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proposed by Lahellec & Suquet (2007 Int. J. Solids
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is revisited. The scheme relies upon an incremental
variational formulation providing the inelastic strain
field at a given time step in terms of the inelastic
strain field from the previous time step, along with a
judicious use of Legendre transforms to approximate
the relevant functional by an alternative functional
depending on the inelastic strain fields only through
their first and second moments over each constituent
phase. As a result, the approximation generates a
reduced description of the microscopic state of the
composite in terms of a finite set of internal variables
that incorporates information on the intraphase
fluctuations of the inelastic strain and that can be
evaluated by mean-field homogenization techniques.
In this work we provide an alternative derivation
of the scheme, relying on the Cauchy–Schwarz
inequality rather than the Legendre transform, and in
so doing we expose the mathematical structure of the
resulting approximation and generalize the exposition
to fully anisotropic material systems.
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1. Introduction
The time-dependent mechanical behaviour of composite media is the result of intricate
interactions between elastic and inelastic deformation processes operating within the different
constitutive phases. A key consequence of these interactions is that microscopic constitutive
descriptions based on finite sets of internal variables give rise to macroscopic constitutive
descriptions with an infinity of internal variables (e.g. [1,2]). This fact has motivated several
attempts to generate approximate macroscopic descriptions based on reduced sets of effective
internal variables that provide a partial but hopefully accurate characterization of the evolving
microscopic state of the composite.

When all constitutive phases exhibit linear viscoelastic behaviour, macroscopic descriptions
are often fashioned in spectral form by means of the Laplace transform and the so-called
correspondence principle (e.g. [3–6]). The multiplication of internal variables is thereby
manifested by the multiplication of relaxation times: composites exhibiting a discrete spectrum
with a finite number of relaxation times—i.e. short-memory effects—at the microscale display
a continuous spectrum with an infinite number of relaxation times—i.e. long-memory effects—
at the macroscale (e.g. [7,8]). The number of effective relaxation times is closely related to the
microstructural arrangement and the location of poles of the effective complex moduli on the
real negative axis [9]. The analytic representation of these moduli can be used to derive bounds
on the effective creep/relaxation functions with incomplete information on the microstructure
[10]. A class of microstructures for which macroscopic long-memory effects result in a finer but
still discrete spectrum has been reported by Ricaud & Masson [11]. More generally, a so-called
collocation method is often employed to generate approximate macroscopic descriptions with a
finite number of relaxation times (e.g. [6,12,13]). Interestingly, these simplified descriptions can
be recast in terms of effective internal variables [11,14], although the physical meaning of these
internal variables and their relationship to the microscopic internal variable fields is, to the best
of our knowledge, still unknown.

When constitutive phases exhibit non-linear viscoelastic behaviour, macroscopic descriptions
based on effective internal variables are invariably employed. One of the earliest approximations
consisted in assuming that the inelastic strain within each phase of the composite is uniform and
therefore characterized by a single internal variable per phase [15]. While attractively simple, it is
known that this approximate scheme, commonly referred to as ‘transformation field analysis’, can
be severely inaccurate when the local fields exhibit strong spatial fluctuations (e.g. [16]). In view
of this observation, Michel & Suquet [16,17] refined the approximation by assuming non-uniform
inelastic strain fields that can be expressed as a linear combination of a finite number of predefined
fields, so that the amplitudes constitute a finite set of internal variables for which evolution laws
can be provided. This refinement significantly improves the accuracy of the approximation but
introduces the need to carry out full-field numerical computations.

In parallel developments, Lahellec & Suquet [18,19] proposed a conceptually different
approximation that enables the use of mean-field homogenization techniques for linearly elastic
composites to avoid full-field numerical computations. This approximate scheme hinges upon
an incremental variational formulation of the evolution law that provides the inelastic strain
field at a given time step in terms of the inelastic strain field from the previous time step (e.g.
[20–22]). Similarly to previous works on purely elastic/viscous composites (e.g. [23]), Legendre
transforms are then used to approximate the relevant functional by an alternative functional
that depends on the inelastic strain fields only through their first and second moments over
each phase. As a result, the scheme generates a reduced description of the microscopic state of
the composite that can be evaluated by mean-field homogenization techniques and, at the same
time, incorporates information on the intraphase fluctuations of the inelastic strain field through
a finite set of effective internal variables endued with clear physical meaning. This description
can significantly improve on the original transformation field analysis without requiring full-
field computations. The scheme has already been applied to linear viscoelastic composites [18,24]
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as well as non-linear viscoelastic composites [19,25,26] and elastoplastic composites [27–29]
with relative success. A variant of the scheme for elastoplastic composites can also be found
in Lucchetta et al. [30]. In this work we revisit the scheme in the context of linear viscoelastic
composites. We provide an alternative derivation relying on the Cauchy–Schwarz inequality
instead of the Legendre transform, and in so doing we expose the mathematical structure of
the resulting approximation and generalize the exposition to fully anisotropic material systems.
In contrast to some of the works alluded to above, the focus here is placed on the structure of
the effective viscoelastic constitutive relations, and on accurate approximations of those relations
granted the underlying microstructure is known with sufficient precision so that purely elastic
properties can be accurately determined. The derivation is carried out within a primal variational
formulation of the mechanical problem, in the sense that the mechanical fields entering the
potentials are the various strains and their rates. Estimates for rigidly reinforced viscoelastic
solids subject to complex deformation histories are reported in a companion paper to highlight
the capabilities and limitations of the scheme and to identify possible improvements.

