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An exactly soluble model for the study of projection techniques within the framework of 
the Hartree-Fock theory is presented. Properties of the exact solutions are analyzed and 
projections, both before and after variation, are discussed. 

1. Introduction 

One often utilizes in nuclear physics ground state 
wave functions which are not eigenstates of a given 
operator O, even if that contradicts physical require- 
ments involving the conservation of the observable 
represented by O. It is well known [1] that Hartree- 
Fock (HF) selfconsistent solutions generally corre- 
spond to situations in which either the center-of-mass 
linear momentum or the total angular momentum (or 
both) is not a well-defined observable. Literature on 
the subject has been growing during the last years 
(see for example Refs. 2), and, in particular, angular 
momentum projection has received a great deal of 
attention (see for instance Ref. 3 and works cited 
therein). 
When projection techniques are employed in a given 
calculation, approximations at different levels, are 
usually made, specially if projection-before-variation 
is intended [4 6]. It is not always an easy task to 
ascertain to what an extent these approximations are 
valid ones, since no exact wave functions are in most 
cases available. For this reason, exactly soluble mo- 
dels are of special usefulness. In this respect, the most 
widely used model of this type is perhaps Lipkin's 
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one [7, 8]. Although extremely useful in many si- 
tuations, this model is not particularly helpful in 
dealing with projection techniques, as only parity can 
be projected out [8, 9]. 
The purpose of the present work is to present an 
exactly soluble model which, although only slightly 
more involved than Lipkin's, is specially suited to 
study projection techniques. Moreover, a richer struc- 
ture is found, in the sense that several "phase tran- 
sitions" are encountered. 
The model is introduced in Sect. 2, while the cor- 
responding H F solutions are dealt with in Sect. 3. 
Projection theory, both before and after variatiom 
illustrated with numerical results, is discussed in 
Sects. 4 and 5. 

2. The Model 

The model deals with N particles distributed in two 
single-particle levels, each N-fold degenerate, which 
are separated by the single particle energy ~:. We 
characterize the N lower states by ] p , a = -  1) (for 

N 
P = - 2 . . . . .  N / 2 )  as Lipkin et al. [7, 8]. The particles 

interact via a two-body force of strength ~,  whose 
structure is a bit more complicated than that of 
Lipkin's monopole force. The Hamiltonian reads 
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As depicted in Fig. 1, four different interaction terms 
are included in the Hamiltonian (1), both repulsive 
and attractive. In order to study its properties it is 
convenient to introduce, in addition to the usual I-7, 
8] quasi-spin operators 

1 1" 
2 E~ACp, ,u  Cp,,u, 

P~ 

]+::* Z' = cv ,+cv ,_ ,  (2) 
P 

the following ones 

S +  -1" 1" = S  : E C p , + C _ p ,  , 
P 

~ : ]~ .  (3) 
The operators S+, S , 5~ commute among themselves 
like angular momentum ones, i.e., they are quasi-spin 
operators. 
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If we define further 

1 t O - g ~ l ~ C p , , c  p,~, (4) 
P,# 

and 

< +<), 

w+ r162 ,^  = =2(J+ -S+) ,  

< = + o), 
= ~ ( J .  - 0) ,  (5) 

we obtain two additional quasi-spin sets: 17+, 1? , I7 z 
and I7r ~ , lTg~. Moreover, any given 17 operator 
commutes with all W ones and viceversa (SU 2 
• s u2). 
In terms of these new operators, we can write the 
Hamiltonian (1) as 

/4 =< +-~ v(T, + T2), (6) 

with 

in (6) we have defined v= VJ~. Obviously, we can 
diagonalize /4 in an S U  2 x S U  2 basis. Since /4 com- 
mutes both with 1?2 and ~2 ,  exact solutions are 
obtained by diagonalization within a given multiplet 
IV, W, Vz, W~>. It is easy to show that the following 
relationships hold. 

]2 : 172 + i~z + i? I + T2, (9) 

~2 : 172 + 17r + % _ %. (10) 

As a consequence of (6) and (9), our Hamiltonian 
commutes with ]2 but not with ~2. 
Let us discuss now the unperturbed ground state and 
denote it as Jugs). Obviously 

]~lugs> = - � 8 9  lugs), 

/.7lugs) : 0 .  (11) 

Consequently, lugs) is an eigenstate of both < and 
W= with eigenvalues V = W~ = - N / 4 .  Moreover, 

N N  
172 lugs) = [?g2 lugs) --~(~-+ i) lugs>, (12) 

i.e., the unperturbed ground state belongs to the 
multiplet V= W= N / 4  and can be written as 

lugs) = ]V = W m/4,  V~ = W= = - m / 4 ) .  (13) 

Since /~ commutes both with i72 and with #2 ,  the 
exact wave function must be a linear combination of 
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states pertaining to this multiplet. Moreover, in view 
of (9), we can label the exact solutions with the quasi- 
spin J and write down the energy explicitly as 

E j, N ( V = W = N/4 )  

= - J  +�89 v [ J ( J  + 1) - 2 W ( W +  1)], (14) 

with J <= N/2 .  

