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Abstract
Rucio is an open-source software framework that provides scientific collaborations with the functionality to organize, man-
age, and access their data at scale. The data can be distributed across heterogeneous data centers at widely distributed loca-
tions. Rucio was originally developed to meet the requirements of the high-energy physics experiment ATLAS, and now is 
continuously extended to support the LHC experiments and other diverse scientific communities. In this article, we detail 
the fundamental concepts of Rucio, describe the architecture along with implementation details, and report operational 
experience from production usage.
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Introduction

Overview

For many scientific projects, data management is becoming 
an increasingly complex and complicated challenge. The 
number of data-intensive instruments generating unprec-
edented volumes of data is growing and their surrounding 
workflows are becoming more complex. Their storage and 
computing resources are heterogeneous and can be dis-
tributed at numerous geographical locations belonging to 
different administrative domains and organizations. These 
locations do not necessarily coincide with the places where 
data are produced nor where data are stored, analyzed by 
researchers, or archived for safe long-term storage. The 
ATLAS Experiment [1, 2] at the Large Hadron Collider 
(LHC) [3] at CERN [4] has such conditions. To fulfill the 
needs of the experiment, the data management system Rucio 
has been developed to allow ATLAS to manage its large vol-
umes of data in an efficient and scalable way. Existing data 
handling systems focused on single tasks, e.g., transferring 
files between data centers, synchronizing directory contents 
across the network, dataflow monitoring, or reports of data 
usage. Rucio has been built as a comprehensive solution 
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for data organization, management, and access for scientific 
experiments which incorporates the existing tools and makes 
it easy to interact with them. One of the guiding principles of 
Rucio is dataflow autonomy and automation, and its design 
is geared towards that goal. Rucio is built on the experi-
ences of its predecessor system DQ2 [5] and modern tech-
nologies, and expands on functionality, scalability, robust-
ness, and efficiency which are required for data-intensive 
sciences. Within ATLAS, Rucio is responsible for detector 
data, simulation data, as well as user data, and provides a 
unified interface across heterogeneous storage and network 
infrastructures. Rucio also offers advanced features such 
as data recovery or adaptive replication, and is frequently 
extended to support LHC experiments and other diverse sci-
entific communities.

In this article, we describe the Rucio data manage-
ment system. We start by detailing the requirements of 
the ATLAS experiment and the motivation for Rucio. In 
Sect.  "Concepts", we describe the core concepts and in 
Sect. "Architecture", the architecture of the system, includ-
ing the implementation highlights. Section "Functionality 
Details" explains how the concepts and architecture together 
are used to provide data management functionality. We con-
tinue in Sect. "Operational Experience" with a view on the 
operational experience with a focus on deployment, con-
figuration, and system performance, and in Sect. "Advanced 
Features" with details on advanced workflows that can be 
enabled through Rucio. We close the article in Sect. "Sum-
mary" with a summary, an overview of the Rucio commu-
nity, and outlook on future work and challenges to prepare 
Rucio for the next generation of data-intensive experiments.

ATLAS Distributed Computing

ATLAS is one of the four major experiments at the Large 
Hadron Collider at CERN. It is a general-purpose particle 
physics experiment run by an international collaboration and 
it is designed to exploit the full discovery potential and the 
huge range of physics opportunities that the LHC provides. 
The experiment tracks and identifies particles to investigate 
a wide range of physics topics, from the study of the Higgs 
boson [6] to the search for supersymmetry [7], extra dimen-
sions [8], or potential particles that make up dark matter [9]. 
The physics program of ATLAS is, thus, very diverse and 
requires a flexible data management system.

ATLAS Distributed Computing (ADC) [10] covers all 
aspects of the computing systems for the experiment, across 
more than 130 computing centers worldwide. Within ADC, 
Rucio has been developed as the principal Distributed Data 
Management system, integrating with essentially every other 
component of the distributed computing infrastructure, most 
importantly the workflow management system PanDA [11] 
and the task definition and control system ProdSys [12]. ADC 

also does diverse research and development projects on data-
bases, analytics, or monitoring. ADC is also in charge of the 
experiment computing operations and user support [13–15], 
which takes care of the needs of the physics community, and is 
in charge of commissioning and deployment of the computing 
services. Rucio is well-embedded into the work environments 
of ADC using both Agile and DevOps methodologies [16].

