
Vol.:(0123456789)1 3

Computing and Software for Big Science (2019) 3:11
https://doi.org/10.1007/s41781-019-0026-3

ORIGINAL ARTICLE

Rucio: Scientific Data Management

Martin Barisits1 · Thomas Beermann2 · Frank Berghaus3 · Brian Bockelman4 · Joaquin Bogado5 · David Cameron6 ·
Dimitrios Christidis7 · Diego Ciangottini8 · Gancho Dimitrov1 · Markus Elsing1 · Vincent Garonne6 ·
Alessandro di Girolamo1 · Luc Goossens1 · Wen Guan9 · Jaroslav Guenther1 · Tomas Javurek1 · Dietmar Kuhn10 ·
Mario Lassnig1 · Fernando Lopez5 · Nicolo Magini11 · Angelos Molfetas1 · Armin Nairz1 · Farid Ould‑Saada6 ·
Stefan Prenner10 · Cedric Serfon10 · Graeme Stewart1 · Eric Vaandering12 · Petya Vasileva1 · Ralph Vigne13 ·
Tobias Wegner1

Received: 26 February 2019 / Accepted: 1 July 2019 / Published online: 9 August 2019
© The Author(s) 2019

Abstract
Rucio is an open-source software framework that provides scientific collaborations with the functionality to organize, man-
age, and access their data at scale. The data can be distributed across heterogeneous data centers at widely distributed loca-
tions. Rucio was originally developed to meet the requirements of the high-energy physics experiment ATLAS, and now is
continuously extended to support the LHC experiments and other diverse scientific communities. In this article, we detail
the fundamental concepts of Rucio, describe the architecture along with implementation details, and report operational
experience from production usage.

Keywords Data organization · Data management · Data access · Distributed computing · Exascale

Introduction

Overview

For many scientific projects, data management is becoming
an increasingly complex and complicated challenge. The
number of data-intensive instruments generating unprec-
edented volumes of data is growing and their surrounding
workflows are becoming more complex. Their storage and
computing resources are heterogeneous and can be dis-
tributed at numerous geographical locations belonging to
different administrative domains and organizations. These
locations do not necessarily coincide with the places where
data are produced nor where data are stored, analyzed by
researchers, or archived for safe long-term storage. The
ATLAS Experiment [1, 2] at the Large Hadron Collider
(LHC) [3] at CERN [4] has such conditions. To fulfill the
needs of the experiment, the data management system Rucio
has been developed to allow ATLAS to manage its large vol-
umes of data in an efficient and scalable way. Existing data
handling systems focused on single tasks, e.g., transferring
files between data centers, synchronizing directory contents
across the network, dataflow monitoring, or reports of data
usage. Rucio has been built as a comprehensive solution

E-Mail: rucio-dev@cern.ch, Web: https ://rucio .cern.ch,
Repository: https ://githu b.com/rucio .

 * Mario Lassnig
 Mario.Lassnig@cern.ch

1 CERN, Meyrin, Switzerland
2 University of Wuppertal, Wuppertal, Germany
3 University of Victoria, Victoria, Canada
4 Morgridge Institute, Madison, WI, USA
5 Universidad Nacional de La Plata, La Plata, Argentina
6 University of Oslo, Oslo, Norway
7 University of Texas at Arlington, Arlington, TX, USA
8 INFN, Perugia, Italy
9 University of Wisconsin-Madison, Madison, WI, USA
10 University of Innsbruck, Innsbruck, Austria
11 Iowa State University, Ames, IA, USA
12 Fermi National Accelerator Laboratory, Batavia, IL, USA
13 University of Vienna, Vienna, Austria

http://orcid.org/0000-0002-9541-0592
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-019-0026-3&domain=pdf
https://rucio.cern.ch
https://github.com/rucio

 Computing and Software for Big Science (2019) 3:11

1 3

11 Page 2 of 19

for data organization, management, and access for scientific
experiments which incorporates the existing tools and makes
it easy to interact with them. One of the guiding principles of
Rucio is dataflow autonomy and automation, and its design
is geared towards that goal. Rucio is built on the experi-
ences of its predecessor system DQ2 [5] and modern tech-
nologies, and expands on functionality, scalability, robust-
ness, and efficiency which are required for data-intensive
sciences. Within ATLAS, Rucio is responsible for detector
data, simulation data, as well as user data, and provides a
unified interface across heterogeneous storage and network
infrastructures. Rucio also offers advanced features such
as data recovery or adaptive replication, and is frequently
extended to support LHC experiments and other diverse sci-
entific communities.

In this article, we describe the Rucio data manage-
ment system. We start by detailing the requirements of
the ATLAS experiment and the motivation for Rucio. In
Sect. "Concepts", we describe the core concepts and in
Sect. "Architecture", the architecture of the system, includ-
ing the implementation highlights. Section "Functionality
Details" explains how the concepts and architecture together
are used to provide data management functionality. We con-
tinue in Sect. "Operational Experience" with a view on the
operational experience with a focus on deployment, con-
figuration, and system performance, and in Sect. "Advanced
Features" with details on advanced workflows that can be
enabled through Rucio. We close the article in Sect. "Sum-
mary" with a summary, an overview of the Rucio commu-
nity, and outlook on future work and challenges to prepare
Rucio for the next generation of data-intensive experiments.

ATLAS Distributed Computing

ATLAS is one of the four major experiments at the Large
Hadron Collider at CERN. It is a general-purpose particle
physics experiment run by an international collaboration and
it is designed to exploit the full discovery potential and the
huge range of physics opportunities that the LHC provides.
The experiment tracks and identifies particles to investigate
a wide range of physics topics, from the study of the Higgs
boson [6] to the search for supersymmetry [7], extra dimen-
sions [8], or potential particles that make up dark matter [9].
The physics program of ATLAS is, thus, very diverse and
requires a flexible data management system.

ATLAS Distributed Computing (ADC) [10] covers all
aspects of the computing systems for the experiment, across
more than 130 computing centers worldwide. Within ADC,
Rucio has been developed as the principal Distributed Data
Management system, integrating with essentially every other
component of the distributed computing infrastructure, most
importantly the workflow management system PanDA [11]
and the task definition and control system ProdSys [12]. ADC

also does diverse research and development projects on data-
bases, analytics, or monitoring. ADC is also in charge of the
experiment computing operations and user support [13–15],
which takes care of the needs of the physics community, and is
in charge of commissioning and deployment of the computing
services. Rucio is well-embedded into the work environments
of ADC using both Agile and DevOps methodologies [16].

One of the most critical aspects of Rucio within ADC
is the smooth interaction with the workflow management
systems PanDA and ProdSys. In general, users do not see
the data management system when they submit their simula-
tion and analysis jobs, during the execution of the jobs, and
after the jobs have finished. PanDA instructs Rucio that a job
needs input files at a particular data center and Rucio will
ensure that the files are made available at the given destina-
tion, and will also ensure that newly created files during
job execution are promptly registered. In case of competing
requests on constrained network or storage resources Rucio
will schedule the dataflow to ensure fair usage of the avail-
able resources. Only at the very last stage, physicists might
use Rucio directly to download job output files from globally
distributed storage to their laptops or desktop nodes.

Storage, Network, and Transfer Providers

The distributed computing infrastructure used by ATLAS
comprises several systems which have been developed inde-
pendently, through common research initiatives, or through
high-energy physics-focused projects. Most importantly, this
includes different types of storage systems and their network
types of storage systems, protocol definitions, and the net-
work connections.

The majority of storage systems in use are EOS [17],
dCache [18], XrootD [19], StoRM [20], Disk Pool Man-
ager (DPM) [21], and Dynafed [22]. The dCache and CAS-
TOR [23] systems are used for tape storage. All these stor-
age systems provide access to the data via several protocols,
most importantly gsiftp [24], SRM [25], ROOT [26], Web-
DAV [27], and S3 [28]. All except S3 can be used for direct
storage-to-transfer transfers. The storage backends are com-
monly pools of disks, shared file systems, or magnetic tape
libraries. The storage systems also handle authentication and
authorization in various ways, such as X.509 [29] certifi-
cates or access control lists. Rucio is able to interact with
these storage systems directly and transparently via custom
implementations of the access protocols. Direct read access
to magnetic tape libraries is also supported; however, the
clients will have to wait for the tape robot to stage the file
if it is not in the tape buffer. Writing to tapes is supported
via an asynchronous mechanism, to ensure efficient pack-
ing of files on the magnetic bands. If new storage systems
enter the landscape, Rucio will be able to interact with them
automatically if they support any of the existing protocols.

Computing and Software for Big Science (2019) 3:11

1 3

Page 3 of 19 11

Alternatively, new protocols can be implemented with
plugins following the Rucio-internal interaction interfaces
which mimic common POSIX operations such as mkdir or
stat.

The network infrastructure is provided by multiple National
Research and Education Networks (NRENs), most impor-
tantly ESnet [30], Geant [31], Internet2 [32], SURFnet [33],
and NORDUnet [34]. The LHCOPN [35] connects the larger
data centers directly, whereas LHCONE [36] is a virtual net-
work overlay across multiple NRENs. The smaller institutes
are commonly connected via 40 Gbps links, the larger ones
with 100 Gbps links. In total, the Worldwide LHC Comput-
ing Grid (WLCG) provides 3 Tbps network capacity across
all available links [37]. Commercial cloud storage providers
have peering points for improved throughput from the NRENs
into their private networks. Traffic can also be routed over the
commodity internet as a fallback. In general, Rucio does not
see the underlying network infrastructure; however, it can use
historical network metrics such as throughput, packet loss, or
latency to select better data transfer paths.

The middleware to establish direct storage to storage
transfers over the network, commonly called third party
copy, is provided by the File Transfer System (FTS) [38].
FTS is a hard dependency for Rucio instances which require
third party copy. FTS establishes connections between
storage systems using the required protocols and ensures
that the files are correctly transferred over the networks.
Rucio decides which files to move, groups them in transfer
requests, submits the transfer requests to FTS, monitors the
progress of the transfers, retries in case of errors, and notifies
the clients upon completion. If there are multiple FTS serv-
ers available, Rucio is able to orchestrate transfers among
them for improved parallelism and reliability.

Concepts

Overview

The main concepts supported by Rucio cover namespace,
accounts, storage, subscriptions and replication rules. The
namespace is responsible for addressing the data in various
ways, accounts handle authorization, authentication, and
permissions, storage provides a unified interface to the dis-
tributed data centers, subscriptions are used for large-scale
dataflow policies, and replication rules ensure the consistent
distributed state of the namespace on the storage.

