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Abstract. We discuss the strange behavior at T = 0 of the phase-space Wigner distribution of the har-
monic oscillator with the help of the purely quantal concepts of participation ratio of a mixed state and
decoherence parameter. We also show that Wigner distribution-smoothing yields interesting insights, spe-
cially in the pathological instance in which the Wigner-Fano factor diverges. The associated decoherence
parameter also sheds some light on temperature-dependence of the classical-quantum frontier.

1 Introduction

Quantal phase-space distributions constitute a subject of
permanent interest, with applications in statistical me-
chanics, quantum chemistry, quantum optics, and classi-
cal optics. Also for signal analysis in diverse fields such as
electrical engineering, seismology, biology, speech process-
ing, and engine design [1]. Obligatory reference in this
respect it to be made to the celebrated Wigner quasi-
probability distribution Dw(x, p) (also called the Wigner
function or the Wigner-Ville distribution), a special type
of quasi-probability distribution that was introduced by
Wigner [2] to study quantum corrections to classical sta-
tistical mechanics. In trying to approximate it in some
fashion one is prone to fall into the semiclassical domain.
In turn, the quantum-classical transition presents alluring
challenges and open problems (see, for instance, [3–10]).
We will here see that some temperature-dependent details
concerning the route towards such a limit are illuminated
via quantal phase-space distributions à la Wigner.

Wigner’s goal was to supplant the wave-function that
appears in Schröedinger’s equation with a probability dis-
tribution Dw in phase space. This Dw should function
as a generating function for all spatial autocorrelation
functions of a given quantum-mechanical wave-function
ψ(x). Thus, in the map between real phase-space func-
tions and Hermitian operators introduced by Weyl [11],
Dw maps on the quantum density matrix [11]. One speaks
of the Weyl-Wigner transform of the density matrix. In
1949 Moyal [12], who had also re-derived it independently,
recognized Dw as the quantum moment-generating func-
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tional, i.e., as the basis of an elegant encoding of all quan-
tum expectation values, and hence quantum mechanics
in phase space (Weyl quantization). Wigner’s is the most
elaborate phase-space formulation of quantum mechan-
ics [2,13,14].

A rival phase space distribution is the one developed
by Husimi (see more details below) [15–17]. Although both
the Wigner and the Husimi distributions carry complete
information regarding a quantum state, they exhibit dif-
ferent features. The Wigner function displays large oscil-
lations and may adopt negative values which make it a
quasi-distribution rather than a classical probability den-
sity. On a compact phase space of areaA it is able to reveal
fine structures on a sub-Planck scale of order ~

2/A [18],
structures that can be traced to quantum interferences
from distant localized objects [18–21], that in turn en-
hance the state’s sensitivity to perturbations [18–21]. In-
stead, the Husimi distribution is known to be a Gaussian
smearing of the Wigner function on an area of size ~

that washes out the negative part and hence it is suitable
as a probability density [22]. However, such smoothing
may hide significant important attributes or aspects of the
Wigner function [23]. Summing up, while the Wigner func-
tion exhibits high resolution, it is not free of long range
quantum interferences. The Husimi distribution washes
out quantum interferences at the price of hiding impor-
tant semiclassical structures [23].

1.1 Pathological instances

It is known that there are some pathological cases for
which the Weyl-Wigner procedure, that maps Hermitian
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operators Â to phase-space functions Aw(x, p), does not
give the the correct correspondence between classical
and quantum operators [24]. Among these circumstances
one encounters an important operator, the square of the
Hamiltonian [24], in which the Wigner function yields
wrong results [24]. Husimi distributions are free from
such defects. Smoothing may thus, in some special situa-
tions, “improve” on Wigner’s descriptive capability. The
smoothing or smearing process is the focus of attention in
the present work, with reference to the so-called “interme-
diate” smoothing ideas advanced in reference [21]. We will
illustrate our procedures with reference to the harmonic
oscillator (HO) instance. This is such an important sys-
tem that HO insights usually have a wide impact, as the
HO constitutes much more than a mere example. Nowa-
days it is of particular interest for the dynamics of bosonic
or fermionic atoms contained in magnetic traps [25–27] as
well as for any system that exhibits an equidistant level
spacing in the vicinity of the ground state, like nuclei or
Luttinger liquids. Among many other examples one may
mention that it is possible to describe relevant quantum
effects in some bio-systems by approximating a group of
proteins and its environment by a set of coupled harmonic
oscillators [28].