One of the most critical aspects of Rucio within ADC 
is the smooth interaction with the workflow management 
systems PanDA and ProdSys. In general, users do not see 
the data management system when they submit their simula-
tion and analysis jobs, during the execution of the jobs, and 
after the jobs have finished. PanDA instructs Rucio that a job 
needs input files at a particular data center and Rucio will 
ensure that the files are made available at the given destina-
tion, and will also ensure that newly created files during 
job execution are promptly registered. In case of competing 
requests on constrained network or storage resources Rucio 
will schedule the dataflow to ensure fair usage of the avail-
able resources. Only at the very last stage, physicists might 
use Rucio directly to download job output files from globally 
distributed storage to their laptops or desktop nodes.

Storage, Network, and Transfer Providers

The distributed computing infrastructure used by ATLAS 
comprises several systems which have been developed inde-
pendently, through common research initiatives, or through 
high-energy physics-focused projects. Most importantly, this 
includes different types of storage systems and their network 
types of storage systems, protocol definitions, and the net-
work connections.

The majority of storage systems in use are EOS [17], 
dCache [18], XrootD [19], StoRM [20], Disk Pool Man-
ager (DPM) [21], and Dynafed [22]. The dCache and CAS-
TOR [23] systems are used for tape storage. All these stor-
age systems provide access to the data via several protocols, 
most importantly gsiftp [24], SRM [25], ROOT [26], Web-
DAV [27], and S3 [28]. All except S3 can be used for direct 
storage-to-transfer transfers. The storage backends are com-
monly pools of disks, shared file systems, or magnetic tape 
libraries. The storage systems also handle authentication and 
authorization in various ways, such as X.509 [29] certifi-
cates or access control lists. Rucio is able to interact with 
these storage systems directly and transparently via custom 
implementations of the access protocols. Direct read access 
to magnetic tape libraries is also supported; however, the 
clients will have to wait for the tape robot to stage the file 
if it is not in the tape buffer. Writing to tapes is supported 
via an asynchronous mechanism, to ensure efficient pack-
ing of files on the magnetic bands. If new storage systems 
enter the landscape, Rucio will be able to interact with them 
automatically if they support any of the existing protocols. 



Computing and Software for Big Science (2019) 3:11 

1 3

Page 3 of 19 11

Alternatively, new protocols can be implemented with 
plugins following the Rucio-internal interaction interfaces 
which mimic common POSIX operations such as mkdir or 
stat.

The network infrastructure is provided by multiple National 
Research and Education Networks (NRENs), most impor-
tantly ESnet [30], Geant [31], Internet2 [32], SURFnet [33], 
and NORDUnet [34]. The LHCOPN [35] connects the larger 
data centers directly, whereas LHCONE [36] is a virtual net-
work overlay across multiple NRENs. The smaller institutes 
are commonly connected via 40 Gbps links, the larger ones 
with 100 Gbps links. In total, the Worldwide LHC Comput-
ing Grid (WLCG) provides 3 Tbps network capacity across 
all available links [37]. Commercial cloud storage providers 
have peering points for improved throughput from the NRENs 
into their private networks. Traffic can also be routed over the 
commodity internet as a fallback. In general, Rucio does not 
see the underlying network infrastructure; however, it can use 
historical network metrics such as throughput, packet loss, or 
latency to select better data transfer paths.

The middleware to establish direct storage to storage 
transfers over the network, commonly called third party 
copy, is provided by the File Transfer System (FTS) [38]. 
FTS is a hard dependency for Rucio instances which require 
third party copy. FTS establishes connections between 
storage systems using the required protocols and ensures 
that the files are correctly transferred over the networks. 
Rucio decides which files to move, groups them in transfer 
requests, submits the transfer requests to FTS, monitors the 
progress of the transfers, retries in case of errors, and notifies 
the clients upon completion. If there are multiple FTS serv-
ers available, Rucio is able to orchestrate transfers among 
them for improved parallelism and reliability.

