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Abstract
As already demonstrated by different authors, the Taylor-Galerkin (TG) scheme, in the 
context of the Finite Element Method (FEM), is particularly suitable for the solution of 
supersonic flows. The TG scheme, using hexahedral finite elements with analytical 
evaluation of element matrices, is applied in this work. Tools to avoid locking and a shock 
capturing technique for the solution of supersonic viscous and non-viscous compressible 
flows are also employed. However, TG scheme usually presents instabilities in subsonic 
flows. Even in cases in which the free stream Mach number corresponds to supersonic 
flows, there are always flow regions, specifically near the walls of the immersed obstacles, 
where the speed is lower and the local Mach number corresponds to a subsonic flow. The 
CharacteristicBased Split (CBS) scheme was developed in order to obtain a single method to 
improve the behavior with respect to TG method in subsonic and supersonic regimes. In the 
last two decades some works have shown advantages in convergence rates of the CBS 
method when compared to the TG algorithm. However, simulation time increases in the CBS
 method since split operations, typical of this algorithm, imply in additional element loops. In 
this paper a hybrid algorithm called Modified-Taylor-Galerkin scheme (MTG) is proposed. 
This algorithm presents advantages with respect to TG and CBS schemes in terms of 
convergence properties and computational processing time. In order to get an efficient 
algorithm, the element matrices are analytically integrated. This is performed with two 
different approaches. In the first approach the inverse matrix and the determinant of the 
Jacobian matrix at element level are evaluated with a reduced integration form, using the 
point located in the center of the element for mass, convective, diffusive and stabilization 
element matrices; all these matrices are integrated analytically. In the second approach, 
mass and convective matrices are calculated by a complete integration scheme (including 
the inverse matrix and the determinant of the Jacobian matrix at element level in the 
analytical expression to be integrated) and the diffusive and stabilization matrices are 
calculated with a reduced integration form, using the point located at the center of the 
element to calculate the inverse matrix and the determinant of the Jacobian matrix at 
element level. Finally, this work incorporates the Spalart-Allmaras (S-A) turbulence model 
using a conservative version of the transport equation, as proposed by the authors of the 
original S-A model in a later paper. Algorithms are tested to determine convergence rate 
improvements in both laminar and turbulent cases and for different Mach numbers 
(supersonic, transonic and subsonic flows). 
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1. Introduction
Different authors have shown that, in the context of FEM, the TG 
scheme is particularly suitable for the solution of compressible 
flows involving supersonic shock waves at high Mach numbers 
[1-2]. Burbridge and Awruch [3] applied this scheme using 
hexahedral finite elements with analytical evaluation of the 
element matrices but evaluating the inverse matrix and the 
determinant of the Jacobian matrix at the center of the element, 
together with a shock capturing technique for the solution of 
viscous and non-viscous compressible laminar flows [4]. 
However, for subsonic regimes (with M <0.9) or for 
incompressible flows, the TG scheme presents certain 
instabilities, as reported by Zienkiewicz and Taylor [5].

Even in supersonic flows there are always some regions of 
subsonic flow near the walls of immersed obstacles. It is 

therefore necessary to improve the convergence of the 
algorithms for low Mach numbers, even when they are applied 
to flows where Mach number at the freestream is supersonic.

To address this problem the CBS scheme was developed by 
some researchers, such as Zienkiewicz and Codina [6], to obtain 
a single algorithm with a good behavior, both in subsonic and 
supersonic regimes. During the last two and a half decades this 
algorithm was established as an acknowledged tool for the 
computation of a wide spectrum of incompressible or 
compressible flows at different Mach numbers [7-10]. The work 
presented by Zienkiewicz et al. in Reference [11] shows the 
explicit form of the algorithm and its performance for subsonic, 
transonic and supersonic flows.

However, in spite of convergence rates improvements, it is 
observed that computational processing time increases due to 
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split operations involved in the CBS scheme. For this reason, an 
alternative hybrid algorithm is presented here, looking for 
improvements in convergence properties with respect to the TG 
algorithm without an increase of the computational processing 
time.

It is important to mention that, as in previous works [3,12], an 
analytical integration of the element matrices was used here, 
evaluating the inverse matrices and the determinants of the 
Jacobian matrices at the center of the element. But in this work, 
an alternative approach was also applied, integrating mass and 
convective matrices in an exact analytical form (including the 
inverse matrices and the determinants of the Jacobian matrices 
in the analytical expressions) using Maxima symbolic resolution 
program (http://maxima.sourceforge.net/). Stabilization and 
convective matrices were integrated in reduced form 
(evaluating the inverse matrices and the determinants of the 
Jacobian matrices at the center of the elements), as performed 
in [3,12].

Finally, the turbulence model of Spalart-Allmaras (S-A) was 
implemented here in order to test the behavior of these 
schemes, and their convergence properties, in the context of 
the FEM for turbulent flows. The form of the S-A model 
implemented here was proposed for the first time by Allmaras 
et al. [13] in 2012, using the transport equation for the turbulent 
modified kinematic viscosity variable ν~  in conservative form.

TG, CBS and MTG schemes are presented here with some cases 
of laminar and turbulent flows, comparing their performances.

2. Governing equations with Spalart-Allmaras 
turbulence model
In an Eulerian description, the dimensionless system of partial 
differential equations governing the fluid dynamics problem in 
conservative form, and filtered with a Favre filter (FANS), may be 
written as follows:

∂U
∂t +

∂Fi
∂xi

+
∂Gi
∂xi

+ Q = 0 (1)

where

U = {
ρ

ρv1

ρv2

ρv3

ρe

ρ ν~
}; Fi ={

ρvi

ρv1vi + pδi 1

ρv2vi + pδi 2

ρv3vi + pδi 3

vi (ρe + p )

ρ ν~ vi

}; Gi =

{
0

− τi 1

− τi 2

− τi 3

− τij vj − qi − ψi

φi

}; Q = {
0
0
0
0
0

P + D + DT

}

(2)

The dimensionless form has been obtained using a reference 
length, the freestream density and the freestream speed of 
sound. In Eq. (2):

vi  are velocity vector components.

ρ  is the specific mass.

p  is the thermodynamic pressure.

τij  are the viscous components of the stress tensor.

e  is the specific total energy.

ν~  is the transport equation variable of the S-A 
conservative turbulence model.

qi  are the conduction heat flux vector components.

δij  is the Kronecker delta.

φi  is the diffusive term of the S-A transport equation.

ψi  is the diffusive term associated with turbulent 
kinetic energy ( k ) in the energy equation.

P  is the production term and D is the destruction term 
of the S-A transport equation.