We will employ information theory tools for our en-
deavor and illustrate our proceedings with reference to
several quantal quantities, noise-signal factors in par-
ticular. It will be shown that a moderate amount of
“smoothing” does improve on the phase-space distribu-
tion’s predictive power. We pass now to discuss our main
information-theoretic measure.

2 Fisher information

This is our information-theory tool. The last years have
viewed a great deal of effort revolving around physical ap-
plications of Fisher’s information measure (FIM) [29,30].
FIM is the source of a powerful variational principle, the
extreme physical information one, that yields most of the
canonical Lagrangians of theoretical physics [29,30], char-
acterizing also in quite a proper fashion an “arrow of
time”, alternative to the one associated with Boltzmann’s
entropy [31,32]. The classical Fisher information associ-
ated with translations of a one-dimensional observable x
with corresponding probability density ρ(x) is [33]

Ix =
Z
dx ρ(x)

�
∂ ln ρ(x)
∂x

�2

, (1)

which obeys the so-called Cramer-Rao inequality

(Δx)2 ≥ I−1
x (2)

involving the variance of the stochastic variable x [33]

(Δx)2 = hx2i − hxi2 =
Z
dx ρ(x)x2 −

�Z
dx ρ(x)x

�2

.

(3)

In particular, for the Wigner distribution function of the
harmonic oscillator Aw(z) [2], the associated Fisher infor-
mation measure reads [34]

Iw =
1
4

Z
d2z

π
Aw(z)

�
∂ lnAw(z)

∂|z|
�2

, (4)

and, integrating over phase space, we find for the HO

Iw = 2 tanh(β~ω/2). (5)

Note that 0 ≤ Iw ≤ 2.

3 Bi-dimensional Gaussian smoothing

The simpler one-dimensional setting is discussed in the
Appendix. Consider here the two bi-dimensional phase-
space variables (x, p) and (X,P ). We have

|z|2 ≡ z2 =
1
2~

�
mωx2 +

p2

mω

�
=

x2

4σ2
x

+
p2

4σ2
p

, (6)

and a similar expression for the Z-instance (we must re-
place x, p, and z by X , P , and Z, respectively). Introduce
now the normalized kernel

G(z − Z) =
z−1

ξ
e−(1/ξ)(z−Z)2 , (7)

where ξ a real non-negative parameter and the phase-
space HO-Wigner function Aw(z) = Iwe

−Iw |z|2 [2,34],
with

Z
d2z

π
G(z − Z) = 1;

Z
d2z

π
Aw(z) = 1. (8)

Our objective now it to smooth Aw(z) and get a new
phase-space Aξ(Z)

Aξ(Z) =
Z

d2z

π
G(z − Z)Aw(z). (9)

Setting b = 1/ξ we then have

Aξ(Z) = bIw

Z
d2z

π
z−1 e−b(z−Z)2−Iwz2

. (10)

It is now of help to introduce auxiliary quantities, namely,

μ = bIw = Iw/ξ; γ = Iw + b, (11)

and

Aξ(Z) = μ

Z
d2z

π
z−1 eΔ, (12)

with

Δ = −b [ξγ z2 + Z2 − 2zZ]

= −γ [(z −A)2 +B], (13)
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from which we identify

A = Z b/γ,
B = Z2 (b/γ)(1 − b/γ), (14)

entailing

Aξ(Z) = bIw e
− Iw

ξIw+1 Z2
Z

d2z

π
z−1 e−γ(z−A)2 , (15)

i.e.,

Aξ(Z) =
Iw

ξIw + 1
e−

Iw
ξIw+1 Z2

. (16)

For true smearing we need Iw/(ξIw +1) < Iw that implies

ξ ≥ 0 (17)

(remember that 0 ≤ Iw ≤ 2).

