Tromboni et al. 2018).  394 

 395 

Agricultural effects on nutrient retention in South American streams 396 

 Ambient uptake metrics suggested that nutrient retention was lower in our agricultural sites 397 

than in low-intensity agricultural sites, with statistically significant differences for Swamb for NH4
+ 398 

and SRP (Figure 1A) and Vfamb for SRP (Figure 1C). In our study, the uptake metrics (longer Swamb 399 

for NH4
+ and SRP and lower Vfamb for SRP) generally suggested low nutrient retention when 400 
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compared to metrics reported for more pristine sites in the Brazilian Coastal Atlantic Forest 401 

(Tromboni et al. 2017, Tromboni et al. 2018) or even for chronically nutrient-rich Pampean streams 402 

in Argentina (García et al. 2017). In general, lower nutrient uptake capacity in agricultural streams 403 

than in less impacted/pristine streams can be attributed to i) saturation of the biological community 404 

(Bernot et al., 2006); ii) reduced hydrological complexity of the channel (Argerich et al. 2011; 405 

Sheibley et al., 2014); iii) loss of riparian vegetation (Weigelhofer 2017); iv) restricted hyporheic 406 

water exchange with the sediments (Macrae et al., 2003); and v) reduced adsorption capacities of 407 

the sediments (Stutter and Lumsdon, 2008). A rapid development of agriculture has been 408 

occurring in South America in recent decades (Ceddia et al. 2013, Garrett et al. 2018) and specific 409 

climate/hydrological features make this region more vulnerable to the detrimental effects of 410 

croplands (Taniwaki et al. 2017). As our study suggested that agricultural streams are generally 411 

less nutrient retentive, progressive agricultural intensification or expansion is expected to increase 412 

the role of streams in watershed nutrient export. 413 

In our study, the regression models allowed us to recognize three main factors accounting 414 

for differences in nutrient retention among our low-intensity agricultural and agricultural sites: 415 

background nutrient concentrations (water chemistry), hydrological and transient storage-related 416 

variables (hydro geomorphology), and metabolism (biological activity). To the best of our 417 

knowledge, our study is among the first to identify and integrate these relationships in South-418 

American streams, thereby providing important information for mitigation and restoration efforts in 419 

this understudied region. 420 

 Interestingly, the number of potential drivers of nutrient retention was smaller in low-421 

intensity agricultural sites in our study than in agricultural sites, in which a large number of 422 

variables, including ambient nutrient concentrations, hydraulic/geomorphic variables, and 423 

metabolic rates affected uptake metrics (Tables 3-5). Thus, if agricultural activities in the low-424 

intensity agricultural catchments were intensified, the controls of nutrient uptake and associated 425 

mechanistic relationships to be considered in restoration and mitigation efforts may become more 426 

complex.  427 

The uptake metrics for NH4
+ (Swamb) and SRP (Swamb and Vfamb) indicated that each of 428 

these nutrient forms impacted the cycling of the other in our study streams. For the NH4
+ Swamb, for 429 
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example, models suggested that ambient SRP had a positive effect on retention (i.e. shortening 430 

the uptake length) in both land use categories. Therefore, we observed a strong relationship 431 

between uptake metrics of both NH4
+ and SRP and ambient concentrations of the other element 432 

(i.e., ambient SRP concentration effects NH4
+ uptake and vice versa). This effect suggests N and 433 

P co-limitation in these water bodies, which has been previously reported for streams, but mainly 434 

in undisturbed systems (e.g., Schade et al 2011, Appling et al. 2014, Finkler et al. 2018).  435 

However, strict co-limitation by N and P in our streams seems unlikely based on background 436 

nutrient concentrations (Table 2). We thus suspect that our results suggest that differential 437 

availability of nitrogen forms (i.e. NO3 or NH4) complicates judgments of nutrient limitation based 438 

on simple ratios of dissolved inorganic nutrients. These results suggest that increasing NH4
+ 439 

availability can stimulate phosphorus uptake even when dissolved inorganic nitrogen is 440 

stoichiometrically abundant. 441 

Several studies have documented the effects of agricultural land use on the size of 442 

transient storage zone (e.g., Bernot et al., 2006, Weigelhofer 2017). Our results support studies 443 