2. Problem setting
We consider a representative volume element of a composite material made up of N constituent
phases, and denote by Ω and Ω (r) (r = 1, . . . , N) the domains occupied by the element and the
phases within it, respectively, so that Ω = ∪N

r=1Ω
(r). Also, we denote by χ (r)(x) the characteristic

function of each subdomain Ω (r). The local viscoelastic response is described within the
framework of generalized standard materials by constitutive relations of the form [31]

σ = ∂w
∂ε

(x, ε, α) and
∂w
∂α

(x, ε, α) + ∂ϕ

∂α̇
(x, α̇) = 0, (2.1)

where ε and α denote the infinitesimal and inelastic strains relative to a stress-free reference
configuration, σ denotes the Cauchy stress, the dot over a variable denotes a time derivative,
and the potential functions w and ϕ are, respectively, the Helmholtz free-energy density and the
dissipation potential of the composite, which can be expressed in terms of the corresponding
phase potentials as

w(x, ε, α) =
NX

r=1

χ (r)(x)w(r)(ε, α) and ϕ(x, α̇) =
NX

r=1

χ (r)(x)ϕ(r)(α̇). (2.2)

These potentials are convex functions of the mechanical fields with suitable growth conditions.
The dissipation potentials are, at the same time, positive functions vanishing at the origin.

The homogenized response relates the macroscopic stress σ to the macroscopic strain ε, which
are the averages of the local stress and strain fields over the representative volume element. This
relation can be written in terms of the macroscopic free-energy density and dissipation potential
as (e.g. [2])

σ = ∂w
∂ε

(ε, α) and
δw

δα(x)
(ε, α) + δϕ

δα̇(x)
(α̇) = 0, (2.3)

where
w(ε, α) = inf

ε∈K(ε)



w(x, ε, α)

�
and ϕ(α̇) = 


ϕ(x, α̇)
�
. (2.4)

In these expressions, K(ε) is the set of kinematically admissible strain fields with average ε, h·i
denotes volume averaging over the representative volume element and the δ operator denotes
a functional derivative. It is observed that the macroscopic free-energy density and dissipation
potential are the volume averages of their microscopic counterparts, and are therefore functionals
of the microscopic inelastic strain field and its rate. These functionals inherit the convexity of
the local potentials. Thus, homogenization preserves the generalized standard structure of the
local reponse, with the microscopic inelastic strain field playing the role of a macroscopic internal
variable albeit of infinite dimension. The purpose of the approximate scheme presented below is
to reduce the dimensionality of the macroscopic internal variables to a finite number.
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To ease the exposition, we restrict our attention to viscoelastic phases characterized by
generalized Kelvin–Voigt potentials—also referred to as Poynting–Thomson potentials—of the
form

w(r)(ε, α) = 1
2

(ε − α) · L
(r)(ε − α) + 1

2
α · H

(r)α and ϕ(r)(α̇) = 1
2
α̇ · M

(r)α̇, (2.5)

where L(r), H(r) and M(r) are positive-definite tensors of elastic, hardening and viscous moduli. In
this case, the macroscopic potentials can be written as

w(ε, α) = inf
ε∈K(ε)

NX
r=1

c(r)
�

1
2

(ε − α) · L
(r)(ε − α) + 1

2
α · H

(r)α

�(r)
(2.6)

and

ϕ(α̇) =
NX

r=1

c(r) 1
2

D
α̇ · M

(r)α̇
E(r)

, (2.7)

where h·i(r) and c(r) denote the volume average over phase r and its volume fraction. It is
emphasized, however, that the main conclusions of this study remain relevant to more general
linear models; for nonlinear models see §3c.

3. Model reduction

(a) Reduced macroscopic potentials
Following Lahellec & Suquet [18], the evolution law (2.3)2 is discretized in time using an implicit
Euler scheme of the form

δw
δα(x)

(ε, α) + δϕ

δα̇(x)

�
α − αn

1t

�
= 0, (3.1)

with time step 1t. This expression constitutes an equation for the inelastic strain field α at
the current time step given the inelastic strain field αn at the previous time step. Central to
the approximate scheme of Lahellec & Suquet [18] is the fact that, in view of the convexity of
the macroscopic potentials, the algebraic equation (3.1) is equivalent to the variational problem

inf
α

�
w(ε, α) + 1t ϕ

�
α − αn

1t

��
. (3.2)

Variational formulations of this sort permit the derivation of rigorous bounds and facilitate the
confection of accurate approximations. Indeed, making use of the Cauchy–Schwarz inequality, it
is shown in appendix A that��

α − αn

1t

�
· M

(r)
�

α − αn

1t

��(r)
Q hαi(r) − hαni(r)

1t
· M

(r) hαi(r) − hαni(r)

1t

+ m(r)

 
C(r)1/2

α ± C(r)1/2

αn

1t

!2

, (3.3)

where

C(r)
α =

D
(α − hαi(r)) · M̆

(r)(α − hαi(r))
E(r)

, (3.4)

and C(r)
αn are traces of the intraphase fluctuations of the inelastic strain field at each time step,

m(r) = ||M(r)|| is the Euclidean norm of the viscosity tensor M(r), and M̆(r) = M(r)/m(r). The sense of
the bound depends on the sign adopted inside the last squared term. However, the purpose here
is not to insist on the bounding character of the right-hand side of (3.3) but rather to exploit it as
a sensible approximation of the left-hand side. The form of the right-hand side suggests the use
of the bound corresponding to the negative sign—regardless of its upper or lower character—to
be consistent with the time continuous limit 1t → 0; indeed, selecting the positive sign leads
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to an unbounded right-hand side in that limit. The discretized dissipation functional is thus
approximated by the discretized dissipation function

ϕ

�
α − αn

1t

�
≈ ϕ̂

 
hαi(1) − hαni(1)

1t
, . . . ,

C(1)1/2

α − C(1)1/2

αn

1t
, . . .