If we focus now our attention upon the energy differ- 
ence between two states of given N, and such that the 
corresponding quasi-spins J differ by one (i.e., they 
are, respectively, J - 1  and J), we find 

E s 1 , u - E s , u = l - J v  (15) 

independent of N. One thus gets a set of "critical" 
coupling constants 

v s = 1/J. (16) 

At v=vs, the Lipkin quasi-spin of the ground state 
changes. In particular, for v> 1, the ground state of 
the interacting system is characterized by J =0, inde- 
pendent of N. We see then that, as we turn the 
interaction on, the ground state of the system (which 
for v = 0 possesses the maximum possible quasi-spin J 
compatible with N) will run downward in J as v 
grows, passing through all possible values until it 
reaches J = 0 at v = 1. 

3. The Hartree-Fock Solution 

The Hartree-Fock approach looks for the zero parti- 
cle-zero hole (0p -Oh)  wave function in the selfconsis- 
tent or "b" representation, which is a suitable linear 
combination of the original, or "c", one. The cor- 
responding coefficients are so chosen as to minimize 
the expectation value of the Hamiltonian in the new 
O p - O h  state. A glance at Fig. 1 should convince the 
reader that, in order to obtain the HF transformation 
one must mix the single-particle orbital [p,/~) both 
with I P , - # )  and I-p,/~).  This is conveniently done 
in two steps, i.e., one performs the two successive 
rotations [10, 11]. 

( cos fl/2 - i sin fi/2] 
( ; f : ) = \ - i s i n / ~ / 2  cosfl/2 / ( a a f ' . ) '  (17) 

and 

( ~ i ~ ) : (  cos~/2 - i s in~ /2~  
(18) 

The former is a rotation in quasi-spin S-space which 
commutes with ~2 but not with j2, while the latter is 
a rotation in quasi-spin J-space, with the opposite 

behaviour. As a result of (17) and (18) both the V- 
quasi-spin and the W-one rotate around the x-axis, 
the former in an angle (~ + fi), the latter according to 
(~-fl) .  The eigenvalues of both 172 and I~ 2 are 
preserved in these rotations. 
It is worthwhile to mention the following point. If we 
look at Fig. 1 we notice that, as we switch the in- 
teraction on, starting from the unperturbed ground 
state, only the forward (plus exchange) scattering 
term becomes effective, since there are no particles in 
the levels characterized by/~ = + 1. Consequently, for 
small enough values of the interaction strength, the 
HF solution should match the exact one. In the 
Lipkin model, instead, things are quite different, since 
the HF solution deviates from the exact one as soon 
as the interaction is switched on [8]. Moreover, the 
Lipkin HF energy is independent of the coupling 
constant, as long as this is small enough. In our case, 
the HF energy depends always  upon the interaction 
strength. 
In order to determine ~ and [L and thus the O p - O h  

state in the b-representation, we must solve the equa- 
tions 

~ u (HV(b)[/4 IHF(b)) =0, 

A 

~ ,, (HF(b)I H IHF(b)) =0. (19) (,p 

Table 1 lists the corresponding solutions. Notice that 
for the unperturbed ground state the exact energy is 

E(lugs))= - ~  1 -  , (20) 

which is also the HF energy for the trivial solution 
=0, fi=0. 
By inspection of Table 1 one concludes that the so- 
lution with ~ = f l = 0  is the lowest one for v < 1/(2W), 
while for larger values of the coupling constant the 
unperturbed ground state becomes unstable and the 

solution .2=0, [4=arccos 2vW is the one to be 

selected. At this point, it is appropiate to refer again 

Table 1. Values of the rotation angles ~ and fl which extremalize 
the Hartree-Fock energy 

[] HF energy 

~/2 ~/2 v W 2 
0 0 - 2 W + v W  2 
0 ~ 2W+t:W 2 

0 2 W + v W  2 
0 arccos(1/2vW) (for v> 1/2W) -(1/2v)-vW: 
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to the Lipkin model. There, a similar behaviour 
obtains, and an abrupt transition is exhibited by the 
HF  energy at the critical coupling constant [8]. 
However, this is not the consequence of any physical 
effect, since the exact solution displays everywhere a 
smooth behaviour as a function of the interaction 
strength: In our case things are different. For our 
critical coupling constant there is a real phase tran- 
sition, which is seen in the exact solution. Moreover, 
this phase transition is connected with the fact that, 
at that critical value, the attractive terms of the 
interaction overcome the effect of the repulsive 
ones. 
As in Refs. 8, 10, 11, which deal with the Lipkin 
model, one can easily obtain an explicit expression 
for the H F  wave function, in terms of the states of 
our relevant multiplet. 