(e.g., Runkel 1998; Webster et al. 2003) where AS/A values were significantly higher in low-444 

intensity agricultural sites (Table 2, p < 0.05) and agricultural sites usually have lower AS/A 445 

associated with increased siltation, for example. However, this does not mean that 446 

hyporheic/surface water dimensions and activity do not influence nutrient uptake in agricultural 447 

streams. To the contrary, AS/A and α values were positively associated with NH4
+ and SRP 448 

removal in the agricultural streams in South America, in general decreasing Swamb and increasing 449 

Vfamb. Transient storage zones retain water in eddies, pools, and the hyporheic zone, and storage 450 

zone size is related to stream morphology (e.g., swamp, meandering or run streams). Stream 451 

hydromorphological features can influence the magnitude of nutrient retention (Gücker and 452 

Boëchat 2019), with hydrological retention in metabolically active zones providing additional 453 

opportunity for microbial assimilation, thereby increasing nutrient removal (Ensign and Doyle 2006; 454 

Webster and Valett 2007). Interestingly, SRP retention was related to discharge in our agricultural 455 

streams (Table 4). As agriculture is expected to indirectly change the hydrological regime through 456 

modifications of different components of the hydrological cycle (e.g., surface runoff and 457 
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interception) (Mello et al. 2018), we expect implications for SRP removal as such components 458 

directly influence discharge. 459 

In the agricultural sites, we also observed a positive correlation between NH4
+ retention and 460 

the storage zone exchange coefficient (α), which represents the mass-transfer coefficient of water 461 

between the channel and the storage zone (Tables 3 and 5). Greater nutrient retention as α 462 

increases is consistent with the potential, but limited role of storage exchange in agricultural 463 

streams (Sheibley et al.2011). The low storage zone and presumable shorter residence times 464 

typical of these streams suggest that NH4
+ retention can be affected by physical transport and 465 

biochemical processing in storage zones. In fact, in other studies, rates of sediment nitrification 466 

and denitrification were higher in agricultural than in undisturbed streams (Kemp and Dodds, 2002; 467 

Von Schiller et al. 2009), probably because of the long-term N loading and accumulation in 468 

groundwater, organic-rich sediments, and aquatic vegetation that are commonly present in 469 

agricultural watersheds.  470 

For the low-intensity agricultural sites, canopy cover and water temperature increased 471 

Swamb for NH4
+. Such negative influence on retention suggests that NH4

+ uptake was favored by 472 

light availability, although GPP was not a significant predictor in our models. Regarding the SRP 473 

uptake in low-intensity agricultural streams, ER was positively associated with retention 474 

(increasing Vfamb, Table 4). Respiration influences on SRP uptake have also been described in 475 

North-American streams (e.g., Gibson and O’Reilly 2012). In our low-intensity agricultural sites, 476 

especially those in Brazil, heterotrophic assimilation associated with leaf litter decomposition is 477 

probably an important pathway for microbial phosphorus removal, which in turn may be affected by 478 

temperature and precipitation patterns (Tonin et al. 2017). GPP was not related to SRP retention 479 

in our low-intensity agricultural sites, though this has been reported in the literature (e.g., Withers 480 

and Jarvie 2008, Rasmussen et al. 2011). We suspect this discrepancy is due to light limitation 481 

(especially in the Brazilian streams where canopy cover values can exceed 90%). Correlations of 482 

Swamb and Vfamb of SRP with GPP, and not with ER as in the low-intensity agricultural streams, 483 

pointed to autotrophic phosphorus assimilation in the studied agricultural streams. 484 

 485 

 486 
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CONCLUSIONS 487 

 Recent discussions on the water-energy-food nexus (e.g., Amorim et al. 2018, Reddy et al. 488 