4 Husimi smoothing

As we saw, the Husimi distribution is known to be a
Gaussian smearing of the Wigner function on an area of
size ~ that washes out the negative part and hence it is
suitable as a probability density [36]. For an HO of fre-
quency ω at the temperature T the Fisher measure asso-
ciated to the Husimi distribution reads [35]

Ih = 1 − e−β~ω ≡ 1 − e−~ω/T ≡ 1 − e−d, (18)

where the Husimi distribution acquires the form [35]

AHusimi = Ihe
−Ih |z|2 . (19)

Comparing now Iw with Ih a little algebra yields the re-
lation

Ih = Iw
1 + e−d

2
,

Iw = 2
1 − e−d

1 + e−d
, (20)

so that, enforcing the equality

Ih =
Iw

ξIw + 1
, (21)

one easily determines the smoothing factor ξ that leads
from the Husimi distribution to the Wigner one, namely,

ξ = 1/2. (22)

We see then that for ξ = 0 we have Iξ = Iw while for
ξ = 1/2 one has Iξ = Ih. The Fisher measure for smearing-
parameter ξ is in general, according to (4)

Iξ =
Iw

ξIw + 1
, (23)

and steadily diminishes as ξ grows from 0 to 1/2, with
0 ≤ Iξ ≤ 2. Note in particular that for ξ = 1 one has

Iξ=1 =
Iw

Iw + 1
; 0 ≤ Iξ=1 ≤ 2/3. (24)

5 Participation ratio

By recourse to the concept of participation ratio R of a
density operator ρ̂ one is able to ascertain just how many
quantum pure states enter it [37],

R =
1

Tr(ρ̂2)
; 1 ≤ R ≤ ∞. (25)

The phase-space “equivalent-notion” is derived replacing
traces by integrals over the phase-space and effect-
ing the analogous calculation, using now the HO-Aξ-
distribution (16). Thus, one establishes the correspon-
dence

ρ̂⇔ Aξ; Tr ⇔
Z
d2z/π. (26)

As shown in references [38,39] one has

Rξ =
1R

d2z
π A2

ξ

, (27)

which turns out to yield

Rξ =
2
Iξ
. (28)

It follows that
Rξ Iξ = 2, (29)

revealing a new (as far as we know) information-number
of states complementarity relation. Since 0 ≤ Iξ ≤ 2, then
Rξ ≥ 1. The inverse Fisher’s information measure directly
yields half the number of states entering the density op-
erator, giving the Fisher information the meaning of half
the number of states inverse. The participation ratio for
pure sates (namely, unity) is recovered at ξ = T = 0. For
T = 0 and ξ = 1, ξ = 1/2 (Husimi instance) one has,
respectively,

R1 = 3; R1/2 = 2, (30)

indicating that three (two) pure states enter the associated
density operator. For ξ > 0, as it grows, it also systemati-
cally augments the number of pure states “attributed” to
the phase-space distribution Aξ.

6 Decoherence parameter

Decoherence is that interesting process whereby the quan-
tum mechanical state of any macroscopic system becomes
rapidly correlated with that of its environment in such a
manner that no measurement on the system alone (with-
out a simultaneous measurement of the complete state
of the environment) can exhibit any interference between
two quantum states of the system. Decoherence is a rather
exciting phenomenon and a subject of widespread atten-
tion [40,41]. However, it is difficult to provide a quantita-
tive definition of it. All pertinent attempts always depend
on the relevant experimental configuration and on the au-
thors’ taste [42–44]. An important related quantity is the
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Fig. 1. (Color online) Decoherence parameter for various
smoothing-values ξ, as a function of T in units of ~ω. The
uppermost curve corresponds to ξ = 1/2 and the lowest
curve to ξ = 0. The intermediate values of ξ correspond to
1/4, 1/8, 1/16, 1/32, and 1/64, respectively.

square of the density matrix, in whose terms one can de-
fine a decoherence parameter D [45,46], ranging between
0 and 1,

D = 1 − Tr(ρ̂2)
(Trρ̂)2

, (31)

which we can also easily evaluate in Iξ terms, i.e.,

Dξ = 1 − Iξ
2

= 1 − 1
Rξ

, (32)

that makes it explicit a novel link between participation
ratio and decoherence parameter. As one can expect, the
larger the number of states entering a mixed state, the
larger its decoherence parameter.