Namespace

Data in Rucio are organized using Data Identifiers (DIDs).
There are three levels of granularity for DIDs: files, datasets,

and containers. The smallest unit of operation in Rucio is the
file, which corresponds to the actual files persisted on stor-
age. Datasets are a logical unit which are used to group sets
of files to facilitate bulk operations on them, e.g., in transfers
and deletions, but also for organizational purposes. The files
in a dataset do not necessarily need to all be placed at the
same storage location but can be distributed over multiple
data centers as distributed datasets. Containers are used to
group datasets and also to organize large-scale groupings,
such as annual detector data output or collections of simula-
tion production with similar properties. Datasets and con-
tainers are referred to as collections. As shown in Fig. 1, this
allows for multi-level hierarchies of DIDs, as DIDs can be
overlapping. In this example, a proton physics experiment
is split into curated Simulation Data and Detector Data, and
the User Analysis data. Alice has created a research dataset
named Alice’s Analysis that contains the F6 data from the
detector which are necessary for her computation, which
eventually produced two output files F7 and F8.

All DIDs follow an identical naming scheme which
is composed of two strings in a tuple: the scope and the
name. The combination of scope and name must be
unique, and is denoted via colons, e.g., the unique DID
data2018:mysusysearch01 is part of scope data2018. The
scope, thus, partitions the global namespace. At least a sin-
gle scope must exist; however, the use of multiple scopes
can be beneficial to data organisation. Straightforward use
cases for multiple scopes are to easily separate instrumenta-
tion data from simulation data from user-created data, or to
allow fine-grained permissions.

DIDs are identified forever. This implies that a DID, once
used, can never be reused to refer to anything else at all, not
even if the data it referred to have been deleted from the
system. This is a critical design decision when dealing with
scientific data; otherwise, it would be possible to modify or
exchange data used in previous analyses without warning.
This does not mean that scientific data are required to be
immutable, only that Rucio enforces a name change when
data have been changed.

Fig. 1 The namespace is organized with collections and files. Col-
lections can either be containers or datasets. Containers consist of
containers or datasets. Datasets consist of files only. Files can be in
multiple datasets

 Computing and Software for Big Science (2019) 3:11

1 3

11 Page 4 of 19

Rucio also supports a standardized naming convention
for DIDs and can enforce this with a schema. This includes
limits on overall character length, e.g., to reflect file system
limitations, and that the names could be composed of fields
referencing high-level metadata such as the file format and
processing version identifiers, as well as other metadata
which is useful to connect DIDs with experiment operations.
As an example, in ATLAS real event data DIDs contain the
year of data taking and the ATLAS run number, and simu-
lated event DIDs contain an identifier specific to the fun-
damental physics process being simulated. One important
built-in metadata are the file checksums, which are rigidly
enforced by Rucio whenever any file is accessed or trans-
ferred. The two checksum algorithms MD5 and Adler32
are supported. Experiment-internal metadata can also be
enforced to follow a certain schema or uniqueness, such as
the globally unique identifiers (GUIDs) used by ATLAS.
All metadata are stored in the Rucio catalog. Rucio does not
index the experiment-specific metadata in the files; however,
they can be added through Rucio’s generic metadata explic-
itly by the users.

Files always have an availability status attribute, namely
available, lost, or deleted. If at least replica exists on storage,
a file is in state available. A file is in state lost if there are
no replicas on storage, while at the same time at least one
replication rule exists for the file. A file is in state deleted
if no replicas of the file exist anymore. New files enter the
system usually by registering first the file, then registering
the replica, then actually uploading the file to storage, and
finally placing a replication rule on the file to secure the
replica. The availability attribute is, thus, a derived attribute
from the contents of the Rucio replica catalog.

Users can set a suppression flag for a DID. It indicates
that the owner of the scope no longer needs the name to be
present in the scope. Files that are suppressed do not show
up in search and list operations on the scope. This flag can
be ignored when explicitly listing contents of collections
with a deep check.

The collection status is reflected by a set of attributes,
most importantly open, monotonic, and complete. If a collec-
tion is open, then content can be added to it. Collections are
created open, and once closed they cannot be opened again.
Datasets from which files have been lost can be repaired
when replacement files are available, even if they are closed,
but this is an administrative action not generally available
to regular users. If the monotonic attribute is set, content
cannot be removed from an open collection. Collections are
created non-monotonic by default. Once set to monotonic,
this cannot be reversed. This is especially useful for datasets
that follow a timed process. A collection where all files have
replicas available is complete. Any dataset which contains
files without replicas is incomplete. This is a derived attrib-
ute from the replica catalog.

Finally, Rucio also supports archives, such as compressed
ZIP files. The contents of the archive files can be registered
as constituents, and when resolving the necessary locations
of the constituents, the appropriate archive files will be used
instead. Some protocols can support transparent usage of
archive contents, such as ROOT with ZIP files. In that case,
Rucio automatically translates the respective calls into their
protocol specific direct access format of the constituent.

Accounts

Each client that wants to interact with Rucio needs an
account. An account can represent individual users such as
Alice, a group of users such as the Higgs Search Group, or
even organized activities like Monte Carlo simulation. A cli-
ent can use different identities, sometimes called credentials,
like X.509 certificates, username and password, SSH public
key cryptography, or Kerberos tokens to authenticate to one
or more accounts in a many-to-many relationship as shown
in Fig. 2. The Rucio authentication system checks if the pro-
vided identities are authorized to act as the requested Rucio
account. More details can be found in Sect. "Authentication
and Authorization".

Each account has an associated scope in the global
namespace, similar to a UNIX home directory. By authenti-
cating to a different account, the client acquires access to dif-
ferent scopes. In the default configuration, all data are read-
able by all accounts, even from private account scopes, but
modification privileges are restricted. Privileged accounts
can circumvent this restriction and modify the data across
all scopes. These access permissions can be programmati-
cally specified in the configuration to meet the needs of the
organization using Rucio.

By default, accounts have read access to all scopes and
write access only to their own scope. This allows free shar-
ing of data within a collaboration. Privileged accounts have
write access to multiple scopes, for example, a workload

Fig. 2 Each identity based on an authentication type can be mapped
to one or more Rucio accounts and vice versa

Computing and Software for Big Science (2019) 3:11

1 3

Page 5 of 19 11

management system is allowed to write into collaboration
or user scopes as necessary.

If available, Rucio can retrieve data from external account
systems, such as LDAP or VOMS, for automated account
management and synchronization.

Storage

Rucio associates actual locations of the DIDs with Rucio
Storage Elements (RSEs). These file locations are commonly
called replicas. A single RSE represents the minimal unit
of globally addressable storage and holds the description of
all attributes necessary to access the storage space, such as
hostname, port, protocol, and local file system path. RSEs
can be extended with arbitrary key-value pairs to help cre-
ate virtual spaces, allowing heuristics like all tape storage
in Asia. Rucio allows permissions and quotas to be set for
accounts independent from RSE settings. This allows flex-
ible use of the available storage. No software services are
needed at any of the data centers providing storage as RSE
configurations are defined in Rucio.

File DIDs eventually point to the locations of the replicas.
Each location is the physical representation of the file, i.e.,
bytes on storage. There can be files with zero replicas; these
files would be denoted by the availability deleted and thus
only exist in the namespace. For existing files on storage,
these can be registered as is directly into the Rucio catalog
and will retain their full path information as given by the
client. When uploading new data, there are two possibili-
ties: leave the decision of the path on storage to Rucio as
automatically managed storage namespace, also known as
deterministic RSE, or alternatively continue to provide full
paths on the storage to the file, also known as non-determin-
istic RSE. Automatically managed storage namespace is pro-
grammatic and based on functions, e.g., using customizable
hashes or regular expressions as detailed in Sect. "Authen-
tication and Authorization". Deterministic RSEs offer the
advantage of access path calculation without contacting the
Rucio file catalog. On the other hand, non-deterministic
RSEs offer more flexibility in placing the files on storage.

Rucio is transport protocol agnostic, meaning that the
RSEs can accept transfers via multiple protocols. As the
RSEs are configured independently, the distribution of pro-
tocols can be heterogeneous and even depend on the location
of the client accessing the data. For example, clients at the
data center which try to access any of the local RSEs can
use optimized transport using the ROOT protocol, whereas
all clients from outside the data center could be served via
HTTP/WebDAV. Protocol priority for read, write, deletion,
and third-party-copy operations, as well as their fallbacks,
are also supported, including proxy addresses.

Some commercial cloud providers use cryptographic sig-
natures to control access to their storage paths. Currently,

this is supported for the Google Cloud Platform [39], and is
transparent to Rucio users. Elevation of privileges is auto-
matically handled, and access control is regulated to ensure
billing constraints. For S3-style cloud storage, either private
or commercial, the distribution of pre-shared access creden-
tials is also supported and directly associated with the RSE.

All connected RSEs have the notion of distance. This is
not necessary geographical, but can be derived values, e.g.,
in ATLAS higher network throughput represents closer dis-
tance and is updated periodically and automatically. Func-
tional distance is always a non-zero value with increasing
integer steps, and zero distance indicates no connection
between RSEs. Most importantly, distance influences the
sorting of files when considering sources for transfers.
Practically, periodic re-evaluation of the collected aver-
age throughput of file transfers between two RSEs helps to
dynamically adjust and update the distances to reflect the
global state of the network and eventually improve source
selection across all data centers.

Some RSEs might allow data transfers, replica creation,
and replica deletions outside of Rucio control. Such RSEs
are considered volatile in Rucio. An example is a caching
service which autonomously removes files based on high
and low watermarks. Such RSEs are not presumed to guar-
antee data availability by Rucio at the time of access. It is
then necessary that the caching service updates the Rucio
namespace with timely location information by calling the
appropriate API. Should the caching service fail to update
the namespace appropriately, and a client, thus, cannot
download or transfer a purported replica, then the replica
will be flagged as suspicious and will be removed from the
namespace. This could cause delays due to the retries, in
case larger portions of the RSEs namespace are inconsistent.

Subscriptions and Replication Rules

The main mechanism for dataflow policies in Rucio are
standing subscriptions. Subscriptions exist to make data
placement requests for future incoming DIDs, e.g., to auto-
matically direct output of a scientific instrument to a par-
ticular data center. Subscriptions are specified by defining
a metadata filter on matching DIDs, for example, all RAW
data coming from the detector, and will automatically cre-
ate the necessary replication rules, such as rules for tape
archives in other countries. After the creation of a DID, its
metadata are matched with the filter of all subscriptions and
for all positive matches, the defined replication rules are then
created on behalf of the account.