Concepts

Overview

The main concepts supported by Rucio cover namespace, 
accounts, storage, subscriptions and replication rules. The 
namespace is responsible for addressing the data in various 
ways, accounts handle authorization, authentication, and 
permissions, storage provides a unified interface to the dis-
tributed data centers, subscriptions are used for large-scale 
dataflow policies, and replication rules ensure the consistent 
distributed state of the namespace on the storage.

Namespace

Data in Rucio are organized using Data Identifiers (DIDs). 
There are three levels of granularity for DIDs: files, datasets, 

and containers. The smallest unit of operation in Rucio is the 
file, which corresponds to the actual files persisted on stor-
age. Datasets are a logical unit which are used to group sets 
of files to facilitate bulk operations on them, e.g., in transfers 
and deletions, but also for organizational purposes. The files 
in a dataset do not necessarily need to all be placed at the 
same storage location but can be distributed over multiple 
data centers as distributed datasets. Containers are used to 
group datasets and also to organize large-scale groupings, 
such as annual detector data output or collections of simula-
tion production with similar properties. Datasets and con-
tainers are referred to as collections. As shown in Fig. 1, this 
allows for multi-level hierarchies of DIDs, as DIDs can be 
overlapping. In this example, a proton physics experiment 
is split into curated Simulation Data and Detector Data, and 
the User Analysis data. Alice has created a research dataset 
named Alice’s Analysis that contains the F6 data from the 
detector which are necessary for her computation, which 
eventually produced two output files F7 and F8.

All DIDs follow an identical naming scheme which 
is composed of two strings in a tuple: the scope and the 
name. The combination of scope and name must be 
unique, and is denoted via colons, e.g., the unique DID 
data2018:mysusysearch01 is part of scope data2018. The 
scope, thus, partitions the global namespace. At least a sin-
gle scope must exist; however, the use of multiple scopes 
can be beneficial to data organisation. Straightforward use 
cases for multiple scopes are to easily separate instrumenta-
tion data from simulation data from user-created data, or to 
allow fine-grained permissions.

DIDs are identified forever. This implies that a DID, once 
used, can never be reused to refer to anything else at all, not 
even if the data it referred to have been deleted from the 
system. This is a critical design decision when dealing with 
scientific data; otherwise, it would be possible to modify or 
exchange data used in previous analyses without warning. 
This does not mean that scientific data are required to be 
immutable, only that Rucio enforces a name change when 
data have been changed.

Fig. 1  The namespace is organized with collections and files. Col-
lections can either be containers or datasets. Containers consist of 
containers or datasets. Datasets consist of files only. Files can be in 
multiple datasets
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Rucio also supports a standardized naming convention 
for DIDs and can enforce this with a schema. This includes 
limits on overall character length, e.g., to reflect file system 
limitations, and that the names could be composed of fields 
referencing high-level metadata such as the file format and 
processing version identifiers, as well as other metadata 
which is useful to connect DIDs with experiment operations. 
As an example, in ATLAS real event data DIDs contain the 
year of data taking and the ATLAS run number, and simu-
lated event DIDs contain an identifier specific to the fun-
damental physics process being simulated. One important 
built-in metadata are the file checksums, which are rigidly 
enforced by Rucio whenever any file is accessed or trans-
ferred. The two checksum algorithms MD5 and Adler32 
are supported. Experiment-internal metadata can also be 
enforced to follow a certain schema or uniqueness, such as 
the globally unique identifiers (GUIDs) used by ATLAS. 
All metadata are stored in the Rucio catalog. Rucio does not 
index the experiment-specific metadata in the files; however, 
they can be added through Rucio’s generic metadata explic-
itly by the users.