!

=
NX

r=1

c(r)

⎡⎣1
2

hαi(r) − hαni(r)

1t
· M

(r) hαi(r) − hαni(r)

1t
+ 1

2
m(r)

 
C(r)1/2

α − C(r)1/2

αn

1t

!2⎤⎦ , (3.5)

which depends on the inelastic strain field only through the phase averages and intraphase
fluctuations. Making use of this approximation in the discretized evolution law (3.2) we obtain

inf
α

"
w(ε, α) + 1t ϕ̂

 
hαi(1) − hαni(1)

1t
, . . . ,

C(1)1/2

α − C(1)1/2

αn

1t
, . . .

!#
, (3.6)

and therefore, partitioning the infimum problem,

inf
α(r)eα(r)≥0

"
ŵ
�
ε, α(1), . . . ,eα(1), . . . ,

�
+ 1tϕ̂

 
α(1) − α

(1)
n

1t
, . . . ,

eα(1) −eα(1)
n

1t
, . . .

!#
, (3.7)

where

ŵ
�
ε, α(1), . . .eα(1), . . .

�
= inf

α∈J (α(1),...eα(1),...)
w (ε, α) (3.8)

and

J (α(1), . . .eα(1), . . .) =
n
α :



α
�(r) = α(r) andD

(α − hαi(r)) · M̆
(r)(α − hαi(r))

E(r)1/2

=eα(r) for r = 1, . . . , N
�

. (3.9)

It is now evident that the infimum problem (3.7) constitutes an implicit Euler discretization of the
continuous evolution laws

∂ŵ

∂α(r)

�
ε, α(1), . . . , α(N),eα(1), . . . ,eα(N)

�
+ ∂ϕ̂

∂α̇
(r)

�
α̇

(1), . . . , α̇(N),ėα(1), . . . ,ėα(N)
�

= 0, (3.10)

∂ŵ
∂eα(r)

�
ε, α(1), . . . , α(N),eα(1), . . . ,eα(N)

�
+ ∂ϕ̂

∂ėα(r)

�
α̇

(1), . . . , α̇(N),ėα(1), . . . ,ėα(N)
�

= 0, (3.11)

for r = 1, . . . , N, where

ŵ
�
ε, α(1), . . . ,eα(1), . . .

�
= inf

ε∈K(ε)

α∈J (α(1),...eα(1),...)

NX
r=1

c(r)
�

1
2

(ε − α) · L
(r)(ε − α) + 1

2
α · H

(r)α

�(r)
(3.12)

and

ϕ̂
�
α̇

(1), . . . ,ėα(1), . . .
�

=
NX

r=1

c(r)
�

1
2
α̇

(r) · M
(r)α̇

(r) + 1
2

m(r) ėα(r)2
�

(3.13)

constitute reduced-order effective potentials which describe the internal state of the composite
via a finite set of effective internal variables representing the first moments of the inelastic strain
over each phase and the second moments of their intraphase fluctuations. Furthermore, in view of
the definition (3.8), the partial derivatives of the macroscopic free-energy density and its reduced
version with respect to the macroscopic strain are identical, and therefore

σ = ∂ŵ
∂ε

�
ε, α(1), . . . , α(N),eα(1), . . . ,eα(N)

�
. (3.14)
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(b) Mean-field homogenization
Instrumental to the above order reduction is the fact that the reduced free-energy density
(3.12) can be evaluated via mean-field homogenization techniques. Indeed, carrying out the
minimization with respect to the inelastic strain field as in appendix B, the reduced free-energy
density takes the form

ŵ
�
ε, α(1), . . . ,eα(1), . . .

�
= inf

ε∈K(ε)

NX
r=1

c(r)f (r)
�
hεi(r), hε ⊗ εi(r), α(r),eα(r)

�
, (3.15)

where the functions f (r) are defined as

f (r)
�
ε(r), E(r), α(r),eα(r)

�
= 1

2

�
ε(r) − α(r)

�
· L

(r)
�
ε(r) − α(r)

�
+ 1

2
α(r) · H

(r)α(r)

+ 1
2

h�
I − G

(r)T
�

L
(r)
�
I − G

(r)
�

+ G
(r)T

H
(r)

G
(r)
i

·
�
E

(r) − ε(r) ⊗ ε(r)
�

(3.16)

in terms of tensors G(r) given by

G
(r) =

�
L

(r) + H
(r) + 2λ(r)

M̆
(r)
�−1

L
(r), (3.17)

with scalars λ(r) being the solution to the equations

G
(r)T

M̆
(r)

G
(r) ·

�
E

(r) − ε(r) ⊗ ε(r)
�

=eα(r)2
, (3.18)

and with fourth-order tensors E(r) being identified with the second moments of the strain field
and therefore being positive semi-definite.