DT  contains additional terms of the S-A transport 
equation.

xi  and t are the spatial and temporal coordinates, 
respectively.

i , j  =1,2,3.

The viscous stress components of a Newtonian fluid are given 
by:

τij = (μ + μt ) [ ∂vi
∂xj

+
∂vj

∂xi ] − 2
3 (μ + μt )

∂vk
∂xk

δij − 2
3 ρkδij

(3)

 where μ  and μt  are the molecular viscosity and the eddy 
viscosity, respectively, k  is the turbulent kinetic energy and the 
subscript k  runs from 1 to 3.

The components of the conduction heat flux vector are:

qi = (K + Kt ) ∂u
∂xi

(4)

where K  and Kt  are the thermal conductivity and the turbulent 
thermal conductivity respectively and u is the specific internal 
energy.

The terms ψi  in the energy equation are given by the following 
expression:

ψi = (μ + μt
σk ) ∂k

∂xi
(5)

 where σk  is a constant which depends on the turbulence model. 
Since the S-A turbulence model does not include the calculation 
of turbulent kinetic energy, in this work, ψi  in Eq. (2) and the 
third term in Eq. (3) are neglected.

The terms φi  in the S-A transport equation are given by the 
following expression:

φi = 1
σ (μ + ρ ν~ ) ∂ν~

∂xi
(6)

 The transport equation also includes the additional term DT  , 
expressed by

DT = − 1
σ ρ cb2

∂ν~
∂xi

∂ν~
∂xi

+ 1
σ (ν + ν~ ) ∂ρ

∂xi

∂ν~
∂xi

(7)

where σ  and cb2 are constants of the S-A turbulence model.

http://maxima.sourceforge.net/project.html
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Finally, the production and destruction terms, in the 
conservative transport equation of S-A are given by

P = − cb1 S ρ ν~ ; D = cw1 fw ρ ( ν~
d )2

(8)

where the first term P  represents the production and the 
second term D the destruction, being cb1, S , cw1 and fw  
constants and variables of the S-A turbulence model and d  is 
the smallest distance from a field point (or node) to the nearest 
solid boundary (wall). The transport equation used here is 
expressed in its conservative form (Allmaras et al. [13]). Here 
the trip-term and the term of laminar suppression, both 
included in the original expressions of the model, are not 
considered.

To close the system of equations it is still necessary to define all 
parameters associated with the S-A turbulence model; they are 
given by

σ = 2
3 ; cb1 = 0.1355; cb2 = 0.622

S = Ω + fv 2
ν~

K2d2 ; K = 0.41 Ω = 1
2 rotV ; Ω = Ω ⋅ Ω

(9)

where Ω is the magnitude of the angular velocity vector, and

fv 2 = 1 − χ
1 + χ fv 1

; χ = ρ ν~
μ ; fv 1 = χ3

χ3 + cv 1
3 ; cv 1 = 7.1

fw = g ( 1 + cw 3
6

g6 + cw 3
6 )

1
6

; cw 3 = 2.0 ; g = r + cw 2 (r6 − r ) ; cw 2 =

0.3

r = ν~

S K2d2 ; cw 1 = cb1

K2 + 1 + cb2
σ

(10)

The turbulent viscosity and turbulent thermal conductivity are 
defined as follows:

μt = ρ ν~ fv 1; Kt = μt
γ

Prt
; γ =

cp
cv

= 1.4 (11)

 where Prt  is the turbulent Prandtl number, which is adopted as 
Prt = 0.9 and cv  and cp  are the specific heat coefficients at 
constant volume and at constant pressure, respectively.

The state equation for a perfect gas (air) is given by:

p = (γ − 1)ρu ; (12)

The internal energy u and the temperature are related to the 
independent field variables by the following expression:

u = cv T = e − 1
2 vi vi − k (13)

where T  is the temperature, being k  neglected in the S-A model.

The Sutherland law is used in this work to establish the 
dependence of viscosity and thermal conductivity with respect 
to temperature (dimensionless internal energy). This law can be 
expressed as follows:

μ = μ∞
S + u∞
S + u ( u

u∞ )
3
2 ; K = K∞

Sk + u∞

Sk + u ( u
u∞ )

3
2

(14)

 Values of S  and Sk  may be found in reference [14] for the 
Sutherland law based on temperature; they must be multiplied 

by cv  and divided by the square of the freestream sound speed 
to obtain the dimensionless form, which was used in this work.

Initial and boundary conditions must be applied to Eq. (1) in 
order to obtain a mathematical model correctly defined. The 
forced boundary conditions (or Dirichlet boundary conditions) 
are given by:

vi = vī on Γv

ρ = ρ̄ on Γρ

u = ū on Γu

ν~ = ν~̄ on Γν~

(15)

where vī  , ρ̄ , ū  and ν~̄  are prescribed values of the velocity 
vector components, the density (specific mass), the specific 
internal energy and the variable ν~ , at the boundary surfaces Γv  , 
Γρ  , Γu  and Г v~  respectively.

The natural boundary conditions (or Neumann boundary 
conditions) are defined by the following expressions:

σij nj = ti
^ on Γσ

qi ni = q̂ on Γq

(16)

In Eq. (16)

ni  are the cosines of the angles formed by the normal 
vector to the surface Γσ  or Γq  and the global reference 
axes xi .

ti
^  are the tractions acting on Γσ .

σij = − pδij + τij  are the components of the Cauchy 
stress tensor.

q̂  is the heat flow acting on the perpendicular 
direction to Γq .

Effects of thermal radiation on boundary surfaces have 
not been considered.

For non-viscous flows the transport equation of the variable ν~  
and the diffusive terms Gi  in Eq. (1) should be omitted. In this 
case, only normal velocity components to the solid boundaries 
are prescribed with null values and only the normal 
components of the surface tractions on the outlet boundaries 
are considered.

3. Finite element formulation
In this section the well-known TG, CBS and Single Step CBS 
algorithms are mentioned but the respective equations are not 
shown for the sake of brevity. The reader can look at the 
references [1,3,5,6,8] to get more details. Instead, the full matrix 
equations for the proposed MTG scheme are presented in the 
section 4.

3.1 Taylor-Galerkin (TG) scheme

To discretize Eq. (1) in time, the unknown vector U  is expanded 
in Taylor series omitting higher order terms. Then the space 
discretization is done using the classic Bubnov-Galerkin 
technique in the context of the finite element method. The 
Green-Gauss theorem is applied to terms containing second 
order derivatives (terms with third or higher order derivatives 
are neglected) to weaken the demands with respect to 
continuity of the element interpolation functions and their 
derivatives, obtaining the matrix equations [1-3].
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A conditionally stable explicit time integration version of the TG 
scheme [4,5,15], may be obtained working with a lumped mass 
matrix (where only elements of the main diagonal are different 
from zero).