Files always have an availability status attribute, namely 
available, lost, or deleted. If at least replica exists on storage, 
a file is in state available. A file is in state lost if there are 
no replicas on storage, while at the same time at least one 
replication rule exists for the file. A file is in state deleted 
if no replicas of the file exist anymore. New files enter the 
system usually by registering first the file, then registering 
the replica, then actually uploading the file to storage, and 
finally placing a replication rule on the file to secure the 
replica. The availability attribute is, thus, a derived attribute 
from the contents of the Rucio replica catalog.

Users can set a suppression flag for a DID. It indicates 
that the owner of the scope no longer needs the name to be 
present in the scope. Files that are suppressed do not show 
up in search and list operations on the scope. This flag can 
be ignored when explicitly listing contents of collections 
with a deep check.

The collection status is reflected by a set of attributes, 
most importantly open, monotonic, and complete. If a collec-
tion is open, then content can be added to it. Collections are 
created open, and once closed they cannot be opened again. 
Datasets from which files have been lost can be repaired 
when replacement files are available, even if they are closed, 
but this is an administrative action not generally available 
to regular users. If the monotonic attribute is set, content 
cannot be removed from an open collection. Collections are 
created non-monotonic by default. Once set to monotonic, 
this cannot be reversed. This is especially useful for datasets 
that follow a timed process. A collection where all files have 
replicas available is complete. Any dataset which contains 
files without replicas is incomplete. This is a derived attrib-
ute from the replica catalog.

Finally, Rucio also supports archives, such as compressed 
ZIP files. The contents of the archive files can be registered 
as constituents, and when resolving the necessary locations 
of the constituents, the appropriate archive files will be used 
instead. Some protocols can support transparent usage of 
archive contents, such as ROOT with ZIP files. In that case, 
Rucio automatically translates the respective calls into their 
protocol specific direct access format of the constituent.

Accounts

Each client that wants to interact with Rucio needs an 
account. An account can represent individual users such as 
Alice, a group of users such as the Higgs Search Group, or 
even organized activities like Monte Carlo simulation. A cli-
ent can use different identities, sometimes called credentials, 
like X.509 certificates, username and password, SSH public 
key cryptography, or Kerberos tokens to authenticate to one 
or more accounts in a many-to-many relationship as shown 
in Fig. 2. The Rucio authentication system checks if the pro-
vided identities are authorized to act as the requested Rucio 
account. More details can be found in Sect. "Authentication 
and Authorization".

Each account has an associated scope in the global 
namespace, similar to a UNIX home directory. By authenti-
cating to a different account, the client acquires access to dif-
ferent scopes. In the default configuration, all data are read-
able by all accounts, even from private account scopes, but 
modification privileges are restricted. Privileged accounts 
can circumvent this restriction and modify the data across 
all scopes. These access permissions can be programmati-
cally specified in the configuration to meet the needs of the 
organization using Rucio.

By default, accounts have read access to all scopes and 
write access only to their own scope. This allows free shar-
ing of data within a collaboration. Privileged accounts have 
write access to multiple scopes, for example, a workload 

Fig. 2  Each identity based on an authentication type can be mapped 
to one or more Rucio accounts and vice versa
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management system is allowed to write into collaboration 
or user scopes as necessary.

If available, Rucio can retrieve data from external account 
systems, such as LDAP or VOMS, for automated account 
management and synchronization.

Storage

Rucio associates actual locations of the DIDs with Rucio 
Storage Elements (RSEs). These file locations are commonly 
called replicas. A single RSE represents the minimal unit 
of globally addressable storage and holds the description of 
all attributes necessary to access the storage space, such as 
hostname, port, protocol, and local file system path. RSEs 
can be extended with arbitrary key-value pairs to help cre-
ate virtual spaces, allowing heuristics like all tape storage 
in Asia. Rucio allows permissions and quotas to be set for 
accounts independent from RSE settings. This allows flex-
ible use of the available storage. No software services are 
needed at any of the data centers providing storage as RSE 
configurations are defined in Rucio.