Note in Figure 1 that for T ≥ 4 (in ~ω-units), the
smoothing parameter ξ plays no role at all, while that role
is prominent at T = 0. This entails that one may speak of
a “temperature-dependent” quantum-classical transition,
of which ξ is a signature.

7 Thermal Wigner uncertainties for the HO

The literature on thermal uncertainties-relations is quite
extensive. See, for instance [47–49] and references therein.
We can immediately ascertain that the Aξ – mean values
vanish for any Gaussian distribution [38]

hxi = hpi = hzi = 0. (33)

Additionally, for Husimi distributions Ah one has [38]

hx2iAh
=

2σ2
x

1 − e−β~ω
; hp2iAh

=
2σ2

p

1 − e−β~ω
. (34)

Thus,

ΔAh
xΔAh

p =
~

Ih
(35)

whose limit T → 0 is

(ΔAh
xΔAh

p)T=0 = ~, (36)

in agreement with the “smearing” property of the Husimi
distribution that has been alluded to above. Thermal Aξ

uncertainties for the HO constitute our objective now. We
immediately find

(Δξx)2 = hx2iξ =
Z
d2z

π
x2 Aξ(z) =

σ2
x

2Iξ
. (37)

In a similar vein

(Δξp)2 = hp2iξ =
σ2

p

2Iξ
, (38)

which entails

Δξ ≡ ΔξxΔξp =
~

Iξ
=

~

2
Rξ, (39)

that is the celebrated Heisenberg uncertainty relation, in
the ξ = T = 0 – limit, recovered as the result of having
incorporated ~

2-effects into the semiclassical description.
Notice the interesting role played by the participation ra-
tio. It controls the way in which the thermal uncertainty
grows with T as temperature grows. Additionally,

h|z|2iξ =
Z
d2z

π
|z|2Aξ(z) =

1
Iξ
, (40)

which entails
(Δξz)2Iξ = 1, (41)

i.e., the Cramer-Rao relation is always saturated (not
only at T = 0), irrespective of the smoothing-parameter’s
value.

8 Fano factor

In statistics, the Fano factor [50] is a measure of the dis-
persion of a probability distribution, defined as

F =
σ2

U

μU
, (42)

where σ2
U is the variance and μU is the mean of a random

process in some time-window U . The Fano factor can be
viewed as a kind of noise-to-signal ratio, being a measure
of the reliability with which the random variable can be
estimated from a time window that on average contains
several random events. For a Poisson process, the variance
in the count equals the mean count, so that F = 1. If the
time window is chosen to be infinity, the Fano factor is
similar to the variance-to-mean ratio which in statistics is
also known as the “index of dispersion”, dispersion index
or coefficient of dispersion. This is a normalized measure
of the dispersion of a probability distribution. In other
words, it tells us whether a set of observed occurrences are
clustered or dispersed compared to a standard statistical
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model. As just stated, the Poisson distribution has F = 1,
but both the geometric and the negative binomial distri-
butions have F > 1, while in the binomial instance we
find F < 1. A constant “random variable” has F = 0. The
Fano factor turns out to be a convenient noise-indicator of
a non-classical field. In the case of a photon distribution
(N photons) it reads [51]

F ≡ σ =
(ΔN̂)2

hN̂i , (43)

and is in this sense related to the so-called Mandel param-
eter Q [52]

Q =
(ΔN̂)2

hN̂i − 1 ≡ F − 1, (44)

In consonance with the above remarks, for F < 1 (Q ≤ 0),
emitted light is referred to as sub-Poissonian since it has
photo-count noise smaller than that of coherent (ideal
laser) light with the same intensity F = 1 (Q = 0),
whereas for F > 1, (Q > 0) the light is called super-
Poissonian, exhibiting photo-count noise higher than the
coherent-light noise. Of course, one wishes to minimize the
Fano factor.