Expression (3.15) now requires the solution of a nonlinear minimization problem with respect
to the strain field. However, the associated Euler–Lagrange equations are those of a linear
‘thermoelastic’ comparison solid with the same microstructure as the viscoelastic composites but
with piecewise uniform stiffness tensor and eigenstress field given by [32]

τ
(r)
0 = ∂f (r)

∂ε(r)

�
hεi(r), hε ⊗ εi(r), α(r),eα(r)

�
and L

(r)
0 = 2

∂f (r)

∂E(r)

�
hεi(r), hε ⊗ εi(r), α(r),eα(r)

�
. (3.19)

Therefore, the minimizing strain field in (3.15) coincides exactly with that of a linear comparison
problem

ŵ0(ε) = stat
ε∈K(ε)

NX
r=1

c(r)
�

1
2
ε · L

(r)
0 ε + τ

(r)
0 · ε

�(r)
(3.20)

with constitutive tensors given self-consistently by (3.19). The stationary rather than extremal
character of the variational problem (3.20) is due to the fact that the tensors L

(r)
0 are not in general

positive definite. In any event, this comparison energy can be expressed as

ŵ0(ε) = 1
2
ε ·eL0ε +eτ0 · ε +eg0, (3.21)

where eL0,eτ0 andeg0 are effective properties that can be determined with any suitable mean-field
homogenization technique for N-phase linear thermoelastic solids. The first and second moments
of the strain field within each phase can then be determined from this comparison energy by
evaluating the derivatives

hεi(r) = 1
c(r)

∂ŵ0

∂τ
(r)
0

(ε) and hε ⊗ εi(r) = 2
c(r)

∂ŵ0

∂L
(r)
0

(ε) for r = 1, . . . , N, (3.22)

which follow from well-known relations for field statistics in linear heterogeneous media (e.g.
[32,33]) and, together with relations (3.19), constitute a set of algebraic non-linear equations for
those moments. Whenever these equations exhibit multiple roots, the root giving the minimum
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value of (3.15) with positive-definite phase covariances of the strain field must be selected. On
the other hand, the tensors L

(r)
0 need not be positive definite in view of the purely stationary

character of the comparison problem (3.20); whenever they are all positive (negative) definite, the
stationary point in (3.20) corresponds to a minimum (maximum) point. We do not dwell on the
analysis of necessary conditions for the existence of solutions and defer it to applications of the
scheme in specific contexts. In any event, the reduced free-energy density (3.15) and its derivatives
are completely determined by the mean-field homogenization scheme of choice.

The macroscopic constitutive relation can now be written more explicitly as

σ =
NX

r=1

c(r)
L

(r)
�
hεi(r) − α(r)

�
, (3.23)

and the evolution laws as

M
(r)α̇

(r) + (L(r) + H
(r))α(r) = L

(r)hεi(r) and m(r)ėα(r) − 2λ(r)eα(r) = 0, (3.24)

where the λ(r)’s are the solution to (3.18) and thus depend on the intraphase fluctuations of
the strain and inelastic strain fields. Alternatively, the macroscopic constitutive relation can be
obtained from the comparison energy as

σ = ∂ŵ0

∂ε
(ε) =eL0ε +eτ0, (3.25)

since the stress fields associated with both minimization problems agree exactly. Finally, relations
(3.22) provide the first- and second-order intraphase statistics of the underlying strain field. And
given the local relations (2.1) and (B 4), these strain statistics imply the corresponding stress
statistics

hσ i(r) = L
(r)
�
hεi(r) − α(r)

�
(3.26)

and

hσ ⊗ σ i(r) − hσ i(r) ⊗ hσ i(r) = L
(r)
�
I − G

(r)
� �

hε ⊗ εi(r) − hεi(r) ⊗ hεi(r)
� �

I − G
(r)T
�

L
(r). (3.27)

(c) Discussion
Expressions (3.10)–(3.14) constitute the time-continuous form of the mean-field homogenization
scheme initially proposed by Lahellec & Suquet [18]. A proof of the equivalence between the
two formulations is provided in appendix C. Several comments are in order at this point. First,
the availability of an upper and lower bound for the second moments (3.3) corresponds to
the presence of multiple roots in the original formulation. But unlike the original formulation
requiring the evaluation of all roots and an a posteriori identification of the most suitable root, the
present formulation provides an a priori criterion for root selection. The selected bound is only
used here as an approximation, regardless of its bounding sense. Second, the present formulation
makes it plain that this approximate homogenization scheme entails in effect a model reduction
that preserves the two-potential structure of the exact constitutive relations. From a practical
standpoint, in fact, it constitutes a refinement of the ‘transformation field analysis’ of Dvorak [15]
by incorporating second-order statistics of the inelastic strain field through the additional effective
internal variableseα(r). Unfortunately, the reduced dissipation potential is convex but the reduced
free-energy density is not in view of the fact that the set of admissible internal variables J ,
as given by (3.9), is non-convex. Thus, the present formulation also makes it plain that this
model reduction does not preserve the generalized standard structure of the exact constitutive
relations. However, it is shown in appendix D that the reduced free-energy density does attain its
convexification within the range delimited by the inequalitiesh

I + H
(r)

L
(r)−1

i−1
M̆

(r)
h
I + L

(r)−1
H

(r)
i−1 ·

�
hε ⊗ εi(r) − hεi(r) ⊗ hεi(r)

�
≥eα(r)2

, (3.28)

for r = 1, . . . , N, at least for constitutive tensors L(r), H(r) and M(r) having a common set of
eigentensors within each phase. Thus, the reduced free-energy density is convex in the Cartesian
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product space of macroscopic strains and effective internal variables whenever all intraphase
fluctuations of the inelastic strain field are smaller than those of the total strain field as measured
by the above projections. This range contains the initial state of the composite with vanishing
inelastic strains. Outside that range, the reduced free-energy density is, in general, non-convex.
The consequences of this non-convexity on the constitutive relations are discussed in the context
of specific examples in the companion paper. Nonetheless, the approximation does have the
capability to reproduce the exact response in some situations, as will be seen in the examples.