Also, it is important to point out that the increments of the flux 
variables obtained for the current time step n + 1  with the TG 
scheme depend of flow variables at the previous time step n  
and at the current time step n + 1. So, an iterative scheme to 
solve terms involving flow variables at the new time step is 
required [1,3].

3.2 Characteristic Based Split (CBS) method

The CBS method consists of four steps [6]. In the first step, 
intermediate values of the conservative flow variables of the 
momentum equations are calculated, omitting the terms 
containing pressure gradients. In the second step, the 
continuity equation is solved to obtain the density increment. In 
the third step, the flow variables of the momentum equations 
are updated. In the fourth step, the energy equation and the S-
A transport equation in its conservative form are solved. Finally, 
pressure is calculated using the state equation.

Once the temporal discretization is performed, spatial domain 
discretization is carried out using the classic Bubnov-Galerkin 
method. The Green-Gauss theorem is applied to terms 
containing second order derivatives to weaken the demands 
with respect to continuity of the element interpolation functions 
and their derivatives.

This method may be applied with implicit, semi-implicit and 
explicit time integration schemes [11]. An explicit scheme was 
implemented in this work in order to compare its behavior with 
respect to other explicit algorithms presented here.

Matrix expressions obtained with the CBS method may be found 
in references [5,6,8].

3.3 Single-Step CBS method

An alternative of the CBS method consists in the elimination of 
the split in the momentum equation in order to obtain a one-
step algorithm. Some authors [5,6] suggest that, although the 
single-step CBS scheme saves computational processing time 
with respect to the classical CBS method, it is not suitable to 
simulate flows with high Mach numbers. The explicit version of 
the single-step CBS was implemented in this work. The common 
matrix expressions obtained with single-step CBS scheme can 
be found in reference [5].

4. The modified Taylor-Galerkin scheme

It may be observed that stabilization problems arise when TG 
scheme is used, and they are linked with density and pressure 
values, being these variables basically controlled by the 
continuity equation. The TG method is an efficient technique in 
terms of computational processing time, but schemes such as 
CBS have much better convergence properties for problems 
involving a wide range of Mach numbers. In order to link both 
features (computational efficiency and good convergence 
properties), a modification of the TG scheme is proposed. The 
new scheme is called Modified Taylor-Galerkin (MTG) scheme, 
which consists to change the stabilization term on the continuity 
equation by a similar expression, but defined in terms of 
pressure, as used in the CBS method. Since the TG scheme has 
good convergence rates for supersonic flows, the modification 
is only implemented in regions where the local Mach number is 
less than one. For this reason, a blending function f  is proposed 
such that, the continuity equation discretized in time results:

Δ(ρ )I +1
n +1 = Δt { −

∂(ρvi )n

∂xi
+ Δt

2 [ f ∂
∂xi

( ∂pn

∂xi
) + (1 − f ) ∂

∂xk
(vk

n ∂(ρvi )n

∂xi
) ] } +

+ Δt
2 { −

∂Δ(ρvi )I
n +1

∂xi
+ Δt

2 [ f ∂
∂xi

( ∂ΔpI
n +1

∂xi
) + (1 − f ) ∂

∂xk
(vk

n ∂(Δρvi )I
n +1

∂xi
) ] }

(17)

where

f = { 1 if M ≤ 1
− M + 2 if 1 < M < 2

0 if M ≥ 2

(18)

 The blending function f  depends of the Mach number, which is 
evaluated locally. Momentum and energy equations as well as 
their iterative terms are not modified, remaining as in the 
original TG scheme.

Spatial discretization is performed using the classical Bubnov-
Galerkin method. The Green-Gauss theorem is applied to terms 
containing second order derivatives to weaken the demands 
with respect to continuity of the element interpolation functions 
and their derivatives.

The following matrix expressions are obtained for the element 
vectors of independent unknowns’ increments:

Mass conservation equation:

Δρ |I +1
n +1 = f [Δtext MD

−1 ( − Bi fi
ρ |n − P pn − rn ) +

Δtext
2 MD

−1 ( − Bi Δfi
ρ |I

n +1 − P ΔpI
n +1 ) ] + (1 −

f ) [Δtext MD
−1 ( − Hi fi

ρ |n ) + Δtext
2 MD

−1 ( − Hi Δfi
ρ |I

n +1 ) ]

(19a)

Momentum conservation equations:

Δρvj |I +1
n +1 = Δtext MD

−1 ( − Hi fij
ρv |n − Dij vi

n + tj
n ) +

+ Δtext
2 MD

−1( − Hi Δfij
ρv |I

n +1 − Dij Δvi |I
n +1)

(19b)

Energy conservation equation:

Δρe |I +1
n +1 = Δtext MD

−1 ( − Hi fi
ρe |n − Ei vi

n − K un + hn ) +

+ Δtext
2 MD

−1 ( − Hi Δfi
ρe |I

n +1 − Ei Δvi |I
n +1 − K Δu |I

n +1 )

(19c)

Transport equation of ν~  (being ν~  a variable used in the S-A 
model):

Δρ ν~ |I +1
n +1 = Δtext MD

−1( − Hi fi
ρ ν~ |n

−M qn − Ai qvi |n − Dν ν~ n ) +

+ Δtext
2 MD

−1 ( − Hi Δfi
ρ ν~ |I

n +1
− M ΔqI

n +1 − Dν Δν~ I
n +1 )

(19d)

 An iteration procedure is required for those right-hand terms 
evaluated on the current time step n + 1, where the subscript I  
indicates the previous iteration and I + 1 corresponds to the 
current one. Element matrices are indicated below (with i , j , k =
1, 2, 3):
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Bi = ∫ΩE
ϕT ∂ϕ

∂xi
dΩ; Ci =

Δtin
2 ∫ΩE

(ϕvk
n )

∂ϕT

∂xk

∂ϕ
∂xi

dΩ; P =
Δtin

2 ∫ΩE

∂ϕT

∂xj

∂ϕ
∂xj

dΩ

Hi = Bi + Ci ; Ai =
Δtin

2 Bi

Dij =

{ ∫ΩE
η (2 + λ

η ) ∂ϕT

∂xi

∂ϕ
∂x(i )

dΩ + ∫ΩE
η ∂ϕT

∂xk

∂ϕ
∂xk

dΩ, if i = j and { i = 1 → k = 2, 3
i = 2 → k = 1, 3
i = 3 → k = 1, 2

∫ΩE
η ∂ϕT

∂xi

∂ϕ
∂xj

dΩ + ∫ΩE
λ ∂ϕT

∂xj

∂ϕ
∂xi

dΩ, if i ≠ j

η = μ + μt ; λ = − 2
3 η

Ei = ∫ΩE [η (ϕ vi
n )