2018) have been including the improvement of agriculture management and practices as a key 489 

element to minimize global risks and promote water quality, ecosystem services, and food 490 

security. Many regions in Brazil and Argentina have been undergoing significant expansion of the 491 

agricultural frontier into natural biomes and rapid conversion of the original vegetation to pastures 492 

and croplands. Further, many catchments with low-intensity, rural farming in both countries may 493 

undergo agricultural intensification in the next years, with potential significant implications for 494 

stream ecosystem functioning. Many aspects of how such land use changes will impact ecosystem 495 

function and structure in these areas are unknown. Specifically, limited information is available 496 

regarding how in-stream nutrient retention can be affected by fertilizer inputs, geomorphic 497 

changes, hydrological alterations and other modifications derived from agricultural land use.  498 

 Agricultural streams in Brazil and Argentina exhibited key differences in comparison to the 499 

examined low-intensity agricultural water bodies. The former had more nutrient-enriched 500 

conditions, less hydrological retention, and apparently less microbial activity as suggested by 501 

lower metabolic rates. Agriculture had an overall negative effect on nutrient processing and 502 

retention, with overall longer ammonium and phosphate uptake lengths and slower phosphate 503 

uptake velocities in agricultural streams. Moreover, the drivers of nutrient retention differed 504 

between agricultural and low-intensity agricultural streams, and a larger number of factors affected 505 

nutrient retention in our agricultural streams, including factors such as hydraulic variables, GPP 506 

and dissolved oxygen concentrations, that were not important in low-intensity agricultural streams. 507 

As our dataset is admittedly limited, more studies are required to delineate the nutrient retention 508 

capacities of streams in these regions and how they are influenced by agriculture. As the world 509 

human population and standard of living grows, there will be even more demand for crops. Much 510 

of this growth in demand will occur in tropical and sub-tropical areas, thus we need more data 511 

globally in these areas with rapid land use conversion to inform their conservation and restoration. 512 

 513 

 514 

 515 
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Table 1. Characteristics of the study streams in Brazil and Argentina, including their geographic 810 

coordinates, average depths and widths, as well as percentages of main land uses in their 811 

respective catchments. Other land use categories not shown include urban areas, open spaces, 812 

and water bodies. 813 

Site name Location 
Geographic 
coordinates 

Depth 
(m) 

Width  
(m) 

Land use 
Agricultural 

areas  
(%) 

Natural 
areas 
(%) 

Broa 

São Paulo, 

Brazil 

22°11'40.93"S 

47°53'55.78"W 
0.31 0.88 0 87 

Espraiado 
21°58'46.75"S 

47°52'23.11"W 
0.23 0.63 11 86 

Mineirinho 
22°00'12.78"S 

47°55'40.82"W 
0.03 1.01 41 38 

Canchim 
21°57'54.69"S 

47°50'38.02"W 
0.04 1.19 65 32 

Bichinho 

Minas 

Gerais, 

Brazil 

21°06'08.44''S 

44°06'40.12''W 
0.14 1.76 23 59 

Calçada dos 

Escravos 

21°04'38.49''S 

44°10'23.54''W 
0.13 1.42 19 76 

Correias 
20°59'15.17''S 

44°11'38.43''W 
0.16 1.89 47 35 

Nelson 
21°03'21.59''S 

44°11'33.93''W 
0.19 1.59 47 44 

Chubichaminí 

Buenos 

Aires, 

Argentina 

35°07'24.09"S 

57°41'22.52"W 
0.31 1.89 22 66 

Cajaravilla 
35°02'53.30"S 

57°48'38.81"W 
0.36 2.81 28 55 

Del Gato 
34°58'52.79"S 

58°03'13.14"W 
0.20 1.64 45 25 

Carnaval 
34°55'02.74"S 

58°06'29.69"W 
0.24 1.47 37 30 
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Table 2. Mean ± standard errors of physical, chemical and biological variables in the study 816 

streams in Brazil and Argentina at low-intensity agricultural and agricultural sites. Although mean ± 817 

standard errors of the original data are shown here, all data were transformed [ln (data+1)] to meet 818 

the normality assumption for GLMMs. Results of GLMMs are the effects stream nested in land 819 

use, and land use. The symbol * indicates significant differences (p < 0.05) 820 

Variable 
Low-intensity 

agricultural sites 

Agricultural 

sites 

p value 

Effect  

stream (land use) 

