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ABSTRACT 

We discuss a method that is able to determine. with the help of the 

Maximum Entropy Principle, the detailed nature of a complex signal that can 

be conceived as a linear superposition of independent, elementary signals. 

The physical relevance of this decomposition is discussed. 

1 . lNfROOOCTION 

Techniques for the decomposition of signals are of physical interest 

because they can be used to study systems that react. after being impinged 

upon by an external probe, by producing an output signal that is composed by 

a I inear superposition of independent, "elementary" signals. The analYSis of 

the nature of this superposition allows one to gain revealing insights con­

cerning the structure of the system. 

Signals are preconcerted signs that convey information. We envisage a 

situation in which a well-known probe, (for example, electromagnetic radi­

ation) impinges upon a physical system, interacts with it and is afterward 

analyzed by an appropriate detection procedure. 
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Shannon's1 vectorial representation of signals independizes the per­

tinent considerations from the specific details characterizing the detection 
z 

procedure. In a previous work , we have found it very convenient to proceed 

as follows: to any signal f a vector ket If> is attributed and measurements 

performed upon f are described by linear functionals ~I that map If> upon 

the set of the real numbers. 

The process of decomposition of signals is thus applied with the idea 

of studying systems that react with the input probe producing a response 

signal that is a superposition of independent signals. "Statistical weights" 

appear as a coefficient in this superposition and they contain information 

about the (statistical) nature of the physical system. Illustrations of 

these ideas are given in Ref.2. The Maximum Entropy Principle (MEP)3 is 

there employed and shown to provide one with a powerful algorithm that 

allows for successfully tackling this type of problems. 

However, whenever recourse to the MEP was made, we have tacitly assumed 

in our previous work2 , that a positive--definite quantity, given as the 

exponential of a suitable linear form, is the protagonist of the concomitant 

algorithm. Finding it is the final goal to be achieved, that will provide 

the information one is searching for. 

The purpose of the present effort is that of overcoming this restric­
tion. at least with reference to the problem outlined in the first 
paragraphs above. 

2. FORMALISM 

We shall assume that our response signal If>, to be analyzed by a con­

venient detection procedure, belongs to a vector subspace UN (of a suitable 

vector space) that is spanned by a basis In> (n = 1, ... ,M). Thus If> 

acquires the form 

N 

If> = L C In> 
n 

n=t 

(2.0 

The decomposition of If> is the procedure that allows one to find out 

the coefficients C . To this end, If> is to be subject of a finite number. 
n 

N. of independent measurements that wi II allow for a numerical represen-

tation of the response signal 2 , in the form of a set of numbers f 1 (i = 1, 

... ,N), where 

80 



i = 1, ..• ,N 

which under the assumption of linearity can be rewritten as 

M 
f _\"c t 

i - t.. n ni 
n.1 

(2.2) 

(2.3) 

2 if t . stands for the measurement, represented by~. , performed upon the 
nl 1 

"elementary" output signal In> 

t = fin> 
ni i 

n = 1, ..• ,M (2.4) 

The new idea to be discussed here is that of allowing for non-positive 
definite (i.e., negative) coefficients C . This is achieved by writting 

n 

them down as 

n = 1, ... ,M (2.5) 

where the Pn are positive-definite figures and B is an unknown constant, 

to be self-consistently determined from the data (measurements upon the re­

sponse signal) according to the algorithm to be developed below. With (2.5), 

(2.3) acquires the form 

M 

f = E {p t - B t } 
i n ni ni 

n.1 
i = 1, •.. ,N (2.6) 

Select one of these N equations, say the r-th one, so as to fix B 

M M 

B=rE p t -/ J/rE t 
n nr r nr 

n-1 n=1 

(2.7) 

and introduce the two definitions 

<2.8) 

M M 

o =t \"t -t \"t 
ni ni t.. nr nr t.. ni 

n.1 n.1 
(2.9) 

It becomes apparent that the system (2.6) can be recast as 

iifrj i = 1, ... ,N (2.10) 
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The set of positive numbers {p } can be thought of as representing a 
n 

non-normalized probability distribution. whose informational entropy is· 

" " s = - L p In p + L p - 1 
n n n 

n-1 n-1 

(2.11) 

Each equation of the system (2.10) tells us that the datum Fi is pro­

portional to the mean value of a random variable whose values are given by 

the 0 i (n = 1 •...• M) and "weighted" by the p . 
n n 

The idea is now to solve the system (2.10) by recourse to the MEP. An 

iterative procedure will be followed in which an "optimal conjecture" is 

successively improved according to the MEP. 