∂ϕT

∂xk

∂ϕ
∂xk

+

η (ϕ vk
n )

∂ϕT

∂xi

∂ϕ
∂xk ]dΩ + ∫ΩE

λ (ϕ vk
n )

∂ϕT

∂xk

∂ϕ
∂xi

dΩ

K = ∫ΩE
(K + Kt ) ∂ϕT

∂xi

∂ϕ
∂xi

dΩ; Dν = ∫ΩE
1
σ [μ +

(ϕ {ρν }n ) ] ∂ϕT

∂xi

∂ϕ
∂xi

dΩ

M = ∫ΩE
ϕT ϕdΩ; MD = { ΩE

8 for diagonal terms.

0 off-diagonal terms.

(20a)

 The element vectors are:

fi
ρ = {ρvi } ; fij

ρv = {ρvi vj + pδij } ; fi
ρe = {ρevi +

pvi } ; fi
ρ ν~ = {ρvi ν~ }

qn = − cb1 SE
n {ρ ν~ }n + cw1 fw E

n {ρ ( ν~
d

)
2}n

−

cb2
σ (ρE

∂ν~
∂xi

|
E

∂ν~
∂xi

|
E )n

{1} +

1
σ [ (νE + ν~ E ) ∂ρ

∂xi
|

E

∂ν~
∂xi

|
E ]n

{1}

qvi |n = − cb1 SE
n {ρ ν~ vi }n + cw1 fw E

n {ρ ( ν~
d

)
2
vi }n

−

cb2
σ (ρE

∂ν~
∂xi

|
E

∂ν~
∂xi

|
E )n

vi
n +

1
σ [ (νE + ν~ E ) ∂ρ

∂xi
|

E

∂ν~
∂xi

|
E ]n

vi
n

(20b)

 where vi = {vi }  , p = {p } , u = {u }  are  the velocity 
components, pressure and internal energy element vectors, 
containing their corresponding eight nodal values. The 
quantities between braces are element vectors built with the 
nodal values of the variables inside the braces. The boundary 
vectors are:

rn =
Δtin

2 ∫ΩE
ϕ∗T ( ∂ϕ

∂xi
pn )ni dΓ

tj
n = ∫ΓE

ϕ∗T [η ( ∂ϕ
∂xi

vj
n + ∂ϕ

∂xj
vi

n ) +

λ ( ∂ϕ
∂xk

vk
n )δij ]ni dΓ

hn = ∫ΓE
ϕ∗T (ϕ vj

n ) [η (
∂ϕ
∂xi

vj
n + ∂ϕ

∂xj
vi

n ) +

λ (
∂ϕ
∂xk

vk
n )δij ]ni dΓ + ∫ΓE

ϕ∗T (K + Kt ) ( ∂ϕ
∂xi

un ) ni dΓ

(20c)

 In these expressions ΩE  and ΓE  are the element volume and its 
boundary surface respectively; expressions with the subscript E  
are element averages; ϕ  = [Ф1, Ф2, …Ф8] is the row matrix 
containing the interpolation functions for each local node and 
ϕ∗ is the row matrix containing the interpolation functions 
evaluated at the boundary surface, M  is the consistent mass 
matrix, while MD  is the lumped mass matrix and {1}  is a vector 
where all its components are equal to one. Terms that involve 
turbulent kinetic energy have been neglected.

The variables with superscript n  are evaluated on previous time 
step and the variables with superscript n + 1 are evaluated at 
current time step. Boundary vectors appearing in the S-A 
transport equation and in the iterative terms of all the 
equations were neglected.

Once these equations are assembled for all the elements of the 
mesh and the corresponding boundary conditions are applied, 
the nodal values of ρ  , ρvj  ρe  and ρ ν~  can be calculated at each 
time step using an iterative scheme. Thus, the nodal values of 
the components of velocity, the specific total energy and the 
variable ν~  can be obtained immediately. Then the nodal values 
of the specific internal energy are calculated and, using the 
state equation, the nodal pressure values are also obtained.

When viscous terms are not considered, terms containing 
matrices Dij , Ei  and K  as well as vectors tj

n  and hn  and the 
transport equation corresponding to the turbulence model are 
omitted.

Stabilization matrices for TG, CBS and MTG schemes are 
evaluated using a local (internal) time step Δtin . For the TG 
scheme there are no appreciable differences in using a local 
internal time step or a single time step Δtext  [16].

5. Stability condition, shock capture and 
convergence

Considering that these algorithms were implemented in their 
explicit form, they are conditionally stable and the stability 
condition of Courant-Friedrichs-Lewy (CFL) for each element, in 
dimensionless form, is used to ensure stability. A safety 
coefficient β  is adopted with values 0.2 ≤ β ≤ 0.5 [3].

To capture the strong discontinuities and eliminate high 
frequency oscillations near shock waves, a well-known method 
is used to add artificial viscosity selectively in regions where 
high-pressure gradients are observed [17]. An artificial damping 
coefficient CAD  is used to control de amount of artificial 
viscosity.

The convergence of the iterative process is obtained when the 
following conditions are simultaneously satisfied:
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rI +1
ρ = [ ∑

N

|ρI +1 − ρI |2

∑
N

ρI
2 ]

1
2

≤ To

rI +1
ρv = [ ∑

N

|ρviI +1 − ρviI |2

∑
N

ρviI
2 ]

1
2

≤ To

rI +1
ρe = [ ∑

N

|ρeI +1 − ρeI |2

∑
N

ρeI
2 ]

1
2

≤ To

(21)

where N  is an index of nodes ( N = 1, 2, 3, …, NNODES ), 
NNODES  is the total number of nodes of the finite element 
mesh and To  is the tolerance (in this paper To = 10−3 was 
adopted). The solution process ends when the variable t  (time) 
reaches a value previously established by the user, or when the 
steady state is reached. This last condition is considered fulfilled 
when the following expression is satisfied:

Rn +1 = [∑N |ρn +1 − ρn |2]
1
2

≤ TOLt

(22)

In this work TOLt = 10−5was adopted.