The actual replica management is then based on replica-
tion rules which are defined on the DIDs. A replication rule
is a logical abstraction which defines the minimum number
of replicas to be available on a list of RSEs. A replication
rule affects the replication of all constituent files of this DID

 Computing and Software for Big Science (2019) 3:11

1 3

11 Page 6 of 19

continuously. Thus, when files are added or removed from a
dataset, the replication rule also reflects these changes. Each
replication rule is owned by an account. The amount of data
in bytes covered by their respective replication rules is used
to calculate the space occupancy of the account on an RSE.

Replication rules serve two purposes: to request the trans-
fer of data to an RSE and to protect these data from deletion.
As long as data is protected by a replication rule, i.e., a user
expresses interest by placing a rule, then the replica cannot
be deleted. Multiple accounts can own replication rules for
the same DID on an RSE. In this case, the files are shared
with only one physical copy, but the replicas are logically
protected by multiple replication rules and are only eligible
for deletion once all rules are removed.

A replication rule requires a minimum of four parameters
to be created: the DID it affects, the RSE expression repre-
senting a list of RSEs where replicas can be placed, the num-
ber of copies of each file to be created, and the lifetime of the
replication rule after which it is removed automatically. RSE
expressions are described by a set complete language defined
by a formal grammar to select RSEs. An attribute match of
the grammar always results in a set of RSEs, which could
also be empty. More detailed information of the language
can be found in a dedicated article [40].

An RSE expression always evaluates into a list of RSEs.
For example, the expression “tier=2&(country=FR|
country=DE)” is equivalent to the set of all Tier-2s inter-
sected with the set of all French and German RSEs. If the
user defines an RSE expression with more RSEs than cop-
ies requested, it is up to Rucio to select where the data are
being placed. Rucio primarily tries to minimize the amount
of transfers created; thus, it prioritizes RSEs where data are
partially already available. Otherwise, RSEs are selected
randomly unless the weight parameter of the rule is used,
which allows the user to affect the distribution of data within
the rule. The system internal datastructures which store
these selection decisions are called replica locks as they
effectively lock a replica to a certain RSE. A lock is always
associated with a replication rule and once the placement
decision has been made, it will not be re-evaluated at a later
point in time. This is to prevent the system from re-shuffling
data continuously. Replica locks cannot be manipulated by
users directly—their existence is always a result of an inter-
action with a replication rule. Examples of replication rules
include

• 2 copies of user.alice:myanalysis at country=US with
48 hours of lifetime

• 1 copy of user.bob:myoutput at CERN until January
• 1 c o p y o f u s e r . c a r o l : t e s t d a t a a t

country=DE&type=tape with no lifetime

When requesting the replication rule, Rucio validates the
available quota, evaluates the RSEs based on existing
data, creates transfer requests if the data are not available
at the specified RSEs, and creates the replica locks to
prevent the data from being deleted. Until the removal or
expiration of the rule, the replica locks will prevent these
data from being deleted. Notifications are always pro-
vided for state changes of rules and their transfer requests.
These notifications are primarily useful to other systems
for synchronisation purposes, e.g., notifying a workflow
management system that a dataset has finished transfer-
ring or has been deleted.

There is no possibility of having conflicting rules, since
the evaluation of rules always cause idempotent or additive
results, i.e., either to keep the number of replicas as is, or
to create more replicas. It is not possible to restrict or limit
other rules which could cause conflicting situations.

Finally, the measure of how much storage an account has
used is derived from its replication rules. This can be con-
trolled with quotas, which are policy limits which Rucio
enforces on accounts. The accounts are only charged for the
files they actively set replication rules on. The accounting
is, thus, based on the replicas an account requested, not on
the actual amount of physical replicas on storage. Thus, if
two different accounts set a replication rule for the same
file on the same storage both accounts are charged for this
file, although there is only one physical copy of it. The quo-
tas can be configured globally and individually, and in case
of overflows, can be approved or rejected by administrators
or special accounts.

Architecture

Overview

Rucio, as shown in Fig. 3, is based on a distributed architec-
ture and can be decomposed into four layers:

1. the clients layer, such as the command line clients (CLI),
Python clients, and the JavaScript-based web user inter-
face and configuration,

2. the server, offering the authentication, a common API
for interaction with the clients and other external appli-
cations, and the WebUI,

3. the core which represents the abstraction of all Rucio
concepts, and

4. the daemons taking care of the continuous and asynchro-
nous work flows in the background.

Next to these four main layers, there are the storage
resources and transfer tools, as well as the underlying per-
sistence layer, represented by the different queuing systems,

Computing and Software for Big Science (2019) 3:11

1 3

Page 7 of 19 11

transactional relational databases, and analytics storage on
non-relational databases.

Clients Layer

The REST [41] interface is the main entry-point to interact with
Rucio. The client API simplifies the usage of the REST inter-
face for Python environments. It implements the authentication,
the correct use of already available authentication tokens, and
Python wrappers for most of the REST interface commands.
Furthermore, there are different helper functions which encap-
sulate a set of API calls to implement more advanced function-
ality, e.g., downloading and uploading of files.

The functionality of the client API is organized into
different classes, each one a subclass of BaseClient. The
BaseClient provides the most important client information,
e.g., the authentication token, the request session object,
and account details. This class also implements the different
authentication methods. There also exists a generic Client
class which collects all client API calls into a single import-
able module for convenience. This allows the calling of all
wrapped REST interface commands using a single object.
The authentication is done directly by the BaseClient when
creating any client class itself.

Rucio also comes with a variety of command line tools,
e.g., bin/rucio and bin/rucio-admin. The first one provides
all basic commands to interact with Rucio for non-adminis-
trative users. This includes listing DIDs, getting attributes
or metadata, organizing DIDs, or downloading replicas. The

other command line tool allows the execution of adminis-
trative commands such as adding newly available RSEs, or
changing configuration attributes.

Server and Core Layers

The server is a passive component listening to incoming
queries and forwarding them to the core. The core is the rep-
resentation of the global system state. Incoming REST calls
are received by a web server, such as Apache, and relayed to
a WSGI [42] container which executes the matching Rucio
function in the core to update the system state. Any result
of the function is streamed back to the WSGI container and
Apache delivers it as an HTTP response object to the client.
For more complex requests, such as the creation of large
replication rules, which result in a large amount of transfers,
the server accepts and confirms the client request; however,
the actual execution is done asynchronously by a daemon.
This principle is commonly applied to ensure lower server
utilization for fast response times and to be able to optimize
the execution of large workloads in the background. In gen-
eral, the servers do not directly interact with RSEs as these
interactions are exclusively done by the daemons.

Daemons Layer

The daemons are continuously running active components
that asynchronously orchestrate the collaborative work of
the entire system. Not all daemons are mandatory, some

Server

Core

Daemons

TransacŸonal
RDBMS AnalyŸcs Storage

Transfers

DeleŸon Consistency

Rebalancing

Dynamic placement

AuthenŸcaŸon REST API

Accounts

Web UI

Rules Messaging

Tracing

Rules Data IdenŸfiers

Metadata Quotas Scopes

AuthorisaŸon

. . .

Clients CLI Python JavaScript

Storage

Queue

RSE 1
RSE 2

...

Transfer Tool
Tool 1
Tool 2

...

Fig. 3 High-level Rucio component overview detailing the four lay-
ers: clients, server, core, and daemons. Storage and transfer tools are
transparently integrated. The underlying support systems consist of

queueing systems, transactional relational database management sys-
tems (RDBMS), and non-relational analytics storage

 Computing and Software for Big Science (2019) 3:11

1 3

11 Page 8 of 19

are optional such as the consistency or external messaging
daemon. The daemons use a heartbeat system for workload
partitioning and automatic failover. This principle enables
automatic redistribution of the workload in case of a daemon
crashing resulting in a lost heartbeat, but also to redistribute
work when more daemons are started. Examples include:
transfer daemons, which use a tool to submit queued transfer
requests to the relevant service; and rule evaluators, which
automatically re-evaluate replication rules which are stuck
due to repeated transfer errors.

Storage and Transfer Tool Layers

The storage layer is responsible for the interactions with
different grid middleware tools and storage systems. As
explained in Sect. "Storage", an RSE is not a software run
in a data center but only the abstraction of storage proto-
cols, priorities, and attributes of a storage system, and can
be configured dynamically and centrally. This abstraction
effectively hides the complexity of distributed storage infra-
structures and combines them in one interface to be used by
all Rucio components.

The transfer tool is an interface definition which must be
implemented for each transfer service that Rucio supports.
The interface enables Rucio daemons to submit, query, and
cancel transfers generically and independently from the
actual transfer service being used.

Persistence Layer

The lowest layer is the persistence layer, or catalog, and it
keeps all the data as well as the application states for all
daemons. It requires a transactional database. Rucio uses
SQLAlchemy [43] as its object relational mapper and sup-
ports multiple transactional relational database management
systems (RDBMS) such as SQLite, MySQL, PostgreSQL,
or Oracle. Upgrading the database schema is done via
Alembic [44], which emits the necessary SQL based on the
updated relational mapping. Since downgrading is also sup-
ported, the database schema can be restored to its previous
state. In total, there are more than 40 tables representing the
complete functionality of Rucio under full version control.

The catalog description is handled in Python natively
and is used throughout the codebase instead of custom SQL
statements. Several base classes have been developed that
help with operational tasks, such as storing of deleted rows
in historical tables, custom data-types, or automatically
checking constraints. On the ATLAS Oracle instance some
additional database internal helpers have been deployed,
such as faster clean-up of sessions where clients had a time-
out, or PL/SQL to help with fast calculation of table contents
for operational statistics. The functionality of these scripts

is also available via daemons, in case a Rucio instance is
deployed without Oracle.

Interaction with the database has been highly optimized
to eliminate row lock contention and deadlocks. Also, tar-
geted indexes on most tables have been added to improve
database interaction throughput. In the ATLAS instance,
selected tables have also been initialized with index-oriented
physical layouts to reduce tablespace. Especially noteworthy
is the work sharding across all instances of the daemons,
where locking would be detrimental to SQL statement
throughput. For Rucio, the selection of work per daemon
is based on a hashing algorithm on a set of attributes of the
work requests. All daemons of the same type select on the
hashes to guarantee among each other not to work on the
same requests. This works across all supported databases
and allows lock-free parallelism per daemon type.

Helper scripts automatically extract table contents for
storage in Hadoop [45] for long-term backup of table con-
tents, complex reports generation for annual reports, and off-
site access for intensive clients. More details are discussed
in Sect. "Monitoring and Analytics".

Functionality Details

In this section, we describe how the most important data
management functionalities of Rucio are represented based
on the concepts and the architecture, i.e., the authentication
and authorization, the replica management and transfers,
data deletion, data consistency and recovery, messaging,
and monitoring. Where necessary, we also highlight some
implementation details.