For a coherent state the Mandel parameter vanishes,
i.e., Q = 0 and F = 1. It is important to note that a field
in a coherent state is considered to be the closest possible
one to a classical field, since it saturates the Heisenberg
uncertainty relation and has the same uncertainty in each
quadrature component. Therefore, Q = 0 or F = 1 define
a boundary between a classical and a quantum field. It
is clear then that both Q and F can function as indica-
tors on non-classicality. Indeed, for a thermal state one
has Q > 0 and F > 1, corresponding to a photon distri-
bution broader than the Poissonian. For Q < 0, (F < 1)
the photon distribution becomes narrower than that of a
Poisson-PDF and the corresponding state is non-classical.
The most elementary examples of non-classical states are
number states. Since they are eigenstates of the photon
number operator N̂ the fluctuations in N̂ vanish and the
Mandel parameter reads Q = −1 (F = 0) [53]. We heavily
rely here from on Fano-results reported in reference [54].
From the study reported there on the expectation values
of Ĥ and N̂ = (Ĥ − ~ω/2)/(~ω) we immediately find,
evaluating mean values with Aξ(z)

hĤiξ =
~ω

Iξ
; hN̂iξ =

1
Iξ

− 1
2
, (45)

and, for the “Wigner-delinquent” operator H2,

hĤ2iξ = 2hĤi2ξ; hN̂2iξ =
hĤ2iξ
(~ω)2

− hĤiξ
~ω

+
1
4
, (46)

h(ΔĤ)2iξ = hĤi2ξ ; h(ΔN̂ )2iξ =
1
I2
ξ

, (47)

and, finally, for the ξ-Fano factor Fξ:

Fξ =
2

Iξ (2 − Iξ)
, (48)
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Fig. 2. (Color online) Fano factor as a function of T in units of
~ω for several (decreasing from the bottom up) values of ξ. We
use the same values of Figure 1. The lowest curve corresponds
to ξ = 1/2.
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Fig. 3. (Color online) Fano factor as a function of T for several
small ξ-values, namely, 0.05, 0.1, 0.2, and 0.3. The uppermost
curve corresponds to ξ = 0.05.

an important result! Notice that Iξ = Iw only in the par-
ticular instance ξ = 0, that diverges at T = 0 because
there Iw = 2 (Cf. Fig. 2). However, for all ξ > 0 one
immediately realizes that such T = 0−divergence disap-
pears. Consequently, the Fano factor will diverge just for
the Wigner case and the smallest amount of smearing or
smoothing prevents it. In other words, the smallest admix-
ture of other states with the ground-state (see the partic-
ipation ratio Section above) impedes the divergence. Our
plots for Fξ vs. ξ illustrates such an effect (Cf. Fig. 3).
It is easy to analytically ascertain that, at T = 0, the
minimum F -value is attained for ξ = ξmin = 1/2 (the
Husimi-instance), where we get Fmin = 2, well within
the classical super-Poisson realm. We see now the Husimi
distribution in a different light then, as the best pos-
sible “smoothed-Wigner distribution” at very low tem-
peratures. Figure 4 depicts the Fano factor’s behavior,
at T = 0, as a function of ξ. For T ≥ 0, the associ-
ated ξmin(T ) = (Iw − 1)/Iw = 1 − coth(β~ω/2)/2. For
T > Tcrit = 0.910239 there is no longer a Fmin-value.
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Fig. 4. (Color online) Fano factor as a function of ξ at T = 0.
A clear minimum at ξ = 1/2 can be appreciated

8.1 Reasons for F ’s divergence at T = 0

We can easily understand the strange T = 0 – behavior
of the Fano factor in terms of the participation ratio R
discussed above. As explained previously, as T → 0, the
system tends to be found in the ground state with a par-
ticipation ratio equal unity. One easily sees that

F = (2hN̂iξ + 1)(hN̂iξ + 1/2)/2hN̂iξ. (49)

Clearly, hN̂iξ = 0 for the zero-photon ground state, and
for R = 1 this is the only occupied state. Thus, F neces-
sarily diverges. Such divergence is, indeed, the signature
of having reached the quantum limit.