I H F > =  ~ D(Vz, W=)IV,W, Vz, W~>, (21) 
V = W =  

with 

D(V:, W~)=dVv, v=(/3) dWw, w= ( -  fl), (22) 

where the d functions are defined by Edmonds [12]. 

4. Exact Projection Theory 

The H F  wave-function (21) does not possess good 
quasi-spin J, although ] / ~ , , f 2 1  =0.  In order to project 
out this quantum number  it is convenient to 
diagonalize j2 within our relevant multiplet, this 
procedure yielding the set of wave functions. 

IV, W,J, n> = ~ c6j,,(V=, I41=)IV, W, V=, W=>. (23) 
V=W= 

Here n distinguishes among states of the same J. The 
set (23) allow us to give the projection opera to r /~  an 
explicit expression 

= ~ IV, W,J, n> (n,J, W, V]. (24) 
n 

We see now that Eqs. (21-24) allow us to obtain an 
exact expression for the projected energy E j (PHF)  

<HFI/4/~ IHF> 
E s ( P H F ) =  <HFI/~  IHF> ' (25) 

in terms of the wave functions of the multiplet 
IKW, V~,W:>, i.e., in terms of the matrix elements 
< V, IV, V:', W='I H IV, W, V., l/V_>, which have a very 
simple form. 
Projection after variation is performed by using in 
(22), for /3, the corresponding HF value of Table 1. 
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Fig. 2. Exact, J-projected and HF-energies for N =6. For J = 3 the 
exact and HF energies coincide. For J - 0  the exact and the PHF 
energies are equal. For J = 1,2 projection before variation yields 
the same results as the exact treatment 

Projection before variation is achieved selecting /3 in 
(22) so as to minimize (25). 
Notice that for e <  1/2W the HF solution has good J, 
since it coincides with the exact one. In projecting J 
=0,  the following considerations should be made. 
There are N/2 + 1 states with V~ = - W  z (Jz = 0) in the 
l ugs)-multiplet. Accordingly, /~ in (24) has only one 
term, and the projected energy coincides with the 
exact one, irrespective of wether one projects either 
before or after variation (the result does not depend 
upon/3). 
Figure 2 illustrates these considerations for the case 
N = 6 .  As the strength v grows, the ground state of 
the system runs through several "phase transitions", 
where its Lipkin quasi-spin J changes abruptly at 
specific vj values. For J = 3  the exact solution is 
matched by the HF  one. When J = 0 ,  the PHF so- 
lution coincides with the exact one, while the HF  
energy lies considerably higher. For J = 1,2 one can 
appreciate the fact that projecting out J considerably 
improves the HF  solution. Projection beJbre va- 
riation yields the same results as the exact treatment, 
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TaSle 2. Overlaps between either the exact or the projected HF wave function and ]np - nh ) ,  for N=4,  J =  1 

281 

t, [{HFlExact)l  2 I ( l p l h l E xac t ) l  2 ]<2p2hlExact)l 2 1(3p3hlExact)i 2 l(4p 4hlExact)i 2 

0.55 0.158 0.609 0.215 0.017 0.000 
0.60 0.257 0.373 0.318 0.049 0.002 
0.65 0.319 0.227 0.363 0.086 0.005 
0.70 0.360 0.135 0.375 0. I 20 0.010 
0.75 0.386 0.077 0.370 0.151 0.016 
0.80 0.402 0.041 0.358 0.178 0.021 
0.85 0.412 0.020 0.340 0.201 0.028 
0.90 0.419 0.007 0.320 0.220 0.034 
0.95 0.421 0.002 0.301 0.237 0.040 
1.00 0.422 0.000 0.282 0.250 0.047 

v I(HFI PI-IF>I 2 I ( l p  l h I P H F ) I  2 i(2p 2hIPHF>i 2 1(3p3hIPHF)F 2 I<4p4h]PHF)I 2 