We start with a zeroth-order guess. in which a set pCO) is obtained by 
n 

requiring that the form (2.11) be maximized (that is. p = 1. independent 
n 

of n). This approximation provides our zeroth-order estimate for B. to be 

called BCO ) 

M 

BCO ) = 1 - J / L t 
r nr 

n-1 

(2.12) 

with which we can predict for the result of the remaining measurements the 

values 

i ~ r i = l •...• N (2.13) 

The quality of this conjecture can be measured by defining the "pre­
dictive error" E. (for the i-th measurement) 

1 

i = 1 •...• N (2.14) 

In order to improve upon the zeroth-order guess and construct a first­
order estimate we select. among the members of the set {E i }. its largest 

one. to be called Ek1 . The first-order weights p:1) are chosen so as to 

maximize S subject to the constraint 

(2.15) 

which is tantamount to enforce the fulfillment of the kl-th equation in the 

system (2.10). According to Jaynes' HaxFnt approach this leads to3 

(1) 
P = exp(-~ 0 ) 

n 1 nk1 
(2.16) 

where the Lagrange multiplier 11 is constructively obtained by solving 

(2.15) for it. 
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With the P~ 1) we can build up the "predictions" f~ 1) (i = 1, ... ,N) and 

the concomitant (new) set of £i' After selection of the largest element of 

this new {£i}-set, let us call it £k2' we obtain the p~2) by maximizing S 

subject to two constraints. namely. the fulfillment of the equations in the 

set (2.10) corresponding to both i = k1 and i = k2. 

In general. the J-th order estimate is 

(J) J 
P = exp { - L 1 ° . } n ; nk 1 

n = 1 ••.•• M (2.17) 
i .. 1 

where the Lagrange multipliers 1; (i = 1 •...• J) are obtained by solving the 

J equations 

M 
F = ~ (J) 

ki t... Pn 0nki 
na1 

= 1, .. I ,J 

The iterative process is to be ended when we reach the situation 

i = 1 •...• N 

(2.18) 

(2.19) 

where 6f; are the errors (of whatever origin) that characterize the experi­

mental data f .. Let us suppose that this happy circumstance occurs when we 
1 

reach the L-th iteration. Our final results will be 

M 
B(l) = [~ (l) ~ 

t... Pn nr (2.20) 
n=l 

C(l) (l) _ B(l) 
n = Pn n = 1 ••••• M (2.20 

and they allow for the prediction of any subsequent measurement performed 

upon If>. f N+1• f N+2 •...• f N+k •... These predictions read 

M 
fIll - E C(l) ~ 

N+k - n n(N+k) 
n=l 

k = 1.2.3 .... (2.22) 

3. A NUMERICAL IllUS1RATION 

As an appl ication of the formal ism expounded in the preceding paragraphs 

we shall consider that situation in which the measurements performed upon 

the signal If> are obtained as a function of some appropriate parameter t. 
1 

(i = 1 •...• N). This is a common occurrence indeed. We assume. of course. 
that we deal with N independent measurements. so that each value ti can be 

regarded as defining an (orthogonal) direction It i > in an appropriate N-
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dimensional space. The figures fi that result after performing each measure­
ments can now be regarded as "projections" of If) upon the "direction" 

def ined by t i 

i = 1 •..•• N (3.1) 

and. in an analogous fashion. we set 

n = 1 ••..• M (3.2) 

We shall consider two situations. In both of them we take 

(3.3) 

and we simulate the data in two different manners. Those of Fig.l (squares) 

arise from the expression 

M 

fi = L n(n - 12.5) exp(-nt i ) 
n=1 

(3.4) 

with t. = (j - 00.02 (j = 1 •...• 100), The iterative process of section 2 
1 

converges after 7 iterations for an error Afi = 0.01 for all i. The coeffi-

cients C(7) are displayed in Fig.2 (points). while the exact ones are repre-
n 

sented by squares. Coming back to Fig.l. the continuous curve represents the 
predictions afforded by the C(7). In a second example we simulate the data 

n 

(squares) of Fig.3 by means of a set of coefficients C 
n 

2 2 
C = (n - 15.6) exp{-(ln n -In 7) /(In 1.8) } 

n 
(3.5) 

Convergence. after 5 iterations and an error equal to that of Example 1 

yields the points of Fig.4 which are to be compared to the exact ones 
(squares). The continuous curve in Fig.3 represents the predictions calcu­

(5) lated by recourse to the Cn • 

4.CONCLUSION 

We have presented a method that is able to conveniently decompose a 

complex signal as a linear superposition of independent. elementary signals. 

With the help of the Maximum Entropy Principle. we have devised a practical 

algorithm that allows for the determination of the coefficients of that 
linear superposition. 

85 



The method can be of relevance for the study of systems that, upon in­

teracting with well known probes, react producing complex output signals of 

the type described above. 

Application to two simple examples allows one to appreciate the fact 
that this algorithm produces excellent results. 
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