Authentication and Authorization

Rucio supports several types of authentication: username
and password, X.509 certificates with and without prox-
ies, GSSAPI Kerberos tickets, as well as SSH-RSA public
key exchange. Each successful authentication generates a
short-lived authentication token, the X-Rucio-Auth-Token,
which can be used for an infinite number of operations until
the token expires. The token contains a set of identifying
information, plus a cryptographically secure component.
The token is cached locally on the client side and is secured
with POSIX permissions based on the calling user.

Each subsequent operation against any of the REST
servers needs the valid X-Rucio-Auth-Token set in its HTTP
header. If the token has expired, then the request is denied
with an appropriate HTTP error code.

The implementations of the username/password and the
SSH RSA public key exchange are native. X.509 authentica-
tion is performed via the GridSite library [46], and GSSAPI

Computing and Software for Big Science (2019) 3:11

1 3

Page 9 of 19 11

Kerberos authentication is performed via the ModAuthK-
erb library [47]. Both serve as loadable modules inside the
Apache HTTP server.

Authorization for specific functionality is also configur-
able and customizable. Each client-facing operation, such
as listing datasets or deleting files, is validated through a
permission function which can limit the allowed Rucio
accounts. Every instance of Rucio can host different sets
of permissions and can, thus, be customized to the access
policies of each experiment.

Replica Management and Transfers

There are two workflows in Rucio which physically place
data on storage: when a replica is uploaded via a client and
when a replica is created by a transfer to satisfy a replica-
tion rule. In both workflows, Rucio has to generate the
physical path of the replica on storage. The system offers
two paradigms to generate these file paths: deterministic
and non-deterministic. A deterministically created path
can be generated solely knowing the scope and name of
a DID, ignoring the hostname or other knowledge of the
RSE. A non-deterministic path requires additional infor-
mation describing the file, such as meta-data, the dataset
the file belongs to, and more. Non-deterministic paths are
useful when the backend storage system requires specific
location properties, such as co-located paths on tape drive
systems. Non-deterministic RSEs are also useful when
there are storage areas which are populated by outside sys-
tems, like the ATLAS Tier-0 prompt reconstruction facil-
ity, and are then registered in Rucio for later distribution.

Rucio supports pluggable algorithms for both deter-
ministic and non-deterministic path generation which are
defined per RSE. The hash deterministic algorithm is an
algorithm commonly used in Rucio. The algorithm uses a
one-way hash based on the name of the file to create the
directory where it will place the file. Due to the charac-
teristics of hash functions, the files are distributed evenly
over the directories, which is beneficial for the majority
of filesystems where storage performance degrades based
on the number of files in a single directory. For replicas
created by transfers, the same algorithms are applied to
generate the path.

As explained in Sect. "Concepts" transfers in Rucio are
always a consequence of the rule engine trying to satisfy a
replication rule. This is the only means by which users can
request transfers. The internal workflow for transfer request
handling works as follows:

1. During the creation of the replication rule, transfer
requests are created which define the target destination
RSEs of the file.

2. The registered requests are continuously read by the
transfer-submitter daemon, which ranks the available
sources for each request, selects the matching proto-
cols of source and destination storage based on proto-
col priorities, and submits transfers in bunches to the
configured transfer tool, which abstracts the underlying
transfer service of the infrastructure.

3. The transfer-poller daemon continuously polls the trans-
fer tool for successful and failed transfers. Additionally,
the transfer-receiver daemon observes a message queue
and listens for successful and failed transfers. Most
transfers are checked by the transfer-receiver, as its pas-
sive workflow decreases the load on the transfer tool.

4. The last step is the transfer-finisher daemon which reads
the successful and failed transfer requests and updates
the associated replication rules.

For failed transfer requests, the transfer-finisher will update
the associated replication rule as STUCK. Stuck rules are
continuously read by the rule-repairer which will either
decide to submit a new transfer request for an alternative
destination RSE or re-submit, after some delay, a transfer
request for the same RSE.

Data Deletion

Deletion is intrinsically linked to rule and replica lifetimes.
At the end of the rule lifetime replicas become eligible for
deletion. A daemon continuously sets timed markers on such
expired entries, or alternatively when the last rule pointing
to the data was removed. The deletion daemon will then
select the marked and expired entries and actually delete
them from storage. This can happen in two different modes:
greedy and non-greedy. Greedy mode removes data as soon
as it is marked, which maximizes the free space on stor-
age. Non-greedy mode deletes the minimum amount of data
required to fulfill new rules entering the system, and keeps
the existing data around for caching purposes. All thresh-
olds involved in this process are configurable per RSE. The
selection of files to remove is automatically derived from
their popularity as given through their access timestamps.
These timestamps are created by Rucio clients downloading
the file, either through manually downloads or automatic
downloads of input files as part of the workflow execution.
This means that even expired replicas can stay at an RSE if
they are still used within a configurable period.

In general, the lifetime of the rules and replicas follows
experiment policies. In ATLAS, the policy depends on
whether the replica is primary or secondary data: The disk-
resident replicas, called primary data, are required to fulfill
the ATLAS computing model or to serve ongoing activities
like reprocessing or production. The cache data, or second-
ary data, are deleted in a Least Recently Used (LRU) manner

 Computing and Software for Big Science (2019) 3:11

1 3

11 Page 10 of 19

when space is needed. Files in this category are replicated
with a limited lifetime to serve more unscheduled activities
like user analysis when necessary to reduce overall response
time and bandwidth usage. They will be deleted automati-
cally after the lifetime period. As a safeguard, in ATLAS,
all rule removals are configured with a 24-h delay to undo
any potential changes. As an additional safeguard, all highly
important data, such as detector data, are protected both by
replication rules issued by the root account without life-
times, as well as RSEs with the deletion operation disabled.

Data Consistency and Recovery

Different tools are available in Rucio to detect inconsisten-
cies between the Rucio catalog and what is physically avail-
able on storage. One daemon is dedicated to identify lost
files, i.e., files registered in the catalog but not present on
storage, and dark files, i.e., files which exist on storage but
are not registered in the catalog and must have been put on
Rucio-managed storage areas through unsupported methods.
It is important to remove dark files since the accounting and
quota system depend on the correct state of the storage sys-
tem with respect to the catalog contents. The actual compari-
son is done by evaluating the lists of files from storage and
Rucio directly. The storage lists are provided periodically
by the storage administrators and are accessible as plain text
files at predefined places. Two comparisons are needed to
check the contents of the storage lists from a given times-
tamp T, with the content of the Rucio catalog from an earlier
time T − D and a later time T + D . As such, the timestamp

T must always be historical, for example, 1 day in the past.
Figure 4 describes the different categories of inconsistencies
that can be detected using the three lists. The files found in
all three lists are consistent both on storage and the catalog.
The ones found on the two catalog lists but not on the storage
list are lost files. The ones found in the storage list but not in
the catalog are the dark files. All the other combination are
transient, that is, new or deleted files which have yet to be
signed off in their respective workflow. The dark files identi-
fied by this daemon are then deleted by the deletion daemon
mentioned in Sect. "Data Deletion". The lost files are flagged
with a special state for potential recovery.

Rucio also takes care of automatic data recovery in case
of data loss or data corruption. Replicas can be marked as
bad either by privileged accounts or by Rucio itself, when it
detects that a replica has caused repeated failures, e.g., when
used as a source replica or when downloads have checksum
mismatches between the downloaded file and the checksum
recorded in the Rucio catalog. A daemon identifies all bad
replicas and recovers the data from another copy by injecting
a transfer request if possible. In the case of the corrupted or
lost replica being the last available copy of the file, the dae-
mon takes care of removing the file from the dataset, updat-
ing the metadata, notifying external services, and informing
the owner of the dataset about the lost data.

Messaging

Asynchronous communication with external systems is
done via message queues. Rucio supports STOMP protocol
compatible queuing services, e.g., ActiveMQ [48], as well
as email notifications. Every component can schedule mes-
sages for delivery to either STOMP or email providers. Each
message consists of an event type and a payload. The event
type can be used by queue listeners to filter for messages,
such as transfer-done or deletion-queued. The payload is
always schema-free JSON and can be arbitrary. Typically,
the JSON payload consists of information about the opera-
tion and which data it acted upon, such as the protocol used
for a transfer, or the time it took to delete a file.

These messages are typically used to asynchronously
update external services with Rucio operations, e.g., work-
flow management systems are interested to listen for repli-
cation rule completeness events. Additionally, these events
are used for monitoring and analytics as described in the
next section.

Monitoring and Analytics

Rucio uses a variety of tools to monitor the different compo-
nents of the system. Most importantly, there are three main
monitoring systems: internal, dataflow, and reporting. These
are split across a small number of different technologies due

Fig. 4 Consistency comparison diagram with their outcomes. The
content of each catalog at a historical point in time (T − D), current
point in time (T), and future point in time (T + D)

Computing and Software for Big Science (2019) 3:11

1 3

Page 11 of 19 11

to different requirements on the storage and display of the
monitoring data. The internal monitoring is used to follow
the state of the system metrics, such as the size of queues or
server response times. The monitoring for the dataflow, such
as transfers and deletions, is used to check throughput or
bandwidth and to identify problems due to user interactions,
for example, trying to move Petabytes of data to a single
data center. And lastly, regular reports and summaries are

provided which are used for a variety of tasks, for example,
site administrators use them to verify the usage of their stor-
age, the consistency daemon uses them to check for storage
problems, reports of the usage and access patterns of data
are included in resource planning, and many more.

For the internal monitoring, pystats [49] is used directly in
the core components of Rucio and in probes to report inter-
nal metrics. pystats is a Python client library for statsd [50]
which is a network daemon that listens for statistics, such as
counters and timers, and aggregates them to send them to
a Graphite [51] server. An example of this is the reporting
of queue sizes per activity for the transfer daemon. A probe
regularly checks the database and sends the metrics using
a counter to the central statsd server. From there, they are
aggregated and flushed every 10 seconds to Graphite. The
overview of the architecture is shown in Fig. 5. For visuali-
zation, Grafana is used. An example dashboard can be seen
in Fig. 6.