6. Explicit integration of element matrices

Eight nodes isoparametric hexahedral elements were used in 
this work. Figures 1 and 2 show the element in the physical and 
computational spaces, respectively. The interpolation functions 
of this element are given by the following expressions:

ΦN = 1
8 (1 + ξ1N ξ1 ) (1 + ξ2N ξ2 ) (1 + ξ3N ξ3 ) (23)

 where N = 1, 2, 3, …, 8 and ξjN  are the natural coordinates of the 
node N . The derivatives of the interpolation functions with 
respect to the global coordinates are given by:

∂ϕ
∂xj

= Iij
−1 ∂ϕ

∂ξi

(24)

 being Iij
−1 the components of the inverse of the Jacobian matrix 

I , which can be expressed as follows:

I (ξ1, ξ2, ξ3 ) = [ I11 I12 I13

I21 I22 I23

I31 I32 I33
] = [

∂ϕ
∂ξ1

x1
∂ϕ
∂ξ1

x2
∂ϕ
∂ξ1

x3

∂ϕ
∂ξ2

x1
∂ϕ
∂ξ2

x2
∂ϕ
∂ξ2

x3

∂ϕ
∂ξ3

x1
∂ϕ
∂ξ3

x2
∂ϕ
∂ξ3

x3
]

(25)

Figure 1. Physical space

Figure 2. Computational space

 Here xi  is the vector containing global coordinates of the eight 
nodes of each element, |I |  is the determinant of the Jacobian 
matrix and dΩ = |I | dξ1 dξ2 dξ3  is the differential of the 
element volume.

By substituting Eqs. (23), (24) and (25) on the element matrices 
and vectors defined by the TG, CBS and MTG schemes, integrals 
in the computational domain are obtained. These integrals are 
commonly calculated by means of a numerical integration 
scheme to obtain components of the element matrices that will 
be later assembled to get the global system of equations. 
However, in this work, matrices were calculated by means of 
analytical integration using the Maxima symbolic resolution 
software. This implies an improvement in computational 
processing time efficiency.

In a first approach the inverse matrix elements and 
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determinants of the Jacobian matrix were evaluated at the 
center of the element, where ξ1 = ξ2 = ξ3 = 0,  and these values 
were used to integrate matrices corresponding to variables time 
derivatives, convective, diffusive and stabilization terms [3,12]. 
Special attention must be given to elements distortion and an 
hourglass control technique to avoid spurious modes on 
diffusive terms are also necessary [12].

Alternatively, in a second approach, the mass matrix M  
(representing variables time derivatives) and matrix Bi  
(representing convective terms) were integrated analytically, 
including the inverse matrix elements and determinant of the 
Jacobian matrix in the analytical expressions (without evaluating 
these terms at the center of the element). However, to integrate 
matrices corresponding to stabilization and diffusive terms, the 
procedure used in the first approach was followed (inverse 
matrix elements and determinants of the Jacobian matrix were 
evaluated at the center of the element). Both integration 
approaches were used for the implementation of TG, CBS and 
MTG schemes.

7. Numerical simulations and comparative 
results

7.1 Transonic flow around a NACA 0012 airfoil
The laminar transonic flow around a NACA 0012 airfoil with 
M = 0.85  and Re = 2000  is analyzed. Results obtained with 
version 17.1 of ANSYS/Fluent are compared with those obtained 
with the MTG scheme for the same problem. All simulations 
performed for this case were obtained with TG, MTG and CBS 
schemes with the second integration approach, that is, a 
complete analytical integration (including inverse matrix and 
determinant of the Jacobian matrix in the expressions to be 
evaluated analytically) for the mass and convective matrices, 
while the inverse matrix and determinant of the Jacobian matrix 
were evaluated at the center of the elements for the 
stabilization and diffusive matrices.

This problem is described with dimensionless quantities. The 
mesh used to solve this problem with 386 560 hexahedral 
elements and 775 684 nodes is shown in Figure 3. The 
coordinates axis are x = x1 and y = x2. Figures 4 and 5 show 
details of the finite element mesh. It is considered as being 
three-dimensional mesh with a single element in the z = x3 
direction. The same mesh is used to run this problem with 
ANSYS/Fluent.

Considering that the mesh is three-dimensional with a single 
element in the x3 direction, the v3 = 0.0 condition is imposed on 
the lateral boundaries to avoid mass flow through those 
boundaries, ensuring the two-dimensional characteristic of the 
flow.

Figure 3. Side view of whole domain and the finite element mesh

Figure 4. Side view of the mesh
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Figure 5. Details of the airfoil leading edge

The dimensionless inlet boundary conditions are:

v1∞ = 0.85; v2∞ = v3∞ = 0.00; u∞ = 1.7857; ρ∞ = 1.0

On the solid boundaries the non-slip condition is applied. Then, 
on the airfoil wall:

v1 = v2 = v3 = 0.0

together with the stagnation temperature, which is specified 
using the specific internal energy, according to the following 
expression:

ustg = u∞(1 + r γ − 1
2 M∞

2) = 2.01535

where r = 0.89 is the recovery factor (an empirical factor 
introduced because in practice the energy recovery is not 
perfect [14]). The conditions at the output boundaries are 
specified using the vectors tj  and q .

Initial conditions are given by:

v1
0 = 0.85; v2

0 = v3
0 = 0.00; u0 = 1.7857; ρ0 = 1.0 y p0 = 0.71428

These initial conditions are defined for all nodes of the finite 
element mesh, excepting those where Dirichlet boundary 
conditions are prescribed.

Using the safety coefficient β = 0.2, the effective dimensionless 
time step is Δt = 0.5∗10−4. Artificial viscosity is not applied for 
this case (CAD = 0.0).

Figure 6 shows pressure contours obtained with the MTG 
scheme. Pressure contours obtained with CBS scheme are 
practically coincident with results obtained with MTG scheme 
and are not shown here. Figure 7 shows pressure contours 
obtained with ANSYS/Fluent 17.1 available at the GFC (Grupo de 
Fluidodinámica Computacional) of the UNLP (Universidad Nacional 
de La Plata). An excellent agreement was obtained between MTG 
and ANSYS/Fluent simulations. Figure 8 shows details of 
pressure contours at the leading edge of the airfoil obtained 

with the MTG scheme (CBS shows no appreciable difference). 
Figure 9 shows the same image, but obtained with the TG 
scheme, where pressure oscillations in zones of low air speeds 
can be observed. CBS and MTG schemes do not present these 
oscillations.

Figure 6. MTG pressure contours

Figure 7. ANSYS / Fluent pressure contours
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Figure 8. MTG pressure contours

Figure 9. TG pressure contours

Figure 10 shows an image of the skin friction coefficient 
comparing the MTG scheme with values obtained with 
ANSYS/Fluent 17.1 showing a good agreement. Figure 11 shows 
the comparison of pressure coefficient obtained with 
ANSYS/Fluent 17.1 and the MTG scheme on the NACA 0012 
airfoil extrados.