Third, the reduced homogenization scheme furnishes not only the macroscopic constitutive
response but also the first- and second-order intraphase statistics of the underlying strain and
stress fields. These field statistics are uniquely given by expressions (3.22), (3.26) and (3.27). This
is in contrast to field statistics furnished by the ‘decoupled’ schemes commonly employed in the
context of linear and non-linear viscoelastic solids exhibiting Maxwellian rheologies. By assuming
a kinematically compatible elastic strain field, these schemes effectively decouple the viscoelastic
homogenization problem into a purely elastic problem and a purely viscous problem (e.g. [25,34]),
but in so doing generate two different sets of field statistics associated with each problem and thus
introduce some arbitrariness (see, for instance, [35]).

It is also noted that a more general approximation can be made by considering the spectral
decomposition of the viscosity tensors and invoking the Cauchy–Schwarz inequality for the
various inner products and associated norms defined by the eigentensors of each phase. It is
reasonable to expect that such an approximation will produce more accurate descriptions at the
expense of increasing the number of internal variables. At any rate, it is observed that the reduced
version (3.12) of the macroscopic free-energy density incorporates a dependence on the local
viscous anisotropy through the set of admissible internal variable fields.

Finally, it is easy to extend the reduced homogenization scheme to non-linearly viscous
composites with local dissipation potentials of the form

ϕ(r)(α̇) = F(r)(α̇ · M
(r)α̇), (3.29)

where the functions F(r) are concave on the space of positive reals. In this case, use can be made
of Jensen’s inequality to bound from above the dissipation potential of the composite by

ϕ(α̇) =
NX

r=1

c(r)
D
F(r)(α̇ · M

(r)α̇)
E(r) ≤

NX
r=1

c(r)F(r)
�D

α̇ · M
(r)α̇

E(r)
�

, (3.30)

and subsequently use the Cauchy–Schwarz inequality (3.3) to approximate the arguments of the
functions F(r) and generate the reduced dissipation potential

ϕ̂
�
α̇

(1), . . . ,ėα(1), . . .
�

=
NX

r=1

c(r)F(r)
�
α̇

(r) · M
(r)α̇

(r) + m(r) ėα(r)2�
, (3.31)

which inherits the convexity of the local dissipation potential. The approximation (3.30) amounts
to a linearization of the non-linear dissipation potentials of the secant type (e.g. [32,36]), and
the resulting estimates constitute the time-continuous form of the non-linear estimates initially
proposed by Lahellec & Suquet [19] for isotropic solids with power-law dissipation potentials.
Other approximations in (3.30) incorporating additional statistics of the inelastic strain rate field
can be similarly exploited (e.g. [23,37]).

4. Isotropic phases
The above formulae simplify considerably when the constitutive responses of all phases are
isotropic and characterized by constitutive tensors of the form

L
(r) = 3κ (r)

J + 2μ(r)
K, H

(r) = +∞ J + 2h(r)
K and M

(r) = 2η(r)
K, (4.1)

where J and K are the standard fourth-order isotropic bulk and shear projection tensors,
respectively, κ (r) and μ(r) are the bulk and shear elastic moduli, respectively, h(r) is a hardening
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modulus and η(r) is the viscosity. The form of the tensor H(r) implies that volumetric changes are
purely elastic.

Given the above form of constitutive tensors, the tensors (3.17) simplify to

G
(r) = μ(r)

μ(r) + h(r) + λ(r)
K, (4.2)

and therefore the functions (3.16) reduce to

f (r)
�
ε(r), E(r), α(r),eα(r)

�
= 9

2
κ (r)ε

(r)2

m + μ(r)
�
ε

(r)
d − α(r)

�2 + h(r)α(r)2

+ μ(r)h(r) + (h(r) + λ(r))2

(μ(r) + h(r) + λ(r))2
μ(r)

K ·
�
E

(r) − ε(r) ⊗ ε(r)
�

, (4.3)

where ε
(r)
m = trε(r)/3 and ε

(r)
d = ε(r) − ε

(r)
m I denote the mean and deviatoric parts of ε(r), respectively,

I denotes the second-order identity tensor, trα(r) = 0, the square of a second-order tensor a has
been defined as a2 = a · a, and the scalars λ(r) have been rescaled by an inconsequential factor
kKk−1 = 1/

√
5. In turn, equations (3.18) reduce to 

μ(r)

μ(r) + h(r) + λ(r)

!2

K ·
�
E

(r) − ε(r) ⊗ ε(r)
�

=eα(r)2
, (4.4)

where the effective internal variables eα(r) have been rescaled by a factor kKk1/2 = 51/4; these
equations are solved by

λ(r) =
±
h
K ·

�
E(r) − ε(r) ⊗ ε(r)

�i1/2 −eα(r)

eα(r)
μ(r) − h(r). (4.5)

As anticipated in the previous subsection, multiple roots are observed; the root delivering the
minimum value of the functions f (r) should be selected. Thus,

f (r)
�
ε(r), E(r), α(r),eα(r)

�
= 9

2
κ (r)ε

(r)2

m + μ(r)
�
ε

(r)
d − α(r)

�2 + h(r)
�
α(r)2 +eα(r)2

�
+ μ(r)

�h
K ·

�
E

(r) − ε(r) ⊗ ε(r)
�i1/2 −eα(r)

�2
. (4.6)

In view of this expression for the functions f (r), the reduced-order effective potentials become

ŵ
�
ε, α(1), . . . ,eα(1), . . .