Another part of the internal monitoring is based on the
server and daemon logs. These logs are sent to Elastic-
search [52] to be visualized with Kibana [53]. To do this, a
td-agent [54] collector is running on each server and daemon
node that reads the local log files and streams them to a cen-
tral Redis [55] data store. The data in Redis are only stored
temporarily to act as a buffer. A Logstash [56] daemon

Server

Daemon

Redis
Server
Server

Daemon
Daemon

ElasŸcSearch Kibana

td-agent/fluentd logstash

logrotate

Graphite Grafanapystats statsd

ZeppelinHDFS

Fig. 5 Overview of the internal system monitoring using pystats on
the server and daemons to send metrics to a central statsd collector
and from there to the Graphite database. Grafana is used to visual-
ize the metrics. System logs are monitored using td-agent to send
the logs from the server and daemon machines to a Redis buffer.
From there Logstash collects them and writes them to Elasticsearch.
Furthermore, daily logrotate jobs also write the logs to HDFS for
backup, and can be examined via the Zeppelin web-based notebook

Fig. 6 One example plot from the internal Grafana dashboard used to monitor the internals of the system. This plot shows the number of
requests submitted to FTS split by activity over time

 Computing and Software for Big Science (2019) 3:11

1 3

11 Page 12 of 19

collects the logs from there to write them to Elasticsearch.
Logstash is not just forwarding the data to Elasticsearch but
also parses some of the data and adds additional informa-
tion, e.g., it translates numerical values to a human-readable
format. The logs are then written into different Elasticsearch
indexes for server and daemons. Different dashboards are
available to check the server API usage, the API errors, or
the daemon activities in a similar style as the internal moni-
toring. Additionally there are daily logrotate jobs on each
node to send the logs to HDFS [57] for backup and long-
term storage. In some cases, the logs on HDFS can be ana-
lyzed via special web-based notebooks using Zeppelin [58].

Another component associated with internal monitor-
ing is transfer and deletion monitoring. This monitoring
is mainly based on two other systems: the traces and the
events. The traces are access information reported both by
the ATLAS computing job execution environment, known

as pilots, of the workload management system and the Rucio
CLI tools. Every time a file has been used as input for a job,
and therefore has been copied to any execution environment,
a trace is created that is then sent to the central Rucio server
via HTTP. The same is done for output files that are written
back from the execution environment to the storage. Simi-
larly, when a user downloads or uploads data from or to the
storage using the Rucio CLI, the same traces are sent. The
Rucio servers forward these traces to an ActiveMQ topic
from which it is distributed into different queues for several
applications, one of which is then used by the monitoring
framework. Next to the traces there are also Rucio events for
deletion and transfers on storage themselves. The transfer
daemon produces messages when a transfer is submitted,
waiting, done, or failed which are then written to a database
table. The same is done by the deletion daemon. From there,
the messaging daemons pick up the messages and send them
to a topic on ActiveMQ.

The operational monitoring is provided by the Unified
Monitoring Architecture (UMA) [59] of the CERN IT moni-
toring team and is described in Fig. 7. The UMA is based on
collectors that retrieve the traces and events from ActiveMQ
and put them in Apache Kafka [60] and is enriched with
topology information from the ATLAS Grid Information
System (AGIS) [61], such as country or facility names. From
there, continuous Spark [62] jobs running on a Hadoop clus-
ter get the data from Kafka, aggregate and further enrich
the data, and write them back to a different topic in Kafka.
Then, the aggregated data are written to different storage
systems: HDFS for long-term backup, Elasticsearch for
detailed searches, and InfluxDB for real-time monitoring.

UMA

AcŸveMQ

Traces

Events
AGIS

KaEa

Spark
HDFS

ElasŸcSearch

InfluxDB

Kibana

Grafana

Fig. 7 Overview of the monitoring architecture. The traces and events
are sent to ActiveMQ from which they are forwarded to a Kafka
processing queue. A continuously running Spark job aggregates
and enriches the data and writes it back to Kafka. From there, col-
lectors write the data to HDFS for backup, Elasticsearch for detailed
searches, and InfluxDB to be used with Grafana to produce the dash-
boards

Fig. 8 Matrix from the Grafana dashboard based on CERN IT UMA. It shows the efficiency of transfers between the source on top and the desti-
nation on the side, depicting geographical regions

Computing and Software for Big Science (2019) 3:11

1 3

Page 13 of 19 11

Everything is then used together in Grafana dashboards as
shown in Fig. 8. There shifters, site-admins and operations
can check the transfer efficiency, throughput, bandwidth and
more and they also can drill down to find possible error
reasons for failing operations.

The last important system used for monitoring is simple
CSV lists produced on a regular basis. These lists are cre-
ated using data imported to HDFS from different sources.
Sqoop [63] is used to import the important tables from the
database, such as replicas, DIDs, dataset contents, or RSEs,
and Flume is used to stream the traces directly from an
ActiveMQ topic to HDFS. Then, a set of daily and weekly
Pig [64] jobs are run on Hadoop to combine and process
these data to create a variety of reports. They are provided as
CSV files which can be read by users directly from Hadoop
using Tomcat [65] containers. The most important daily
reports are the list of file replicas per RSE, which is used by
the consistency daemon, lists of dataset locks per RSE used
by site administrators to monitor site usage of their users,
and a full list of all available datasets according to a specific
pattern for the test system HammerCloud [66]. The weekly
reports include lists of suspicious and lost files for site
administrators, dataset access statistics based on traces for
centrally managed storage areas, and a list of unused data-
sets that are used in reports for resource planning groups.
Detailed storage accounting is available both as CSV lists
and also in Elasticsearch for easy access for management
and physics groups.

Operational Experience

Development Workflow

The current development workflow is the result of several
years of experience and iterations with a large distributed
development team. It is distributed under the Apache V2
license and thus free and open-source software. The devel-
opment workflow relies on an agile development paradigm
with time-based releases, and selected long-term support
and selected 24-month long term support releases.

Since Rucio is a full-stack open-source project, we rely
on established tools in the open-source community, most
notably GitHub [67] for version control management and
Travis [68] for automated testing.

Prior to any development, a traceable issue has to be cre-
ated on GitHub describing the change, the planned modi-
fications, the severity of the issue, and the affected com-
ponents. This gives the entire developer community the
chance to discuss the issue and point out possible implica-
tions. Each development gets classified into one of three
categories: feature, patch or hotfix, which corresponds to
the type of release in which the change will be included.

Feature developments include database schema changes,
new features, API changes, or any other larger enhance-
ments. Patch developments include bugfixes or smaller
enhancements to components. Hotfixes address a specific
critical bug which requires an immediate software release
and are commonly done within the integration testing, so the
bug will not reach production. The release cycle is as fol-
lows: Patch releases (1.17.NN) are issued every two weeks;
Feature releases (1.NN.00) are issued three to four times a
year, mainly corresponding to LHC technical stops; Hotfix
releases (1.17.3.postNN) are issued on-demand whenever
necessary. Scripts are provided to help with this.

Modifications to the code are submitted as pull requests.
These are merged into distinct branches, such that future
feature developments do not impact the patch developments
of the current feature branch. At the point of issuing a new
feature release all future patch developments are based on
this feature release. At the moment there is no long-term
support for previous feature releases, thus patches will not
be issued for previously released versions. The release model
is based on the requirements of the organizations currently
using Rucio and can be evolved based on the future land-
scape of the Rucio community.

All pull requests are automatically tested by the Travis
tool. Currently there are over 400 unit tests which are exe-
cuted against several databases, such as Oracle, PostgreSQL,
MySQL, and SQLite in Python 2.6, 2.7, 3.5, and 3.6 envi-
ronments. We emphasize test-driven development; thus, it is
the responsibility of each developer to supply a good cover-
age of test cases for their developments. We require human
review of all pull requests, which is open to the entire devel-
oper community. For a pull request to be merged, it requires
approval by at least one member of the core development
team of Rucio. Merging is then done by the Rucio develop-
ment lead who ensures the long-term stability of the project
and curates the tickets and release roadmaps.

Deployment schema

Figure 9 shows the recommended deployment schema. It
allows robustness and horizontal scalability of the service
by accommodating multiple instances of each service and
daemon. This allows to theoretically infinitely scale the sys-
tem, up to the point of the IO throughput of the underlying
database. The actual volume of data to manage is, thus, irrel-
evant to the scaling of Rucio; only the number of entries in
the catalog is affected by the database.

There is also the possibility to run a minimal Rucio sys-
tem, either on bare metal or virtual machines, with good
performance. This can already be accomplished by any off-
the-shelf node with 4 cores and 8 GB of memory, a sepa-
rate node for the database, as well as a separate node for
FTS if third-party-copy functionality is needed. There is no

 Computing and Software for Big Science (2019) 3:11

1 3

11 Page 14 of 19

installation of software needed at any of the participating
data centers or institutions.

As shown in Fig. 9, the clients operate on three end-
points: the authentication, the REST API, and the graphical
web-based user interface. Each of these endpoints is in a
domain name service (DNS) load-balanced group, which
comprises the perimeter network of the data center. It is rec-
ommended to place a load-balancer, such as HAProxy [69],
in the perimeter REST API, and keep the servers within
the trusted networks. This way, clients of different kinds
can benefit through custom load-balancing rules to point
to selected to backend REST API servers. The authentica-
tion group is a separate DNS load-balanced group, both for
separation of privileges as well as web-server authentication
module encapsulation. The web-based UI itself is not within
the trusted network, and communicates via asynchronous
JavaScript with the REST API load-balancer. This allows us
to treat web-based clients fairly when compared to program-
matic access, and also reduces the risk of service stability
the risk of malicious service stability attacks.

The web server itself spawns multiple instances and each
instance controls multiple WSGI containers which execute
the Python code. The default combination of Apache HTTP
Server, mod_ssl, mod_auth_kerb, and mod_gridsite for
authentication, as well as mod_wsgi as the WSGI container
have shown to be extremely reliable and efficient.

Almost every component has to interact with the central
database. Modern sharding, partitioning, and hot swapping
techniques for databases reduce the risk of service failure
in case of database problems. For a very large database
installation, dedicated expert effort is recommended. The
system internal monitoring also provides detailed views on

the database state; so, early interventions on the database are
easily possible by database administrators.

The daemons run inside the trusted network and interact
with the database directly for performance reasons, they do
not go through the REST API and are, thus, privileged. Each
daemon can be instantiated multiple times in parallel, both
for service robustness and horizontal scalability, just like
the servers. Some daemons also interact with the message
queue, both producing and consuming messages. STOMP
protocol compatible services such as ActiveMQ have shown
to be stable and scalable. Other daemons interact with the
underlying transfer services via the transfer tools. Redundant
installations of the FTS system across the globe have shown
to be stable and scalable as well.