Here, the skin friction coefficient cf  and the pressure coefficient 
cp  were calculated using the following expressions:

cf = τ
1
2 ρ∞ |v∞ |2

; cp = p − p∞
1
2 ρ∞ |v∞ |2

where τ  is the wall tangent stress and p  is the pressure, both 
acting on each point of the solid boundary surface.

Results obtained for these coefficients with MTG scheme 
applying an internal time step are very close to values obtained 
with ANSYS/Fluent 17.1.

Figure 10. Skin friction coefficient over the airfoil extrados surface

Figure 11. Pressure coefficient over the airfoil extrados surface

Figure 12 shows the convergence of the different schemes. The 
CBS method presents a clear improvement in density and 
pressure convergence when used with a local interior time step 
[16]. The use of an internal time step with the original TG 
method does not show comparative advantage with respect to 
the same method but taking a single time step. Notably, the 
performance of the MTG scheme with a local internal time step, 
is equivalent to that obtained with the CBS algorithm with a 
local internal time step.
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Figure 12. Residues showing convergence of the different algorithms

Additional simulations were carried out with the single-step CBS 
method. Results are not shown here, but they do not show 
significant differences compared to those obtained with the CBS 
or MTG schemes.

Relative times for the different simulations are indicated in 
Table 1, assuming a reference time with a value equal to one for 
the fastest scheme (the single-step CBS).

Table 1. Relative wall clock times

Algorithm Relative wall clock 
time

Single-step CBS 1.0

TG 1.01

MTG 1.04

CBS 1.37

 It should be noted that the cases shown in Table 1 correspond 
to simulations of the same problem, with the same mesh and 
boundary conditions, on the same computer (Dell Precision 
7610, 16 Cores, 64 Gb ram), and using the same number of 
threads (16) in parallel. The times that are compared are wall 
clock times between two recordings of results with the same 
number of time steps. This problem was also solved using the 
first integration approach, that is, analytical integration with 
evaluation of the inverse matrices and determinants of the 
Jacobian matrices at the center of the elements for all the mass, 
convective, stabilization and diffusive matrices. There are not 
significant differences between both integration approaches.

It should also be pointed out that the codes for the different 
schemes were developed starting from the same original TG MPI
 parallel code, including only those modifications required by 
CBS, single-step CBS and MTG schemes. This ensures that the 
code structure is basically the same, with smallest differences 
required by the different algorithms.

7.2 Turbulent supersonic flow on flat plate

The turbulent compressible flow on a flat plate in supersonic 
regime with M = 2.0  and Re = 15 ∗ 106  is presented.

This problem is described at the NASA Langley Research Center 
Turbulence Modeling Resource on the web (
https://turbmodels.larc.nasa.gov/), where results are shown for 
several turbulence models and they are compared with the 
semi-empirical theoretical correlations of Van Driest.

The geometry of this problem is shown in Figure 13. 
Considering that the mesh is three-dimensional with a single 
element in the x2 direction, the condition v2 = 0.0 is imposed on 
the lateral boundaries to avoid the mass flow through them, 
keeping the two-dimensional characteristic of the flow.

Figure 13. 3D view and geometric characteristics

Figure 14 shows the side view of the finite element mesh, which 
has 13 056 hexahedral elements and 26 578 nodes. The mesh is 
the same found in the NASA web repository for turbulence 
models (3-D with 2 × 137 × 97 nodes and 2 × 113 points on the 
flat plate).

 

Figure 14. Side view of the mesh

The mesh was refined near the wall such that the estimate of y+ 
is close to 0.3.

The boundary conditions at the inlet are:

v1∞ = 2.0; v2∞ = v3∞ = 0.00; u∞ = 1.7795; ρ∞ = 1.0; ν~ ∞ =
6.667 ∗ 10−7

On the solid boundaries (over the plate) the non-slip condition is 
applied:

v1 = v2 = v3 = 0.0 and ν~ ∞ = 0.0

together with the stagnation temperature, which is specified 
using the specific internal energy, according to the following 
expression:

ustg = u∞(1 + r γ − 1
2 M∞

2) = 3.0465

with r = 0.89. The conditions in the output boundary are 
specified using the vectors tj  and q . The initial conditions are 
given by:

v1
0 = 2.0; v2

0 = v3
0 = 0.00; u0 = 1.7795; ρ0 = 1.0; p0 = 0.7118 y 

ν~ 0 = 6.667 ∗ 10−7

These initial values are defined in all nodes of the mesh, except 
for the nodes where Dirichlet boundary conditions were 

https://turbmodels.larc.nasa.gov/
https://turbmodels.larc.nasa.gov/
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prescribed.

Using the safety factor β = 0.2, the dimensionless time step is 
Δt = 1.0∗10−7. The artificial viscosity coefficient used here is 
CAD = 0.3.

The pressure contours obtained with the TG, MTG and CBS 
schemes shown no appreciable differences. However, the 
researchers who developed the CBS scheme [6] point out that 
the single-step CBS scheme is not suitable for high Mach 
numbers. The simulations carried out in this work with this 
scheme for high Mach numbers indicate that the convergence 
of the single-step CBS presents some instabilities. Therefore, 
observations given in the reference [6] is confirmed here: single-
step CBS scheme is not recommended for supersonic flows.

In Figure 15 an image of the skin friction coefficient, comparing 
with values provided by the semi-empirical correlation of Van 
Driest II (see the NASA Langley Research Center Turbulence 
Modeling Resource) is shown. Good agreement is observed. 
There are no appreciable differences between results obtained 
with different schemes (TG, CBS and MTG). All these schemes 
seem to be adequate in terms of quality of the results.

Figure 15. Skin friction coefficient over the plate

Finally, Figure 16 shows the dimensionless velocity profile, 
corresponding to the position of the plate where Reθ = 10 000. 
As can be observed, results obtained in this work are very close 
to values shown at the NASA repository for the velocity profile, 
corresponding to the semi-empirical correlation of Van Driest I.

Figure 16. Velocity profile at Reθ =10 000

The convergence between the TG, MTG and CBS schemes does 
not differ significantly when the residuals are plotted (although 
they are not shown here); however, there are differences in the 
relative computational times, as shown in Table 2.

Table 2. Relative wall clock times

Algorithm Relative wall clock 
time

Single-step CBS Not recommended

TG 1.0

MTG 1.03

CBS 1.30

 In this way, it is observed that, for supersonic Mach numbers, 
the three algorithms are suitable from the point of view of 
convergence rates, but there are appreciable differences in 
terms of wall clock computational time, being the CBS scheme 
the most expensive.