9 Conclusions

In this effort we have found or shown that

– The Fisher information measure of a smoothed (by
the amount ξ) Wigner distribution can be cast as a
function of Wigner-Fisher’s one Iw in the fashion Iξ =
Iw/(ξ Iw + 1).

– The complementarity information-participation ratio
relation

Rξ Iξ = 2. (50)

Thus, the inverse Fisher’s information-measure Iξ di-
rectly yields half the number of states entering the den-
sity operator.

– The Fano factor expression as a function of Fisher’s
measure Iξ and the smoothing parameter ξ reads

Fξ =
2

Iξ (2 − Iξ)
, (51)

so that it diverges at T = 0 for ξ = 0. However, for all
ξ > 0 such T = 0 – divergence disappears: the Fano
factor will diverge just for the Wigner case and the
smallest amount of smearing or smoothing prevents it.

– The Husimi distribution is now seen in a new way,
namely, as the best possible smoothed Wigner distri-
bution at very low temperatures.

– The Cramer-Rao relation is always saturated (not only
at T = 0), irrespective of the smoothing-parameter’s
value, as seen in Section 7.

– With reference to the classical-quantum transition we
have encountered that the smoothing factor becomes
a signature of its temperature’s dependence.

We conclude by underlining our main findings:

– While the Wigner function exhibits high resolution,
it is not free of difficulties, in particular, long range
quantum interferences.

– The Husimi distribution washes out quantum inter-
ferences at the price of hiding important semiclassical
structures [23].

– With reference to the pathological Wigner-instance of
the operator Hamiltonian-squared [24], the process of
smoothing is of help.

– More specifically, we are speaking of Wigner function’s
smoothing intermediate between that provided by the
Husimi function and zero-smearing. Smoothing is able
to wash-out quantum interferences in such a way as to
eliminate the T = 0 – divergence of the Fano factor.

– This divergence is to be properly understood as the sig-
nature of having reached the quantum-classical fron-
tier.

– We saw also that the Husimi function provides the best
possible Wigner-smoothing at very low temperatures.

– The participation ratio turns out to be a signature of
the T -dependence of the quantum-classical transition
as well.

F. Pennini would like to thank for partial financial support
FONDECYT, grant 1080487.

Appendix A: One-dimensional smoothing

We discuss now the concept of smoothing (or “smearing”)
in a simple setting in order to familiarize ourselves with
the subject. Define the normalized kernel (0 ≤ ξ ≤ 1)

g(x− y) =
1√
ξπ

e−(x−y)2/ξ,

and proceed to “smooth” (“smear”) the Gaussian

f(x) =
1√
Υπ

e−x2/Υ . (A.1)

To do this we must integrate the quantity

G = g(x− y)f(x) =
1

π
√
ξΥ

e−
1
ξ (x2−2yx+y2+ξx2/Υ ).

Introduce the abbreviation: μ = (ξ + Υ )/(ξΥ ) and write
down G as

G ≡ 1
π
√
ξΥ

e−μ(x2−2yx/ξμ+y2/ξμ)

=
1

π
√
ξΥ

e−μ(x−A)2−μB , (A.2)
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“completing the square”. We have

x2 +A2 − 2Ax+B = x2 + y2/ξμ− 2yx/ξμ, (A.3)

so that A = y/ξμ, B = A2 − y2/ξμ = (y2/ξμ) (1 − 1/ξμ),
and then

G =
1

π
√
ξΥ

e−μ(x−A)2−(y2/ξ)(1−1/ξμ). (A.4)

Thus,

f̃(y) =
Z
dxG(x − y) =

1p
π(ξ + Υ )

e−y2/(ξ+Υ ), (A.5)

and we see, comparing (A.1) with (A.5), that the smear-
ing means that the “width” of the Gaussian grew from Υ
to Υ + ξ.
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