DNS Group

Web Server
REST

Web Server
REST

Web Server
REST

Web Server
REST

HAProxy

DNS Group

WSGI
WSGI
WSGI

WSGI
WSGI
WSGI

Web Server
RESTWeb Server

AuthenŸcaŸon

WSGI
WSGI
WSGI

DNS Group

Web Server
RESTWeb Server

UI

RDBMS

Cl
ie

nt
 re

qu
es

ts

Daemon
Daemon

Daemon
Daemon

Queue

Transfer Service

Fig. 9 The deployment schema is able to accommodate multiple instances of each component for robustness and throughput

Fig. 10 Total ATLAS volume managed by Rucio, approaching 450
Petabytes of data at the end of 2018

Computing and Software for Big Science (2019) 3:11

1 3

Page 15 of 19 11

System Performance

Rucio’s performance can be evaluated in several ways, most
importantly, volume of managed data, interaction through-
put, client response delay, database utilization, and node
utilization.

The largest Rucio deployment to date is for the ATLAS
Experiment. The full deployment is hosted in the CERN data
center, including the database and the main FTS server, with
additional FTS servers in the United States and the United
Kingdom. As shown in Fig. 10, the total volume of data
approached 450 Petabytes by the end of 2018, with linear
growth rates both during and between data taking periods.
This data includes centrally produced experiment data, such
as detector data and Monte-Carlo simulation, but also user
data from individual data analysis groups or persons. At the
end of 2018, the number of DIDs was 25 million contain-
ers, 13 million datasets, and 960 million unique files. The
curious skew between containers and datasets is due to the
use of containers for grouping of physics simulation, auto-
matic data derivation and processing, and user analysis; the
datasets themselves are mainly used as the unit of parallel
workflow processing, thus having a comparatively small
number of files per dataset. The number of RSEs is 860 and
the number of replicas is 1.2 billion across all disk and tape
storage. There is no discernible performance difference on
Rucio catalog operations for files on disk when compared
to files on tape.

The data transfer and deletion rates are historically an
indirect result of the computational needs of the experi-
ment. As shown in Fig. 11, ATLAS generally transferred
at least 30 Petabytes of data per month in 2018, peaking at
a record 55 Petabytes in November. The workload is quite
regular both in the long term and short term, and there are
few bursts with the exception of weeks leading up to physics
conferences. On average, 50–70 million files are transferred
between data centers per month, with a transfer failure rate

of roughly 10 million per month mostly due to storage and
network configuration problems. These transfer failures are
automatically recovered by Rucio, and the users do not need
to worry about them. The deletion rate is higher than the
transfer rate with up to 100 million files commonly deleted
per month, amounting to 30 Petabytes and more, with an
error rate of 10–20 million per month. Again, these are
mostly attributed to storage configuration problems related
to authorisation. The large number of files to delete are
mostly intermediate data products stemming from compu-
tational physics workflows. Tape recall is considerably lower
than transfers. Per month, ATLAS recalled about 1 Petabyte
with fewer than 1 million files and with less than 10% recall
issues that required recall retries. This high percentage usu-
ally comes from very large requests, which eventually time
out and have to be retried. Historically, tape is considered
as a write-only archive, but in case large samples are needed
for simulation or users require raw data these can be staged
from tape efficiently.

In addition to the interactive users, essentially all com-
putational jobs interact with the Rucio server to locate and
register data. The global server interaction rate is averaging
250 Hz, with frequent spikes up to 400–500 Hz. Average
response time as measured by HAProxy is less than 50ms,
though streaming the content of the replies can extend the
total connection duration up to multiple seconds; this does
not block other clients though. This interaction rate causes
only low utilization of the 15 nodes (4 core CPU, 8 GB
RAM) hosting the Rucio REST API servers at 5–7% CPU
utilization each and no measurable IO-Wait. The service is,
thus, almost one order of magnitude over-provisioned just to
ensure robustness in case of catastrophic data center failures
where single nodes might become unavailable.

The database usage is split into its CPU usage, its session
handling, and its tablespace volume. In the CERN Oracle
instance with 16 logical CPUs, Rucio core utilization is on
average about 20%. To keep up with the high interaction rate,
session sharing is used which keeps the number of active
sessions consistently below 20. Peak streaming content from
the database through the Rucio servers to the clients can
easily reach up to 1500 concurrent sessions. Physical read
rate on the database disk is less than 100 Mbps at more
than 1 million IOPS, corresponding to 3000 transactions per
second. Frequent spikes to multiple hundreds of Mbps are
possible though. Current total database volume is 3.7 TB,
with consistent growth rates of around 1 Terabyte per year
since 2015. A hot standby of the database is hosted outside
of CERN in the Geneva city center.

Finally, the operation of the ATLAS instance is covered
by the core development team with DevOps-style full-
stack responsibility. In practice, however, the only time the
instance is actively touched is to upgrade to newer Rucio
releases, which is negligible effort. Actual operation of

Fig. 11 Total ATLAS volume transferred per month is consistently
30 Petabytes and above, reaching more than 50 Petabytes in Novem-
ber 2018. Colors denote different geographical regions

 Computing and Software for Big Science (2019) 3:11

1 3

11 Page 16 of 19

ATLAS data management is a dedicated effort by a sin-
gle person, who follows up on larger experiment requests,
for example, massive data transfer campaigns above user-
allowed quotas, to discuss experiment-wide configurations
with the physics groups, or to pinpoint problems with stor-
age and network. There are no ATLAS data operations per-
sons at the data centers. The administrators at the data cent-
ers are only responsible for the configuration and running of
their storage, both in software and hardware.

Advanced Features

This section describes three advanced features that can be
used separately or in conjunction. The effectiveness of these
methods is entirely dependent on the actual dataflows of
each experiment and should be carefully evaluated with real
experiment workload. Some of them can even be counter-
productive if important system metrics are not available,
such as automated movement of data which is needed to
cope with storage imbalance.

Dynamic Data Placement

On top of the rather static replication policies that make sure
that the data are well distributed across the grid to make
them available for analysis by users, dynamic data placement
helps to exploit computing and storage resources by remov-
ing replicas of unpopular datasets and creating additional
replicas of popular ones at different RSEs. New replicas
are created if a threshold of queued jobs is exceeded, tak-
ing into account the available resources, dataset popularity
and network metrics to make sure that the new replicas are
created quickly. Especially, the number of queued jobs is
always specific to the actual computation workload of the
experiment, therefore this requires an interaction with the
experiment’s workflow management system. The currently
used algorithm concentrates on free space and network con-
nectivity between sites; so, it weighs each site based on those
criteria to find a suitable storage endpoint but also ensures
that it does not put too much stress on single RSEs.

The current configuration of the dynamic data placement
tool constantly scans incoming user jobs and collects the
input datasets. The placement algorithm runs for every data-
set containing official Monte Carlo or detector data. First, the
algorithm checks if there has already been a replica created
in the recent past. It then checks how many replicas already
exist below a configurable threshold and the popularity
of the dataset. The algorithm continues to check network
metrics for links between RSEs having an existing replica
and possible destination RSE, as well as metrics such as
free space, bandwidth and queued files, or if other replicas
have been recently created there. If a suitable RSE has been

found, the algorithm creates a replication rule, which will
then take care of the transfer. Finally, detailed information
about the decision is written to Elasticsearch for further
analysis by operators and infrastructure providers.

On average, 60% of these newly created replicas were
quickly used again by the workload management system,
i.e., within 2 weeks. On a longer time scale, half of the
accessed datasets are accessed more than once, i.e., the
algorithm successfully creates replicas that are popular for
several months.

Automated Data Rebalancing

Data rebalancing is a very common workflow in distributed
data management systems, historically carried out by human
operators. Rucio offers an automated service for these
rebalancing workflows. The service provides three separate
modes of operation: automatic background rebalancing, RSE
decommissioning, and manual rebalancing executed by a
human operator.

The automatic background rebalancing mode aims to
equalize the ratio of primary and secondary replicas on
a set of RSEs. By means of an equalized ratio, it is guar-
anteed that there is relatively the same amount of second-
ary replicas available for deletion to make space for new
data. For example, for the ATLAS experiment, the back-
ground rebalancing is active for all RSEs with larger stor-
age capacities. In each iteration, the algorithm calculates
the average ratio and moves data from the RSEs above
ratio to RSEs below it. The selection criteria for the data
can be modified, but older, unpopular data, with a long
lifetime is preferred. Replication rules are selected whose
RSE expression would not conflict with the new destination
RSE. The service links the original replication rule with
the newly created one and only allows the removal of the
original rule once the data has been fully replicated. The
maximum volume of data and files to be transferred per day
can be configured, as well as the activity of the transfers to
separate the data from more important transfer activities.
This helps to avoid overload of the storage and network
resources with rebalancing activities.

The decommissioning mode allows an operator to select
an RSE for removal from the infrastructure. The task of
migrating RSE data to be able to decommission it is very
labor intensive and error prone, especially when unique
data are located at the RSE. However, with this service,
it can be done very quickly and safely. In contrast to the
background rebalancing mode, where only some data are
selected to be moved, the decommissioning mode selects
all data resident on the RSE and moves them to a different
RSE, following the original RSE expression policies of the
individual rules.

Computing and Software for Big Science (2019) 3:11

1 3

Page 17 of 19 11

The manual rebalancing mode allows operators to move a
certain volume of data away from an RSE, in case of storage
shortages or other data distribution considerations. This can
be triggered at any time. The internal workflow is similar to
the background rebalancing mode, with the operator only
needing to specify the amount of volume to be rebalanced
from an RSE.

Transfer Time Prediction

A trace record is created for every single transfer managed
by Rucio. Most importantly, this includes the selected source
and destination, the file size, and a series of timestamps indi-
cating milestones in the transfer life cycle. It is possible to
apply large-scale statistical analysis techniques to character-
ize the time spent for every transfer in each of its life cycle
stages and thus predict the characteristics of large-scale data
movement to improve task scheduling, network and storage
optimization due to better endpoint selection [70].

Rucio supports extension modules which can access these
internal instrumentation data. The Transfer Time To Com-
plete (T3

C) extension explores the possibility to model the
transfer characteristics, with the aim of providing reliable
transfer time estimates to Rucio core and other clients. In
the general case, when a user creates a new rule, Rucio will
reply with an estimate of when the rule will be finished. This
includes calculations across all potential file transfers neces-
sary to satisfy the rule. The module allows use of simultane-
ous models and features the ability to easily compare their
performance. This extension opens the possibility for inter-
ested students to develop new machine learning algorithms
to model the system characteristics.