�
= inf

ε∈K(ε)

NX
r=1

c(r)
�

9
2
κ (r)
ε2

m
�(r) + μ(r)

�

εd
�(r) − α(r)

�2

+μ(r)
��

hε2
di(r) − hεdi(r)2

�1/2 −eα(r)
�2

+ h(r)
�
α(r)2 +eα(r)2

�#
(4.7)

and

ϕ̂
�
α̇

(1), . . . ,ėα(1), . . .
�

=
NX

r=1

c(r)η(r)
�
α̇

(r)2

+ ėα(r)2
�

. (4.8)

The macroscopic constitutive relation is then given by

σ =
NX

r=1

c(r)
h
3κ (r)
εm

�(r)I + 2μ(r)
�


εd
�(r) − α(r)

�i
, (4.9)

while the evolution laws are given by

η(r)

μ(r)
α̇

(r) +
 

1 + h(r)

μ(r)

!
α(r) = hεdi(r) and

η(r)

μ(r)
ėα(r) +

 
1 + h(r)

μ(r)

!eα(r) =eε(r)
d , (4.10)
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whereeε(r)
d is an isotropic measure of the intraphase fluctuations of the deviatoric strain defined

by

eε(r)
d =

�
hε2

di(r) − hεdi(r)2
�1/2

. (4.11)

In turn, the stress statistics (3.26) and (3.27) are given by

hσ i(r) =
h
3κ (r)
εm

�(r)I + 2μ(r)
�


εd
�(r) − α(r)

�i
(4.12)

and

hσ ⊗ σ i(r) − hσ i(r) ⊗ hσ i(r) =
�

3κ (r)
�2 �


ε2
m
�(r) − 


εm
�(r)2�

I ⊗ I

+
�

2μ(r)
�2
 eε(r)

d −eα(r)

eε(r)
d

!2 �
hεd ⊗ εdi(r) − hεdi(r) ⊗ hεdi(r)

�
. (4.13)

In view of these relations, the thermodynamic forces associated with the effective internal
variables are connected to the microscopic stress field by

a(r) = − ∂ŵ

∂α(r)
= c(r)

h
σ

(r)
d − 2h(r)α(r)

i
(4.14)

and ea(r) = − ∂ŵ
∂eα(r)

= c(r)
heσ (r)

d sgn(eε(r)
d − 2eα(r)) − 2h(r)eα(r)

i
, (4.15)

where σ
(r)
d = hσ di(r) is the average of the deviatoric stress field over phase r as given by

the deviatoric part of (4.12), and eσ (r)2

d = hσ 2
di(r) − hσ di(r)2

is a measure of the deviatoric stress
fluctuations over that phase as given by the deviatoric trace of (4.13).

The above expressions require the first and second moments of the strain field within each
phase. These moments can be obtained from the comparison problem (3.20), which simplifies to

ŵ0 (ε) = stat
ε∈K(ε)

NX
r=1

c(r)
�

9
2
κ (r)
ε2

m
�(r) + μ

(r)
0 hε2

di(r) + τ
(r)
0 · hεdi(r)

�
, (4.16)

with

τ
(r)
0 = 2μ(r)

 eα(r)

eε(r)
d

hεdi(r) − α(r)

!
and μ

(r)
0 = μ(r)

 
1 − eα(r)

eε(r)
d

!
. (4.17)

The required moments then follow from the identities (3.22), which reduce to

hεdi(r) = 1
c(r)

∂ŵ0

∂τ
(r)
0

(ε), hε2
di(r) = 1

c(r)
∂ŵ0

∂μ
(r)
0

(ε) and hε2
mi(r) = 1

c(r)
2
9

∂ŵ0

∂κ (r)
(ε). (4.18)

Once again, expressions (4.17) and (4.18) constitute a set of non-linear equations for the first and
second moments of the strain field within each phase which may have multiple solutions, but only
those entailing positive strain fluctuations are admissible, i.e. μ

(r)
0 ≤ μ(r). Among those admissible

roots, the one providing the minimum reduced free-energy density (4.7) must be selected. The
sign of the comparison moduli μ

(r)
0 ’s, on the other hand, is unrestricted. However, we note that

the convexity conditions (3.28) reduce to

eε(r)
d ≥

 
1 + h(r)

μ(r)

!eα(r) or equivalently ėα(r) ≥ 0 (4.19)

in view of the evolution laws (4.10)2. Thus, the reduced free-energy density (4.7) attains its
convexification whenever the intraphase fluctuations of the inelastic strain field increase in every
phase.
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5. Concluding remarks
We have provided an alternative—but equivalent—formulation of the mean-field homogenization
scheme of Lahellec & Suquet [18,19] for viscoelastic composites that exposes its mathematical
structure and generalizes it to fully anisotropic material behaviours. It was found that the scheme
entails in effect a model reduction that preserves the two-potential structure of the macroscopic
constitutive behaviour being approximated but without preserving its global convexity. Thus,
the ensuing reduced model is not a generalized standard material model. The capabilities and
limitations of this model are explored in light of these findings in the companion paper.

We conclude by recalling that alternative mean-field homogenization schemes for viscoelastic
and elasto-viscoplastic composites are already available from the works of Lahellec & Suquet [38]
and Idiart & Lahellec [25]. These schemes hinge upon an incremental formulation of the
macroscopic evolution law based on strain rates rather than strains. As a result, the natural
variable requiring an order reduction is the stress field rather than the inelastic strain field within
the composite. The question arises then as to whether a certain duality between the various mean-
field schemes can be established and eventually exploited to expose their mathematical structure
along the lines of the present work. This question will be addressed in a separate contribution.
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Appendix A. Bounds on thedissipationpotential via Cauchy–Schwarz inequality
Given a particular phase r with viscosity tensor M(r), we introduce the inner product and
associated norm

(α1, α2)(r) =
D
α1 · M̆

(r)α2

E(r)
and kαk(r) =

D
α · M̆

(r)α
E(r)1/2

, (A 1)

where M̆(r) = M(r)/kM(r)k is a unitary viscosity tensor. The contribution from that phase to the
discretized dissipation can then be written as��

α − αn

1t

�
· M̆

(r)
�

α − αn

1t

��(r)

=
α − αn

1t

(r)2

=
 hαi(r) − hαni(r)

1t
+ (α − hαi(r)) − (αn − hαni(r))

1t


(r)2

=
 hαi(r) − hαni(r)

1t


(r)2

+
 (α − hαi(r)) − (αn − hαni(r))

1t


(r)2

=
 hαi(r) − hαni(r)

1t


(r)2

+ kα − hαi(r)k(r)2

−2(α − hαi(r), αn − hαni(r))(r) + kαn − hαni(r)k(r)2

1t2 , (A 2)
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where use has been made of the fact that�
hαi(r) − hαni(r), α − hαi(r)

�(r) =
�
hαi(r) − hαni(r), αn − hαni(r)

�(r) = 0. (A 3)

Now, in view of the Cauchy–Schwarz inequality�
α − hαi(r), αn − hαni(r)

�(r)
Q ±

α − hαi(r)
(r) αn − hαni(r)

(r)
, (A 4)

the dissipation (A 2) can be bounded by��
α − αn

1t

�
· M̆

(r)
�

α − αn

1t

��(r)
Q
 hαi(r) − hαni(r)

1t


(r)2

+ kα − hαi(r)k(r)2

±2kα − hαi(r)k(r)kαn − hαni(r)k(r) + kαn − hαni(r)k(r)2

1t2

=
 hαi(r) − hαni(r)

1t


(r)2

+
 

kα − hαi(r)k(r) ± kαn − hαni(r)k(r)

1t

!2

, (A 5)

where the sense of the bound depends on the sign adopted inside the last squared term. The
bounds (3.3) simply follow from multiplying this inequality by ||M(r)|| and identifying the
quantitieseα(r) andeα(r)

n with the norms ||α − hαi(r)||(r) and ||αn − hαni(r)||(r).

Appendix B. Inelastic strain field in the reduced free-energy density
The reduced free-energy density (3.12) can be rewritten as

ŵ
�
ε, α(1), . . . ,eα(1), . . .

�
= inf

ε∈K(ε)
inf
α

sup
Λ(r)

sup
λ(r)

NX
r=1

c(r)
�

1
2

(ε − α) · L
(r)(ε − α) + 1

2
α · H

(r)α

�(r)

+ Λ(r) ·
�
hαi(r) − α(r)

�
+ λ(r)

�D�
α − α(r)

�
· M̆

(r)
�
α − α(r)

�E(r) −eα(r)2
�

.

(B 1)

Within each phase, the optimal inelastic strain field is thus given by the optimality condition

− L
(r)(ε − α) + H

(r)α + Λ(r) + 2λ(r)
M̆

(r)
�
α − α(r)

�
= 0. (B 2)

Phase averaging this expression and taking into account the optimality condition with respect to
Λ(r), namely hαi(r) = α(r), we obtain

− L
(r)
�
hεi(r) − α(r)

�
+ H

(r)α(r) + Λ(r) = 0. (B 3)

Eliminating Λ(r) by substracting these two expressions we obtain

α − α(r) = G
(r)
�
ε − hεi(r)

�
, (B 4)

with the tensor G(r) defined by (3.17). Thus,�
α − α(r)

�
· M̆

(r)
�
α − α(r)

�
=
�
ε − hεi(r)

�
· G

(r)T
M̆

(r)
G

(r)
�
ε − hεi(r)

�
. (B 5)

Finally, phase averaging this last expression and taking into account the optimality condition with
respect to λ(r) as given by D�

α − hαi(r)
�

· M̆
(r)
�
α − hαi(r)

�E(r) =eα(r)2
, (B 6)
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we obtain the equation

G
(r)T

M̆
(r)

G
(r) ·

�
hε ⊗ εi(r) − hεi(r) ⊗ hεi(r)

�
=eα(r)2

, (B 7)

for the optimal Lagrange multiplier λ(r). Expression (B 4) therefore gives the optimal inelastic
strain within each phase in terms of α(r),eα(r), hεi(r) and hε ⊗ εi(r).

Appendix C. Equivalence between original and present formulations
The original formulation proposed by Lahellec & Suquet [18] expresses the incremental problem
(3.7) as

stat
α

(r)
0 ,λ(r)

0

"ew0

�
ε, α(r)

0 , λ(r)
0

�
+

NX
r=1

c(r)v(r)
�
α

(r)
0 , λ(r)

0 ; αn

�#
, (C 1)

where

ew0

�
ε, α(r)

0 , λ(r)
0

�
= inf

ε∈K(ε)
inf
α

NX
r=1

c(r)

*
1
2

(ε − α) · L
(r)(ε − α) + 1

2
α · H

(r)α

+ λ
(r)
0

21t

�
α − α

(r)
0

�
· M

(r)
�
α − α

(r)
0

�+(r)

(C 2)

and

v
�
α

(r)
0 , λ(r)

0 ; αn

�
= stat

α̂

NX
r=1

c(r)

*
1

21t
(α̂ − αn) · M

(r)(α̂ − αn)

− λ
(r)
0

21t
(α̂ − α

(r)
0 ) · M

(r)
�
α̂ − α

(r)
0

�+(r)

, (C 3)

and identifies the total strain, inelastic strain and stress fields inew0 with those fields at the current
time step. To show the equivalence of this formulation with that of §3 we begin by spelling out
the various optimality conditions,

∇ · σ = 0 in Ω , (C 4)

σ = L
(r)(ε − α) in Ω (r), (C 5)