Effect  

land use 

AS/A 0.387 ± 0.067 0.187 ± 0.041 0.964 0.028* 

α (s-1) 0.007 ± 0.004 0.062 ± 0.056 0.502 0.359 

v (m s-1) 0.09 ± 0.03 0.09 ± 0.02 0.023* 0.626 

Q (L s-1) 19.2 ± 6.0 11.2 ± 3.4 <0.001* 0.021* 

NH4
+ Camb (µg L-1) 52.6 ± 19.4 161.3 ± 74.6 0.026* 0.004* 

SRP Camb (µg L-1) 93.8 ± 39.7 494.9 ± 191.0 0.086 <0.001* 

GPP (gO2 m-2 d-1) 2.2 ± 1.2 0.8 ± 0.6 0.771 0.335 

ER (gO2 m-2 d-1) 13.5 ± 4.4 4.4 ± 1.6 0.251 0.033* 

DO (mg L-1)# 6.6 ± 0.4 7.2 ± 0.6 0.899 0.610 

T (oC) 18.5 ± 1.0 18.8 ± 1.0 0.991 0.820 

CC (%) 60.3 ± 12.6 58.6 ± 11.0 <0.001* 0.072 

#During nutrient addition period; AS/A: storage zone area to stream cross-sectional area ratio, α: 821 

storage rate, v: water velocity, Q: discharge, NH4
+ Camb: ambient ammonium, SRP Camb: ambient 822 

soluble reactive phosphorus, GPP: gross primary production, ER: ecosystem respiration, DO: 823 

dissolved oxygen, T: water temperature, CC: canopy cover  824 
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Table 3. Best multiple linear regression models (p < 0.05 and adjusted R2 ≥ 0.60) for the ambient 825 

ammonium (NH4
+) uptake metric Swamb as function of environmental variables for the low-intensity 826 

agricultural and agricultural stream sites in Brazil and Argentina. Swamb was significantly different 827 

for NH4
+ between land use categories (see Figure 1). All data were ln-transformed [ln(x + 1)]. 828 

Regression coefficients (B), Variance Inflation Factor (VIF), Standard Errors (SE), p values and 829 

adjusted R2 are shown for each case. 830 

Land use 

category 

Dependent  

variable 

Independent  

variable 
B VIF SE 

p 

value 
Adj. R² 

 

 

Low-intensity 

agricultural 

NH4
+

 Swamb 

Intercept 

SRP Camb 

T 

-5.26 

-0.18 

3.14 

-- 

1.89 

1.89 

2.30 

0.06 

0.822 

0.048 

0.030 

0.008 

0.61 

Intercept 

CC 

T 

-3.65 

0.15 

2.25 

-- 

1.16 

1.16 

1.84 

0.06 

0.59 

0.047 

0.032 

0.007 

0.61 

 

 

 

Agricultural 

Intercept 

AS/A  

Vel 

SRP Camb 

4.92 

-3.73 

1.27 

-0.56 

-- 

1.31 

1.23 

1.40 

0.76 

1.19 

0.29 

0.08 

<0.001 

0.020 

0.005 

<0.001 

0.91 

Intercept 

AS/A 

DO 

CC 

α 

-2.29 

-5.24 

2.55 

0.59 

-4.77 

-- 

1.59 

1.10 

1.35 

1.22 

1.39 

1.89 

0.70 

0.13 

1.43 

0.159 

0.039 

0.015 

0.007 

0.020 

0.82 

Camb: nutrient ambient concentrations; T: temperature; CC: canopy cover; AS/A: ratio between the cross-831 

section of the transient storage zone and advective channel; Vel: water velocity; DO: dissolved oxygen; α: 832 

storage zone exchange rate 833 

 834 
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Table 4. Best multiple linear regression models (p < 0.05 and adjusted R2 ≥ 0.60) for the ambient 836 

soluble reactive phosphorus (SRP) uptake metrics Swamb and Vfamb as function of environmental 837 

variables for the low-intensity agricultural and agricultural stream sites in Brazil and Argentina. 838 