Summary

Conclusions

Effective management of large sets of data, both in terms of
volume and namespace, has been shown to be an extremely
difficult problem. Rucio provides a solution to this prob-
lem with demonstrated usability, performance, scalability,
and robustness, allowing scientific collaborations to fully
use their distributed heterogeneous storage resources. The
design of policy-driven data management has proven to
be an excellent choice, giving the users the possibility to
express their needs without having to worry about how to
actually achieve them. Additionally, dynamic policy man-
agement allows the system to optimize itself during runtime
based on self-instrumentation. The modular and horizon-
tally scalable architecture has also been shown to handle
the load of the ATLAS Experiment, and allows for the pos-
sibility to improve components selectively without having to

re-engineer the core of the system. It is important to mention
that this came out of operational experience over many years
which helped to address all these issues. The monitoring of
the system has been especially well received by the users,
giving them detailed insights into their data management
workflows. Synchronization with external systems is also
decoupled through API backwards compatibilities and asyn-
chronous messaging, giving both Rucio and external systems
the possibility to evolve separately. Finally, the integration
with storage, network, and transfer follows clear interfaces
but custom implementations, which allows Rucio to benefit
from individual optimizations which are exposed by differ-
ent providers and can be extended quickly.

Outlook

The Rucio community is also growing. The system is now in
use by two additional collaborations in production, ASGC/
AMS [71] and Xenon1T [72], currently being deployed into
production by the CMS [73] and DUNE [74] experiments,
and is being evaluated by many other collaborations also
outside of the high-energy physics field, such as LIGO [75]
and SKA[76].

The future development of Rucio follows a dual approach:
support for the High-Luminosity LHC data needs, as well as
the development of features relevant to the non-LHC com-
munities and experiments.

With the start of the High-Luminosity LHC (HL-LHC),
the year 2026 will see a significant increase in the data rates
due to the increase in the number of HL-LHC collisions,
higher event triggering accept rates, and more data prod-
ucts in offline computing. This presents both a funding and
technological challenge, and will require several research
and development initiatives. Currently identified topics are
focusing on smart content delivery, data staging, and cach-
ing. Rucio will take the role as the orchestrating component,
and ensure the reliable and efficient communication among
the participating components, such as Software-Defined Net-
works (SDNs) [77], caching services [78], and High Perfor-
mance Computing (HPC) centers [79]. These new workflows
and functionalities will require integration and development
efforts without breaking the existing horizontal scalability
of Rucio.

Support for non-LHC communities will be driven by their
requirements, and are mainly coming from the neutrino and
astronomy sciences. The major feature requests include
the support for arbitrary and mutable metadata, which was
recently implemented, flexible user data synchronization
and sharing, a stand-alone file transfer service for non-grid-
style storage systems using WebDAV or HTTP, interfacing
with other workflow management systems such as HTCon-
dor [80] or DIRAC [81], time-based embargoes of data for

 Computing and Software for Big Science (2019) 3:11

1 3

11 Page 18 of 19

scientific publications, as well as connectors to research
databases like Zenodo [82] to link publications to their data.

Acknowledgements This work was done as part of the distributed
computing research and development program within the ATLAS
Collaboration. We thank our ATLAS colleagues for their support. In
particular we wish to acknowledge the contributions of the ATLAS
Distributed Computing (ADC) team. We also thank former colleagues
Miguel Branco, Pedro Salgado, and Florbela Viegas for their contribu-
tions to the Rucio predecessor system DQ2.

Compliance with Ethical Standards

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. ATLAS Collaboration (2008) The ATLAS experiment at the
CERN large hadron collider. JINST 3:S08003. https ://doi.
org/10.1088/1748-0221/3/08/S0800 3

 2. ATLAS Collaboration (2018) About the ATLAS experiment. https
://atlas .cern/disco ver/about

 3. Evans L, Bryant P (2008) LHC machine. JINST 3:S08001. https
://doi.org/10.1088/1748-0221/3/08/S0800 1

 4. European Organization for Nuclear Research (CERN) (2018).
https ://home.cern/

 5. ATLAS Collaboration (2008) Managing ATLAS data on a peta-
byte-scale with DQ2. J Phys Conf Ser 119:062017. https ://doi.
org/10.1088/1742-6596/119/6/06201 7

 6. ATLAS, CMS Collaborations (2015) Combined measurement of
the Higgs boson mass in pp collisions at

√

s = 7 and 8 TeV with
the ATLAS and CMS experiments. Phys Rev Lett 114:191803.
https ://doi.org/10.1103/PhysR evLet t.114.19180 3

 7. ATLAS Collaboration (2015) Summary of the ATLAS experi-
ment’s sensitivity to supersymmetry after LHC Run 1—inter-
preted in the phenomenological MSSM. JHEP 1510:134. https ://
doi.org/10.1007/JHEP1 0(2015)134

 8. ATLAS Collaboration (2016) Search for TeV-scale gravity sig-
natures in high-mass final states with leptons and jets with the
ATLAS detector at

√

s = 13 TeV. Phys Lett B 760:520–537. https
://doi.org/10.1016/j.physl etb.2016.07.030

 9. ATLAS Collaboration (2018) Constraints on mediator-based dark
matter and scalar dark energy models using

√

s = 13 TeV pp col-
lisions at the LHC with the ATLAS detector. ATLAS Conf 051.
https ://inspi rehep .net/recor d/17025 55

 10. Filipi A (2017) ATLAS distributed computing experience and
performance during the LHC run-2. J Phys Conf Ser 5:052015.
https ://doi.org/10.1088/1742-6596/898/5/05201 5

 11. ATLAS Collaboration (2011) Overview of ATLAS PanDA
workload management. J Phys Conf Ser 331:072024. https ://doi.
org/10.1088/1742-6596/331/7/07202 4

 12. ATLAS Collaboration (2015) Multilevel workflow system in the
ATLAS Experiment. J Phys Conf Ser 608:012015. https ://doi.
org/10.1088/1742-6596/608/1/01201 5

 13. Elsing M, Goossens L, Nairz A (2010) The ATLAS Tier-0: over-
view and operational experience. J Phys Conf Ser 219:072011.
https ://doi.org/10.1088/1742-6596/219/7/07201 1

 14. Vazquez WP (2017) The ATLAS data acquisition system
in LHC run-2. J Phys Conf Ser 898(3):032017. https ://doi.
org/10.1088/1742-6596/898/3/03201 7

 15. Leggett C, Baines J, Bold T (2017) AthenaMT: upgrading the
ATLAS software framework for the many-core world with
multi-threading. J Phys Conf Ser 898(4):042009. https ://doi.
org/10.1088/1742-6596/898/4/04200 9

 16. Beck K et al (2001) Manifesto for Agile Software Development.
Agile Alliance. https ://agile manif esto.org/

 17. Peters AJ, Sindrilaru EA, Adde G (2015) EOS as the present
and future solution for data storage at CERN. J Phys Conf Ser
664:042042. https ://doi.org/10.1088/1742-6596/664/4/04204 2

 18. dCache Collaboration (2018) dCache. https ://www.dcach e.org/
 19. XrootD Collaboration (2018) XrootD. http://xroot d.org/
 20. Corso E, Cozzini S, Donno F et al (2006) StoRM: an SRM imple-

mentation for LHC analysis farms. In: Proceedings of interna-
tional computing in high energy physics. http://cites eerx.ist.psu.
edu/viewd oc/summa ry?doi=10.1.1.178.1224

 21. Manzi A, Furano F, Keeble O, Bitzes G (2017) DPM evolution:
a disk operations management engine for DPM. J Phys Conf Ser
898:062011. https ://doi.org/10.1088/1742-6596/898/6/06201 1

 22. Furano F, Keeble O, Field L (2016) Dynamic federation of grid
and cloud storage. Phys Part Nucl Lett 13(5):629–633. https ://doi.
org/10.1134/S1547 47711 60501 86

 23. Cano E, Murray S, Kruse D et al (2015) The new CERN tape
software—getting ready for total performance. J Phys Conf Ser
664(4):042007. https ://doi.org/10.1088/1742-6596/664/4/04200 7

 24. Foster I (2005) Globus toolkit version 4: software for service-
oriented systems. Volume 3779 of lecture notes in computer sci-
ence network and parallel computing edition. Springer, Berlin.
https ://doi.org/10.1007/11577 188_2

 25. Donno F et al (2008) Storage resource manager version2.2:
design, implementation, and testing experience. J Phys Conf Ser
119:062028. https ://doi.org/10.1088/1742-6596/119/6/06202 8

 26. Brun R, Rademakers F (1997) ROOT—an object oriented data
analysis framework. Nucl Instrum Methods 389:81–86. https ://
doi.org/10.1016/S0168 -9002(97)00048 -X

 27. Dusseault L (2007) Extensions for web distributed authoring and
versioning (WebDAV). RFC 4918. https ://tools .ietf.org/html/rfc49
18

 28. Amazon. Amazon Web Services and S3. (2018). https ://aws.
amazo n.com/de/docum entat ion/

 29. Cooper D, et al (2008) Internet X.509 public key infrastructure
certificate and certificate revocation list (CRL) profile. RFC 5280.
https ://www.ietf.org/rfc/rfc52 80.txt

 30. US Department of Energy (2018) Energy Science Network. http://
es.net

 31. GÉANT Vereeniging. GÉant. (2018). https ://www.geant .org
 32. Internet2 Consortium (2018) Internet2. https ://www.inter net2.edu
 33. SURF Foundation (2019) Surfnet. https ://www.surf.nl
 34. NORDUNET A/S (2019) Nordunet. https ://www.nordu .net
 35. Martelli E, Stancu S (2015) LHCOPN and LHCONE: status

and future evolution. J Phys Conf Ser 664:052025. https ://doi.
org/10.1088/1742-6596/664/5/05202 5

 36. European Organization for Nuclear Research (CERN), LHC Open
Network Environment. (2018). http://lhcon e.web.cern.ch

 37. European Organization for Nuclear Research (CERN), LHCONE
L3VPN (2018). https ://twiki .cern.ch/twiki /bin/view/LHCON E/
LhcOn eVRF