− L
(r)(ε − α) + H

(r)α + λ
(r)
0

1t
M

(r)
�
α − α

(r)
0

�
= 0 in Ω (r), (C 6)

(α̂ − αn) − λ
(r)
0

�
α̂ − α

(r)
0

�
= 0 in Ω (r), (C 7)

hαi(r) = hα̂i(r), (C 8)D�
α − α

(r)
0

�
· M

(r)
�
α − α

(r)
0

�E(r) =
D�

α̂ − α
(r)
0

�
· M

(r)
�
α̂ − α

(r)
0

�E(r)
. (C 9)

Thus, for a given field α, the field equations (C 4) and (C 5) generate the same displacement field
as (3.12). Now, to determine the field α we substract its phase average to (C 6) to obtain 

L
(r) + H

(r) + λ
(r)
0

1t
M

(r)

!�
α − hαi(r)

�
= L

(r)
�
ε − hεi(r)

�
; (C 10)

therefore �
α − hαi(r)

�
= G

(r)
�
ε − hεi(r)

�
(C 11)

and D�
α − hαi(r)

�
· M̌

(r)
�
α − hαi(r)

�E(r) =
D�

ε − hεi(r)
�

· G
T
M̌

(r)
G

�
ε − hεi(r)

�E(r)
, (C 12)
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where

M̌
(r) = kM

(r)k−1
M

(r), G
(r) =

�
L

(r) + H
(r) + 2λ(r)

M̆
(r)
�−1

L
(r), λ(r) = λ

(r)
0

21t
kM

(r)k. (C 13)

Thus, for a given set of moments hαi(r) and h(α − hαi(r)) · M̌(r)(α − hαi(r))i(r), equations (C 10)–
(C 13) generate the same inelastic strain field as (3.12); see appendix B. To determine the first
moments, we phase average (C 6) and (C 7), and take into account (C 8), to obtain

M
(r) hαi(r) − hαni(r)

1t
+
�
L

(r) + H
(r)
�

hαi(r) = hεi(r). (C 14)

To determine the corresponding equations for the fluctuations, we substract its phase average
from (C 7) to obtain �

1 − λ
(r)
0

� �
α̂ − hα̂i(r)

�
=
�
αn − hαni(r)

�
. (C 15)

At the same time, (C 8) and (C 9) imply thatD�
α − hαi(r)

�
· M̌

(r)
�
α − hαi(r)

�E(r) =
D�

α̂ − hα̂i(r)
�

· M̌
(r)
�
α̂ − hα̂i(r)

�E(r)
. (C 16)

Introducing the former into the latter and taking the square root we obtain

(1 − λ
(r)
0 ) C(r)1/2

α = ±C(r)1/2

αn . (C 17)

Upon choosing the positive root in this expression, as in Lahellec & Suquet [18], and using
(C 13)3, we finally obtain

kM
(r)kC(r)1/2

α − C(r)1/2

αn

1t
− 2λ(r)C(r)1/2

α = 0. (C 18)

Equations (C 14) and (C 18) are the implicit Euler discretizations of the evolutions laws (3.24).
Thus, the total and inelastic strain fields, and therefore the corresponding stress field, are the
same as the corresponding fields of the reduced-order model of §3.

Appendix D. Convex range of the reduced free-energy density
Consider a function ŵc defined by the same expression (3.12) for ŵ but with the set of admissible
inelastic strains J replaced by the set

Jc(α(1), . . .eα(1), . . .) =
�
α :



α
�(r) = α(r) and

D�
α − hαi(r)

�
· M̆

(r)
�
α − hαi(r)

�E(r)1/2

≤eα(r) for r = 1, . . . , N
�

. (D 1)

The set Jc is convex and, therefore, the function ŵc is convex in the Cartesian product space of
macroscopic strains and effective internal variables. It is evident that J ⊆Jc and therefore that

ŵ
�
ε, α(1), . . . ,eα(1), . . .

�
≥ ŵc

�
ε, α(1), . . . ,eα(1), . . .

�
. (D 2)

Now, the function ŵc can be rewritten as

ŵc

�
ε, α(1), . . . ,eα(1), . . .

�
= inf

ε∈K(ε)
inf
α

sup
Λ(r)

sup
λ(r)≥0

NX
r=1

c(r)
�

1
2

(ε − α) · L
(r)(ε − α) + 1

2
α · H

(r)α

�(r)

+ Λ(r) ·
�
hαi(r) − α(r)

�
+ λ(r)

�D�
α − α(r)

�
· M̆

(r)
�
α − α(r)

�E(r) −eα(r)2
�

. (D 3)

Within each phase, the optimal inelastic strain field is thus given by the same set of optimality
conditions (B 2)–(B 7) as those of ŵ, provided those equations are satisfied by positive Lagrange
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multipliers λ(r) ≥ 0. Assuming the constitutive tensors L(r), H(r) and M(r) have a common set of
eigentensors within each phase, and given that those constitutive tensors, as well as the strain
fluctuations tensor, are all positive definite, the left-hand side of (B 7) is a decreasing function of
λ(r), and so that optimality condition holds wheneverh

I + H
(r)

L
(r)−1

i−1
M̆

(r)
h
I + L

(r)−1
H

(r)
i−1 ·

�
hε ⊗ εi(r) − hεi(r) ⊗ hεi(r)

�
≥eα(r)2

. (D 4)

Thus, equality in (D 2) holds whenever the inequality (D 4) holds for all r = 1, . . . , N. Within that
range, the function ŵ attains its convexification, as given by the function ŵc. Outside that range,
the function ŵc need not constitute the convexification of the function ŵ.
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