7.3 Axisymmetric Shock Wave Boundary Layer 
Interaction (ASWBLI). Turbulent cold hypersonic 
flow
The following case corresponds to the turbulent flow over an 
ogive-shaped obstacle in a cold hypersonic regime: M = 7.11, 
Re
L = 57 060 1

cm . This problem is described at the NASA Langley 
Research Center Turbulence Modeling Resource where results 
for several turbulence models are compared with experimental 
data. The purpose is to provide a validation case for turbulence 
models. Unlike verification, which seeks to establish whether a 
numerical model has been implemented correctly by 
comparison with other software or code, the validation of CFD 
results implies to compare with those obtained by experimental 
data, establishing the ability of a numerical model to reproduce 
the physics of the problem.

The experimental study conducted by Kussoy and Horstman 
[18] involved a cone cylinder with a taper angle of 20 degrees. 
The leading edge is a 10-degree cone that makes the transition 
through a circular arc to a constant-area cylinder with a radius 
of 100 mm . The cone cylinder with a taper angle of 20 degrees, 
designed to produce an oblique shock and an interaction zone 
between the boundary layer and the shock wave, is located 
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1390 mm  downstream from the leading edge, as can be seen in 
Figure 17. As described in reference [19], the leading edge can 
be excluded from the CFD calculations, provided that the 
conditions of the input limits are slightly adjusted (the Mach 
number is changed from 7.05 to 7.11. The wall (cylinder and 
cone) has a constant temperature of 311 K . The fluid domain 
and the boundary conditions are shown in the Figure 18.

Figure 17. Solid body (from [18])

Figure 18. Domain and boundaries

 Although this is an axisymmetric problem, its resolution is made 
here with a 3-D mesh, taking a quarter of the geometry by 
symmetry considerations. In addition, this problem was 
simulated by the dimensionless codes developed for this work. 
In the two lateral boundaries is imposed that the normal 
velocity component is zero. Inlet boundary conditions are:

v1∞ = 7.11; v2∞ = v3∞ = 0.00; u∞ = 1.7795; ρ∞ = 1.0; ν~ ∞ =
6.230284 ∗ 10−4

The non-slip condition is applied on solid boundaries. Then

v1 = v2 = v3 = 0.0 and ν~ ∞ = 0.0

The temperature at the wall, which has a known value (311 K ), is 
specified using the dimensionless specific internal energy:

uw = 6.918

and the outlet boundary conditions are specified using tj  and q .

The initial conditions are given by:

v1
0 = 7.11; v2

0 = v3
0 = 0.00; u0 = 1.7795; ρ0 = 1.0; p0 = 0.7118 

and ν~ 0 = 6.230284 ∗ 10−4

 These initial values are defined in all nodes of the finite element 
mesh, except for the nodes where Dirichlet boundary conditions 
were prescribed.

Figure 19 shows the side view of the finite element mesh, which 
has 1 600 000 hexahedral elements. The mesh is the same as 
found in the NASA web repository for turbulence models (2-D 
with 2-zones of 81x101 and 81x101 nodes) but rotated to form a 
three-dimensional domain mesh corresponding to a quarter of 
the space surrounding the obstacle with 100 subdivisions in the 
quarter circumferential length. The total number of elements is 
80 × (2 × 100) × 100. Figure 20 shows a detailed view of the mesh 
where the flare starts.

Figure 19. Finite element mesh

Figure 20. Mask in the zone where the cone begins
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 The mesh was refined near the wall such that the estimate of 
y +  is close to 0.5.

Using the safety factor β = 0.2, the dimensionless time step is 
Δt = 1.0∗10−5. The artificial viscosity coefficient used here is 
CAD = 0.3.

Figure 21 compares the experimental velocity profiles with 
those obtained in this work and by the NASA WindUS program. 
The position in which these data were obtained corresponds to 
the plane x = − 6 (the origin of coordinates x  is located where 
the flare starts). Since there are no appreciable differences 
between the results obtained with TG, CBS and MTG, only the 
curve corresponding to the MTG scheme is shown here.

Figure 21. Comparison of velocity profiles

 Figure 22 compares the temperature profiles for the same 
location. Both figures show proximity between the values 
obtained with the WindUS program [19] and the MTG code 
implemented in this work. In turn, results of both codes show a 
good agreement with the experimental data obtained in 
reference [18].

Figure 22. Comparison of temperature profiles

 Figure 23 shows a comparison of the pressure distribution 
along the wall of the ogive. The s  coordinate is measured along 
the surface of the solid with its origin s = 0  located when the 
flare starts.

Figure 23. Pressure distribution on the wall

 Finally, Figure 24 shows a comparison of the heat transfer 
through the wall of the solid obstacle. The definition of wall heat 
transfer qw  is given by: qw = − K (dT /dy )w , where K  is the 
thermal conductivity of the fluid (but here it is calculated from 
the corresponding dimensionless quantities).

Figure 24. Heat transfer through the wall

 A good agreement between results obtained with the MTG 
scheme and "WindUs" codes. As observed from Figure 23, the S-
A model tends to slightly over-predict the pressure immediately 
downstream of the shock. Then the model starts to under-
predict this quantity at s = 7 approximately. The S-A model also 
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under-predicts the heat transfer though the solid wall after 
position s = 7. The differences between the results of both 
codes and the experimental data for positions above s = 7  can 
be attributed to the adopted RANS/FANS turbulence model (S-
A), provided that all references show similar results [19,20].

Like the previous case, the convergence between the TG, MTG 
and CBS schemes does not differ significantly when the 
residuals are considered. However, there are differences in the 
relative wall clock computational times, as shown in Table 3.

Table 3. Relative computation times

Algorithm Relative wall clock 
time

Single-step CBS Not recommended

TG 1.0

TGM 1.03

CBS 1.30

 It is observed that, for hypersonic flows, the three schemes (i.e. 
TG, MTG and CBS) are suitable from the point of view of 
convergence rates, but there are appreciable differences in 
terms of wall clock computational time, being the CBS scheme 
the most expensive.

The single-step CBS scheme was used for this case showing 
some numerical oscillations in the flare starting zone, showing 
again that this algorithm is not recommended for high Mach 
numbers.

8. Conclusions
Comparing density residuals, CBS and MTG methods show 
better convergence rate than the TG scheme. But the best 
convergence rate is obtained using CBS and MTG with local Δtin. 
The TG method exhibits an oscillatory behavior in transonic and 
subsonic flows. This behavior is not observed when CBS or MTG 
schemes are used.