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://atlas.cern/discover/about
https://atlas.cern/discover/about
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08001
https://home.cern/
https://doi.org/10.1088/1742-6596/119/6/062017
https://doi.org/10.1088/1742-6596/119/6/062017
https://doi.org/10.1103/PhysRevLett.114.191803
https://doi.org/10.1007/JHEP10(2015)134
https://doi.org/10.1007/JHEP10(2015)134
https://doi.org/10.1016/j.physletb.2016.07.030
https://doi.org/10.1016/j.physletb.2016.07.030
https://inspirehep.net/record/1702555
https://doi.org/10.1088/1742-6596/898/5/052015
https://doi.org/10.1088/1742-6596/331/7/072024
https://doi.org/10.1088/1742-6596/331/7/072024
https://doi.org/10.1088/1742-6596/608/1/012015
https://doi.org/10.1088/1742-6596/608/1/012015
https://doi.org/10.1088/1742-6596/219/7/072011
https://doi.org/10.1088/1742-6596/898/3/032017
https://doi.org/10.1088/1742-6596/898/3/032017
https://doi.org/10.1088/1742-6596/898/4/042009
https://doi.org/10.1088/1742-6596/898/4/042009
https://agilemanifesto.org/
https://doi.org/10.1088/1742-6596/664/4/042042
https://www.dcache.org/
http://xrootd.org/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.178.1224
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.178.1224
https://doi.org/10.1088/1742-6596/898/6/062011
https://doi.org/10.1134/S1547477116050186
https://doi.org/10.1134/S1547477116050186
https://doi.org/10.1088/1742-6596/664/4/042007
https://doi.org/10.1007/11577188_2
https://doi.org/10.1088/1742-6596/119/6/062028
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/S0168-9002(97)00048-X
https://tools.ietf.org/html/rfc4918
https://tools.ietf.org/html/rfc4918
https://aws.amazon.com/de/documentation/
https://aws.amazon.com/de/documentation/
https://www.ietf.org/rfc/rfc5280.txt
http://es.net
http://es.net
https://www.geant.org
https://www.internet2.edu
https://www.surf.nl
https://www.nordu.net
https://doi.org/10.1088/1742-6596/664/5/052025
https://doi.org/10.1088/1742-6596/664/5/052025
http://lhcone.web.cern.ch
https://twiki.cern.ch/twiki/bin/view/LHCONE/LhcOneVRF
https://twiki.cern.ch/twiki/bin/view/LHCONE/LhcOneVRF

Computing and Software for Big Science (2019) 3:11

1 3

Page 19 of 19 11

 38. Ayllon AA, Salichos M, Simon M et al (2014) FTS3: new data
movement service for WLCG. J Phys Conf Ser 513:032081. https
://doi.org/10.1088/1742-6596/513/3/03208 1

 39. Google (2018) Google Cloud Platform. https ://cloud .googl e.com/
 40. Barisits M et al (2014) ATLAS replica management in Rucio:

replication rules and subscriptions. J Phys Conf Ser 513:042003.
https ://doi.org/10.1088/1742-6596/513/4/04200 3

 41. Wikipedia. REST. (2018). https ://en.wikip edia.org/wiki/Repre
senta tiona l_state _trans fer

 42. Wikipedia. WSGI. (2019). https ://en.wikip edia.org/wiki/Web_
Serve r_Gatew ay_Inter face

 43. Bayer M (2018) SQLAlchemy. https ://www.sqlal chemy .org/
 44. Bayer M (2018) Alembic. http://alemb ic.zzzco mputi ng.com/
 45. Apache Hadoop (2018). http://hadoo p.apach e.org/
 46. McNab A (2010) The GridSite Web/Grid security system.

J Phys Conf Ser 219:062058. https ://doi.org/10.1088/1742-
6596/219/6/06205 8

 47. Apache Kerberos module for Apache (2018). http://modau thker
b.sourc eforg e.net/

 48. Apache ActiveMQ (2018). http://activ emq.apach e.org/
 49. RASBT. PyStats. (2018). https ://pypi.org/proje ct/PySta ts/
 50. Etsy. StatsD. (2018). https ://githu b.com/etsy/stats d
 51. Graphite Project (2018) Graphite. https ://graph iteap p.org/
 52. Elastic NV (2018) Elasticsearch. https ://www.elast ic.co/
 53. Elastic NV (2018) Kibana. https ://www.elast ic.co/produ cts/kiban a
 54. FluentD Project (2018) FluentD. https ://www.fluen td.org/
 55. Redislabs. Redis. (2018). https ://redis .io/
 56. Elastic NV (2018) Logstash. https ://www.elast ic.co/produ cts/

logst ash
 57. Apache Hadoop HDFS (2018). http://hadoo p.apach e.org/hdfs
 58. Apache Zeppelin (2018). http://zeppe lin.apach e.org/
 59. Aimar A, Corman AA, Andrade P et al (2017) Unified moni-

toring architecture for IT and grid services. J Phys Conf Ser
898(9):092033. https ://doi.org/10.1088/1742-6596/898/9/09203 3

 60. Apache Kafka (2018). https ://kafka .apach e.org/
 61. Anisenkov A, Belov S, Di Girolamo A, Gayazov S, Klimentov

A, Oleynik D, Senchenko A (2012) AGIS: The ATLAS Grid
Information System. J Phys Conf Ser 396:032006. https ://doi.
org/10.1088/1742-6596/396/3/03200 6

 62. Apache Spark (2018). https ://spark .apach e.org/
 63. Apache Sqoop (2018). https ://sqoop .apach e.org/
 64. Apache Pig (2018) https ://pig.apach e.org/
 65. Apache Tomcat (2018). https ://tomca t.apach e.org/
 66. Llamas RM, Barrand Q, Elmsheuser J et al (2014) Testing as a

Service with HammerCloud. J Phys Conf Ser 513:062031. https
://doi.org/10.1088/1742-6596/513/6/06203 1

 67. GitHub (2018) GitHub. https ://githu b.com

 68. Travis CI (2018) Travis CI. https ://travi s-ci.com
 69. HAProxy Project (2018) The reliable, high performance TCP/

HTTP load balancer. https ://hapro xy.org
 70. Lassnig M, Toler W, Vamosi R, Bogado J (2017) Machine learn-

ing of network metrics in ATLAS Distributed Data Management.
J Phys Conf Ser 898(6):062009. https ://doi.org/10.1088/1742-
6596/898/6/06200 9

 71. AMS Collaborations (2013) First result from the alpha mag-
netic spectrometer on the international space station: precision
measurement of the positron fraction in primary cosmic rays of
0.5–350 GeV. Phys Rev Lett 110:141102. https ://doi.org/10.1103/
PhysR evLet t.110.14110 2

 72. Xenon Collaboration (2018d) Dark matter search results
from a one ton-year exposure of XENON1T. Phys. Rev. Lett.
121(11):111302. https ://doi.org/10.1103/PhysR evLet t.121.11130 2

 73. CMS Collaboration (2008) The CMS experiment at the CERN
LHC. JINST 3:S08004. https ://doi.org/10.1088/1748-0221/3/08/
S0800 4

 74. Acciarri R et al. (2016) Long-Baseline Neutrino Facility (LBNF)
and Deep Underground Neutrino Experiment (DUNE). arXiv
:1601.05471

 75. Abbott BP et al (2016) Observation of gravitational waves from a
binary black hole merger. Phys Rev Lett 116:061102. https ://doi.
org/10.1103/PhysR evLet t.116.06110 2

 76. Bull P et al (2018) Fundamental physics with the square kilometer
array. arxiv :1810.02680

 77. Nunes B, Mendonca M, Nguyen X et al (2014) A survey of soft-
ware-defined networking: past, present, and future of program-
mable networks. IEEE Commun Surv Tutor 16(3):1617. https ://
doi.org/10.1109/SURV.2014.01221 4.00180

 78. Gardner RW, Hanushevsky A, Vukotic I, Yang W (2017) Caching
servers for ATLAS. J Phys Conf Ser 898(6):062017. https ://doi.
org/10.1088/1742-6596/898/6/06201 7

 79. ACM. SIGHPC. (2018). http://www.sighp c.org/
 80. Thain D, Tannenbaum T, Livny M (2005) Distributed computing

in practice: the condor experience. Concurr Comput Pract Exp
17:323–356. https ://doi.org/10.1002/cpe.938

 81. Stagni F, Tsaregorodtsev A, Arrabito L et al (2017) DIRAC
in large particle physics experiments. J Phys Conf Ser
898(9):092020. https ://doi.org/10.1088/1742-6596/898/9/09202 0

 82. OpenAIRE (2019) Zenodo. https ://www.zenod o.org

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1088/1742-6596/513/3/032081
https://doi.org/10.1088/1742-6596/513/3/032081
https://cloud.google.com/
https://doi.org/10.1088/1742-6596/513/4/042003
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://www.sqlalchemy.org/
http://alembic.zzzcomputing.com/
http://hadoop.apache.org/
https://doi.org/10.1088/1742-6596/219/6/062058
https://doi.org/10.1088/1742-6596/219/6/062058
http://modauthkerb.sourceforge.net/
http://modauthkerb.sourceforge.net/
http://activemq.apache.org/
https://pypi.org/project/PyStats/
https://github.com/etsy/statsd
https://graphiteapp.org/
https://www.elastic.co/
https://www.elastic.co/products/kibana
https://www.fluentd.org/
https://redis.io/
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
http://hadoop.apache.org/hdfs
http://zeppelin.apache.org/
https://doi.org/10.1088/1742-6596/898/9/092033
https://kafka.apache.org/
https://doi.org/10.1088/1742-6596/396/3/032006
https://doi.org/10.1088/1742-6596/396/3/032006
https://spark.apache.org/
https://sqoop.apache.org/
https://pig.apache.org/
https://tomcat.apache.org/
https://doi.org/10.1088/1742-6596/513/6/062031
https://doi.org/10.1088/1742-6596/513/6/062031
https://github.com
https://travis-ci.com
https://haproxy.org
https://doi.org/10.1088/1742-6596/898/6/062009
https://doi.org/10.1088/1742-6596/898/6/062009
https://doi.org/10.1103/PhysRevLett.110.141102
https://doi.org/10.1103/PhysRevLett.110.141102
https://doi.org/10.1103/PhysRevLett.121.111302
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
http://arxiv.org/abs/1601.05471
http://arxiv.org/abs/1601.05471
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1810.02680
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1088/1742-6596/898/6/062017
https://doi.org/10.1088/1742-6596/898/6/062017
http://www.sighpc.org/
https://doi.org/10.1002/cpe.938
https://doi.org/10.1088/1742-6596/898/9/092020
https://www.zenodo.org

	Rucio: Scientific Data Management
	Abstract
	Introduction
	Overview
	ATLAS Distributed Computing
	Storage, Network, and Transfer Providers

	Concepts
	Overview
	Namespace
	Accounts
	Storage
	Subscriptions and Replication Rules

	Architecture
	Overview
	Clients Layer
	Server and Core Layers
	Daemons Layer
	Storage and Transfer Tool Layers
	Persistence Layer

	Functionality Details
	Authentication and Authorization
	Replica Management and Transfers
	Data Deletion
	Data Consistency and Recovery
	Messaging
	Monitoring and Analytics

	Operational Experience
	Development Workflow
	Deployment schema
	System Performance

	Advanced Features
	Dynamic Data Placement
	Automated Data Rebalancing
	Transfer Time Prediction

	Summary
	Conclusions
	Outlook

	Acknowledgements
	References