File DIDs eventually point to the locations of the replicas. 
Each location is the physical representation of the file, i.e., 
bytes on storage. There can be files with zero replicas; these 
files would be denoted by the availability deleted and thus 
only exist in the namespace. For existing files on storage, 
these can be registered as is directly into the Rucio catalog 
and will retain their full path information as given by the 
client. When uploading new data, there are two possibili-
ties: leave the decision of the path on storage to Rucio as 
automatically managed storage namespace, also known as 
deterministic RSE, or alternatively continue to provide full 
paths on the storage to the file, also known as non-determin-
istic RSE. Automatically managed storage namespace is pro-
grammatic and based on functions, e.g., using customizable 
hashes or regular expressions as detailed in Sect. "Authen-
tication and Authorization". Deterministic RSEs offer the 
advantage of access path calculation without contacting the 
Rucio file catalog. On the other hand, non-deterministic 
RSEs offer more flexibility in placing the files on storage.

Rucio is transport protocol agnostic, meaning that the 
RSEs can accept transfers via multiple protocols. As the 
RSEs are configured independently, the distribution of pro-
tocols can be heterogeneous and even depend on the location 
of the client accessing the data. For example, clients at the 
data center which try to access any of the local RSEs can 
use optimized transport using the ROOT protocol, whereas 
all clients from outside the data center could be served via 
HTTP/WebDAV. Protocol priority for read, write, deletion, 
and third-party-copy operations, as well as their fallbacks, 
are also supported, including proxy addresses.

Some commercial cloud providers use cryptographic sig-
natures to control access to their storage paths. Currently, 

this is supported for the Google Cloud Platform [39], and is 
transparent to Rucio users. Elevation of privileges is auto-
matically handled, and access control is regulated to ensure 
billing constraints. For S3-style cloud storage, either private 
or commercial, the distribution of pre-shared access creden-
tials is also supported and directly associated with the RSE.

All connected RSEs have the notion of distance. This is 
not necessary geographical, but can be derived values, e.g., 
in ATLAS higher network throughput represents closer dis-
tance and is updated periodically and automatically. Func-
tional distance is always a non-zero value with increasing 
integer steps, and zero distance indicates no connection 
between RSEs. Most importantly, distance influences the 
sorting of files when considering sources for transfers. 
Practically, periodic re-evaluation of the collected aver-
age throughput of file transfers between two RSEs helps to 
dynamically adjust and update the distances to reflect the 
global state of the network and eventually improve source 
selection across all data centers.

Some RSEs might allow data transfers, replica creation, 
and replica deletions outside of Rucio control. Such RSEs 
are considered volatile in Rucio. An example is a caching 
service which autonomously removes files based on high 
and low watermarks. Such RSEs are not presumed to guar-
antee data availability by Rucio at the time of access. It is 
then necessary that the caching service updates the Rucio 
namespace with timely location information by calling the 
appropriate API. Should the caching service fail to update 
the namespace appropriately, and a client, thus, cannot 
download or transfer a purported replica, then the replica 
will be flagged as suspicious and will be removed from the 
namespace. This could cause delays due to the retries, in 
case larger portions of the RSEs namespace are inconsistent.

Subscriptions and Replication Rules

The main mechanism for dataflow policies in Rucio are 
standing subscriptions. Subscriptions exist to make data 
placement requests for future incoming DIDs, e.g., to auto-
matically direct output of a scientific instrument to a par-
ticular data center. Subscriptions are specified by defining 
a metadata filter on matching DIDs, for example, all RAW 
data coming from the detector, and will automatically cre-
ate the necessary replication rules, such as rules for tape 
archives in other countries. After the creation of a DID, its 
metadata are matched with the filter of all subscriptions and 
for all positive matches, the defined replication rules are then 
created on behalf of the account.

The actual replica management is then based on replica-
tion rules which are defined on the DIDs. A replication rule 
is a logical abstraction which defines the minimum number 
of replicas to be available on a list of RSEs. A replication 
rule affects the replication of all constituent files of this DID 
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continuously. Thus, when files are added or removed from a 
dataset, the replication rule also reflects these changes. Each 
replication rule is owned by an account. The amount of data 
in bytes covered by their respective replication rules is used 
to calculate the space occupancy of the account on an RSE.