0.55 0.158 0,618 0.194 0.027 0.001 
0.60 0.259 0,396 0.261 0,077 0.008 
0.65 0.325 0,261 0.270 0.124 0.021 
0.70 0.370 0.176 0.253 0.162 0.039 
0.75 0.401 0,122 0.228 0.190 0.059 
0.80 0.424 0,086 0.201 0,209 0.081 
0.85 0.440 0,062 0.175 0.220 0.104 
0.90 0.453 0,045 0.151 0.226 0.126 
0.95 0.461 0,033 0. i 30 0.227 0.148 
1.00 0.469 0.025 0.113 0.224 0.169 

and is thus seen to be a much more powerful method 
than projection after variation. 
A numerical estimation of the correlations intro- 
duced by the projection procedure, which allows one 
to appreciate in greater detail the difference between 
these two methods, is obtained by evaluation of the 
overlap between either the exact, or the projected 
HF, wave function, and the state built upon the HF 
one by creating n particles and n holes (np-nh), with 
n =0, 1, 2 . . . . .  N. This can be accomplished by expan- 
sion of all relevant wave functions in terms of our 
basic set iv, W, V~, W~), as, for example, in Eq. (21) for 
the Op-Oh state. The procedure is straightforward, 
although the algebra involved may become cumber- 
some. In order to save space, we present in Table 2 
just a representative example, for the case N = 4 ,  J 
= l .  

An important conclusion that can be drawn from this 
study is that, qualitatively, projecting either before or 
after variation introduces the same kind of corre- 
lations. Only the relative weights of the different np 
- n  h corrections are different (remember that in this 
model projection before variation is equivalent to an 
exact solution). 
There is also a strong correlation, as expected, be- 
tween the goodness of the HF wave function and the 
importance of the l p - l h  admixtures in the exact 
wave functions. The best HF wave functions obtain 
when this admixture is zero. Curiously enough, this 

happens just at the critical strength that indicates the 
appearance of a phase transition. 

5. Approximate Projection Theory 

The most widely employed approximation is the so- 
called Gaussian overlap one (GOA) [3, 4]. In our 
context, application of the GOA is not straightfor- 
ward, due to the fact that our HF states do not have 
good &. This difficulty can be surmounted by re- 
course to the expansions referred to in the last para- 
graph, i.e. 

]np-nh)= ~ ~,p nh(Vz, Wz) lV~Y~Vz, Wz). (26) 
V=,W~ 

For n = 0  we have c~,i , ,h(Vz, W~)=D(K,W=) (see 
Eq. 21) and we have to consider up to n=2.  
One must evaluate, then, the matrix elements (see 
Ref. 3 for notational conventions) 

<v, w, v., ~ l  ~,~ lv, w, ff, w~') 

=< v, w.. Vz, ~1 P,~O.,.,~,, IV, w, if, vv*) 
= a,,,v:+ ..z 6K,v~+ w~< v, w, v~, w_[ 0.KK iV, W. Vj, ~ '>  

(27) 
where 

1 

(~jK~ = ~(2J + 1) ~ d(cos0) d~K(O ) e-')~~ (28) 
1 
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For the sake of simplicity, let us choose K = - J .  

( Then we have d J j, j(0)= cos and write 

(V,W,V~,WzlOj, ~, jIV, W,V;,~') 
, O~2J 

- 1  

�9 ( E W ,  V~,W~le IJ,~ W,V[,W~'). (29) 

The GOA is used in order to evaluate the matrix 
element in the r.h.s, of Eq.(29). One can use to that 
effect the expression (15) of Ref. 4 with the additional 
difficulty, in our case, that the index denoted there by 
s can here adopt values larger than 2. 
The projected energy that is obtained in this way (see 
Ref. 4) 

E j = ( H F I / 4  {HF) +(2(HFI/~ IHF)) 1 

<HFI/~ IL> <El/t  IHF> 
L= Inp- nh) 

+ ( H F { / t  Ig) (El/~ IHF) (30) 

must now be minimized with respect to the angle fl of 
Eq.(17). Numerical computations yield the result 
that, within numerical accuracy, GOA results coin- 
cide with those obtained by employing Eq. (30) with- 
out recourse to this approximation (which in turn, as 
previously discussed, are just the exact ones). We 
remark that, obviously, the GOA is an approximate 
projection before variation method. The conclusion 
to be drawn from our results is that an approximate 
projection before variation method is better than an 
exact projection after variation. 

The authors acknowledge fruitful discussions with Profs. A. Faess- 
ler and S.A. Moszkowsky. One of us (A.P.) thanks the Kern- 
forschungsanlage Juelich for its kind hospitality. 
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