Using a local internal time step with the original TG method, 
density convergence is not improved, and pressure oscillation 
remains. However, by making a change in the stabilization term 
of the continuity equation with a blending function and using a 
local internal time step, the MTG scheme presents a 
convergence rate comparable to that obtained with the CBS 
method.

Although the CBS method does not require an iterative process, 
as required by the TG and MTG schemes, split operations are 
performed to calculate first an auxiliary momentum variable, 
which is used to obtain the density to finally update the 
momentum values. Then the energy and the S-A variable are 
calculated. These split operations imply in additional 
computational time cost. In addition, iterative terms of TG and 
MTG schemes converge rapidly with very few iterative steps and 
split operations are not necessary. These features make TG and 
MTG schemes more efficient than CBS method.

In this way, the MTG scheme is more efficient in terms of 
computational processing time than the CBS method and with a 
comparable convergence rate for all ranges of Mach numbers.

The alternative of the single-step CBS method, although efficient 
and suitable for transonic regimes, is not recommended for 
high Mach numbers, such as supersonic or hypersonic regimes.

With the modifications proposed here for the TG scheme, a 
modified method was obtained (the MTG scheme), which is the 
best option when convergence properties and computational 
processing times are considered for a wide range of Mach 
numbers.

References
 [1] Donea J. A Taylor-Galerkin method for convective transport problems. International 
Journal for Numerical Methods in Engineering, 20:101-119, 1984.

[2] Yoon K.T., Moon S.Y., Garcia S.A., Heard G.W., Chung T.J. Flowfield-dependent mixed 
explicit-implicit (FDMEI) methods for high and low speed and compressible and 
incompressible flows. Computer Methods in Applied Mechanics and Engineering, 151:75-
104, 1998.

[3] Burbridge H.P., Awruch A.M. A finite element Taylor-Galerkin scheme for 3-D numerical 
simulation of high compressible flow with analytical evaluation of element matrices. Hybrid 
Methods in Engineering, 2.I4:485-506, 2000.

[4] Burbridge H.P. O esquema explícito de Taylor-Galerkin na simulação numérica de 
escoamentos compressíveis tridimensionais utilizando elementos finitos hexaédricos de 
oito nós. Tese de mestrado. UFRGS, Porto Alegre, 1999.

[5] Zienkiewicz O.C., Taylor R.L. The finite element method. Vol. 3: Fluid Dynamics. Fifth 
edition, Butterworth Heinemann, Oxford, 2000.

[6] Zienkiewicz O.C., Codina R. A general algorithm for compressible and incompressible 
flow-Part I: The Split Charactestic-Based Scheme. International Journal for Numerical 
Methods in Fluids, 20:869-885, 1995.

[7] Boonmarlert P., Phongthanapanich S., Dechaumpai P. Combined characteristic-based 
split algorithm and Mesh Adaptation Technique for high-speed compressible flow analysis. 
Indian Journal of Engineering & Material Sciences, 12:376-388, 2005.

[8] Liu C.B., The Characteristic Based Split (CBS) scheme for laminar and turbulent 
incompressible flow simulations. Doctoral Thesis, University of Wales, Swansea, 2005.

[9] Massarotti N., Arpino F., Lewis R.W., Nithiarasu P. Explicit and semi-implicit CBS 
procedures for incompressible viscous flows. International Journal for Numerical Methods 
in Engineering, 66:1618-1640, 2006.

[10] Scungio M., Arpino F, Cortellessa G., Buonanno G. Detached eddy simulation of 
turbulent flow in isolated street canyons of different aspect ratios. Atmospheric Pollution 
Research, 6.I2:351-364, 2015.

[11] Zienkiewicz O.C., Satya Sai B.V.K., Morgan K., Codina R., Vázquez M. A general algorithm 
for compressible and incompressible flow-Part II: Tests on the Explicit Form. International 
Journal for Numerical Methods in Fluids, 20:887-913, 1995.

[12] Christon M.A. A domain-decomposition message-passing approach to transient viscous 
incompressible flow using explicit time integration. Computer Methods in Applied 
Mechanics and Engineering, 148:329-352, 1997.

[13] Allmaras S.R., Johnson F.T., Spalart P.R. Modifications and clarifications for the 
implementation of the Spalart-Allmaras turbulence model. Seventh International 
Conference on Computational Fluid Dynamics, ICCFD7-1902, 2012.

[14] White F. Viscous fluid flow. McGraw Hill Book Co, First edition, New York, 1974.

[15] Huebner K.H., Thornton E.A., Byrom T.G. The finite element method for engineers. Third 
Edition, John Wiley and Sons, Inc. New York, 1995.

[16] Nithiarasu P., Zienwkiewicz O.C. On stabilization of the CBS algorithm: Internal and 
external time steps, International Journal for Numerical Methods in Engineering, 48:875-
880, 2000.

[17] Argyris J., Doltsinis I.S., Friz H. Hermes space shuttle: exploration of reentry 
aerodynamics. Computer Methods in Applied Mechanics and Engineering, 73:1-51, 1989.

[18] Kussoy M.I., Horstman C.C. Documentation of two- and three-dimensional hypersonic 
shock wave boundary layer interaction flows. NASA TM 101075, January 1989

[19] Georgiadis N.J., Rumsey Ch.L., Huang G.P. Revisiting turbulence model validation for 
high-mach number axisymmetric compression corner flows. 53rd AIAA Aerospace Sciences 
Meeting, AIAA 2015-0316, 2015.

[20] Erb A., Hosder S. Investigation of turbulence model uncertainty for 
supersonic/hypersonic shock wave-boundary layer interaction predictions. 22nd AIAA 
International Space Planes and Hypersonics Systems and Technologies Conference. 
September 2018.

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S004578259700114X?via%3Dihub
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
http://www.dl.begellhouse.com/journals/1a37c0433d303e8b,7a0dd8b40eaafd93,529f21a1216620d2.html
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://www.lume.ufrgs.br/bitstream/handle/10183/121789/000269871.pdf?sequence=1&isAllowed=y
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200812
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://pdfs.semanticscholar.org/88bf/c1b51758a7e53cf7c38eb81603bb833f3c16.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://cronfa.swan.ac.uk/Record/cronfa42736/Download/0042736-02082018162517.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1700
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://www.sciencedirect.com/science/article/pii/S1309104215302439
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650200813
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
https://www.sciencedirect.com/science/article/pii/S0045782597000509
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000630%2948%3A6%3C875%3A%3AAID-NME907%3E3.0.CO%3B2-U
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890010729.pdf
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0316
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195
https://arc.aiaa.org/doi/abs/10.2514/6.2018-5195