Replication rules serve two purposes: to request the trans-
fer of data to an RSE and to protect these data from deletion. 
As long as data is protected by a replication rule, i.e., a user 
expresses interest by placing a rule, then the replica cannot 
be deleted. Multiple accounts can own replication rules for 
the same DID on an RSE. In this case, the files are shared 
with only one physical copy, but the replicas are logically 
protected by multiple replication rules and are only eligible 
for deletion once all rules are removed.

A replication rule requires a minimum of four parameters 
to be created: the DID it affects, the RSE expression repre-
senting a list of RSEs where replicas can be placed, the num-
ber of copies of each file to be created, and the lifetime of the 
replication rule after which it is removed automatically. RSE 
expressions are described by a set complete language defined 
by a formal grammar to select RSEs. An attribute match of 
the grammar always results in a set of RSEs, which could 
also be empty. More detailed information of the language 
can be found in a dedicated article [40].

An RSE expression always evaluates into a list of RSEs. 
For example, the expression “tier=2&(country=FR|
country=DE)” is equivalent to the set of all Tier-2s inter-
sected with the set of all French and German RSEs. If the 
user defines an RSE expression with more RSEs than cop-
ies requested, it is up to Rucio to select where the data are 
being placed. Rucio primarily tries to minimize the amount 
of transfers created; thus, it prioritizes RSEs where data are 
partially already available. Otherwise, RSEs are selected 
randomly unless the weight parameter of the rule is used, 
which allows the user to affect the distribution of data within 
the rule. The system internal datastructures which store 
these selection decisions are called replica locks as they 
effectively lock a replica to a certain RSE. A lock is always 
associated with a replication rule and once the placement 
decision has been made, it will not be re-evaluated at a later 
point in time. This is to prevent the system from re-shuffling 
data continuously. Replica locks cannot be manipulated by 
users directly—their existence is always a result of an inter-
action with a replication rule. Examples of replication rules 
include

• 2 copies of user.alice:myanalysis at country=US with 
48 hours of lifetime

• 1 copy of user.bob:myoutput at CERN until January
• 1  c o p y  o f  u s e r . c a r o l : t e s t d a t a  a t 

country=DE&type=tape with no lifetime

When requesting the replication rule, Rucio validates the 
available quota, evaluates the RSEs based on existing 
data, creates transfer requests if the data are not available 
at the specified RSEs, and creates the replica locks to 
prevent the data from being deleted. Until the removal or 
expiration of the rule, the replica locks will prevent these 
data from being deleted. Notifications are always pro-
vided for state changes of rules and their transfer requests. 
These notifications are primarily useful to other systems 
for synchronisation purposes, e.g., notifying a workflow 
management system that a dataset has finished transfer-
ring or has been deleted.

There is no possibility of having conflicting rules, since 
the evaluation of rules always cause idempotent or additive 
results, i.e., either to keep the number of replicas as is, or 
to create more replicas. It is not possible to restrict or limit 
other rules which could cause conflicting situations.

Finally, the measure of how much storage an account has 
used is derived from its replication rules. This can be con-
trolled with quotas, which are policy limits which Rucio 
enforces on accounts. The accounts are only charged for the 
files they actively set replication rules on. The accounting 
is, thus, based on the replicas an account requested, not on 
the actual amount of physical replicas on storage. Thus, if 
two different accounts set a replication rule for the same 
file on the same storage both accounts are charged for this 
file, although there is only one physical copy of it. The quo-
tas can be configured globally and individually, and in case 
of overflows, can be approved or rejected by administrators 
or special accounts.

Architecture

Overview

Rucio, as shown in Fig. 3, is based on a distributed architec-
ture and can be decomposed into four layers:

1. the clients layer, such as the command line clients (CLI), 
Python clients, and the JavaScript-based web user inter-
face and configuration,

2. the server, offering the authentication, a common API 
for interaction with the clients and other external appli-
cations, and the WebUI,

3. the core which represents the abstraction of all Rucio 
concepts, and

4. the daemons taking care of the continuous and asynchro-
nous work flows in the background.