Swamb and Vfamb were significantly different for SRP between land use categories (see Figure 1). 839 

All data were ln-transformed [ln(x + 1)]. Regression coefficients (B), Variance Inflation Factor 840 

(VIF), Standard Errors (SE), p values and adjusted R2 are shown for each case. 841 

Land use 

category 

Dependent  

variable 

Independent  

variable 
B VIF SE p value Adj. R² 

 

 

Low-intensity 

agricultural 

SRP Swamb 

Intercept 

NH4
+

 Camb 

SRP Camb 

5.05 

-0.57 

0.20 

-- 

1.11 

1.33 

0.30 

0.08 

0.07 

<0.001 

<0.001 

0.018 

0.84 

SRP Vfamb 
Intercept 

ER 

1.26 

0.65 

-- 

-- 

0.38 

0.16 

0.009 

0.002 
0.61 

 

 

 

 

 

 

 

Agricultural 

SRP Swamb 

Intercept 

Q 

DO 

NH4
+ Camb 

16.07 

-0.98 

-3.50 

-0.58 

-- 

1.09 

1.26 

1.36 

1.80 

0.24 

0.69 

0.12 

<0.001 

0.005 

0.001 

0.002 

0.80 

Intercept 

AS/A 

NH4
+ Camb 

GPP 

CC 

10.56 

-5.98 

-0.38 

-2.91 

-0.75 

-- 

1.26 

1.34 

3.47 

4.10 

1.26 

1.73 

0.13 

0.60 

0.23 

<0.001 

0.014 

0.029 

0.003 

0.019 

0.75 

SRP Vfamb 

Intercept 

AS/A 

GPP 

-0.36 

8.54 

1.42 

-- 

1.19 

1.19 

0.45 

1.88 

0.40 

0.444 

0.002 

0.007 

0.69 

Intercept 

Q 

NH4
+ Camb 

DO 

-7.43 

1.47 

0.33 

2.27 

-- 

1.09 

1.36 

1.26 

1.41 

0.19 

0.09 

0.54 

0.001 

<0.001 

0.010 

0.004 

0.88 

Intercept 

Q 

GPP 

T 

6.72 

1.23 

0.66 

-2.70 

-- 

1.03 

1.00 

1.03 

2.97 

0.21 

0.26 

0.96 

0.047 

<0.001 

0.003 

0.026 

0.85 

Camb: nutrient ambient concentrations; ER: ecosystem respiration; Q: discharge; DO: dissolved oxygen; 842 

AS/A: ratio between the cross-section of the transient storage zone and advective channel; GPP: gross 843 

primary production; CC: canopy cover; DO: dissolved oxygen; T: temperature 844 
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Table 5. Summary of the results from the multiple regression models, showing the positive (Swamb 845 

decrease and/or Vfamb increase) or negative (Swamb increase and/or Vfamb decrease) effects of the 846 

main predictors of NH4
+ and SRP uptake in agricultural and low-intensity agricultural streams in 847 

Brazil and Argentina.  848 

Predictor 
Effect on NH4

+ uptake Effect on SRP uptake 

Low-intensity 
agricultural Agricultural Low-intensity 

agricultural Agricultural 

NH4
+ Camb — — ↑ ↑ 

SRP Camb ↑ ↑ — — 

CC ↓ ↓ — ↑ 

DO — ↓ — ↑ 
T ↓ — — ↓ 

GPP — — — ↑ 
ER — — ↑ — 

AS/A — ↑ — ↑ 
α — ↑ — — 

Q — — — ↑ 
Vel — ↓ — — 

 ↑: positive effect; ↓: negative effect, —: no effect; Camb: nutrient ambient concentrations; CC: canopy cover; 849 

DO: dissolved oxygen; T: temperature; GPP: gross primary production; ER: ecosystem respiration; AS/A: 850 

ratio between the cross-section of the transient storage zone and advective channel; α: storage zone 851 

exchange rate; Q: discharge; Vel: water velocity 852 
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