Next to these four main layers, there are the storage 
resources and transfer tools, as well as the underlying per-
sistence layer, represented by the different queuing systems, 
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transactional relational databases, and analytics storage on 
non-relational databases.

Clients Layer

The REST [41] interface is the main entry-point to interact with 
Rucio. The client API simplifies the usage of the REST inter-
face for Python environments. It implements the authentication, 
the correct use of already available authentication tokens, and 
Python wrappers for most of the REST interface commands. 
Furthermore, there are different helper functions which encap-
sulate a set of API calls to implement more advanced function-
ality, e.g., downloading and uploading of files.

The functionality of the client API is organized into 
different classes, each one a subclass of BaseClient. The 
BaseClient provides the most important client information, 
e.g., the authentication token, the request session object, 
and account details. This class also implements the different 
authentication methods. There also exists a generic Client 
class which collects all client API calls into a single import-
able module for convenience. This allows the calling of all 
wrapped REST interface commands using a single object. 
The authentication is done directly by the BaseClient when 
creating any client class itself.

Rucio also comes with a variety of command line tools, 
e.g., bin/rucio and bin/rucio-admin. The first one provides 
all basic commands to interact with Rucio for non-adminis-
trative users. This includes listing DIDs, getting attributes 
or metadata, organizing DIDs, or downloading replicas. The 

other command line tool allows the execution of adminis-
trative commands such as adding newly available RSEs, or 
changing configuration attributes.

Server and Core Layers

The server is a passive component listening to incoming 
queries and forwarding them to the core. The core is the rep-
resentation of the global system state. Incoming REST calls 
are received by a web server, such as Apache, and relayed to 
a WSGI [42] container which executes the matching Rucio 
function in the core to update the system state. Any result 
of the function is streamed back to the WSGI container and 
Apache delivers it as an HTTP response object to the client. 
For more complex requests, such as the creation of large 
replication rules, which result in a large amount of transfers, 
the server accepts and confirms the client request; however, 
the actual execution is done asynchronously by a daemon. 
This principle is commonly applied to ensure lower server 
utilization for fast response times and to be able to optimize 
the execution of large workloads in the background. In gen-
eral, the servers do not directly interact with RSEs as these 
interactions are exclusively done by the daemons.

Daemons Layer

The daemons are continuously running active components 
that asynchronously orchestrate the collaborative work of 
the entire system. Not all daemons are mandatory, some 
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Fig. 3  High-level Rucio component overview detailing the four lay-
ers: clients, server, core, and daemons. Storage and transfer tools are 
transparently integrated. The underlying support systems consist of 

queueing systems, transactional relational database management sys-
tems (RDBMS), and non-relational analytics storage
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are optional such as the consistency or external messaging 
daemon. The daemons use a heartbeat system for workload 
partitioning and automatic failover. This principle enables 
automatic redistribution of the workload in case of a daemon 
crashing resulting in a lost heartbeat, but also to redistribute 
work when more daemons are started. Examples include: 
transfer daemons, which use a tool to submit queued transfer 
requests to the relevant service; and rule evaluators, which 
automatically re-evaluate replication rules which are stuck 
due to repeated transfer errors.

Storage and Transfer Tool Layers

The storage layer is responsible for the interactions with 
different grid middleware tools and storage systems. As 
explained in Sect. "Storage", an RSE is not a software run 
in a data center but only the abstraction of storage proto-
cols, priorities, and attributes of a storage system, and can 
be configured dynamically and centrally. This abstraction 
effectively hides the complexity of distributed storage infra-
structures and combines them in one interface to be used by 
all Rucio components.

The transfer tool is an interface definition which must be 
implemented for each transfer service that Rucio supports. 
The interface enables Rucio daemons to submit, query, and 
cancel transfers generically and independently from the 
actual transfer service being used.

Persistence Layer

The lowest layer is the persistence layer, or catalog, and it 
keeps all the data as well as the application states for all 
daemons. It requires a transactional database. Rucio uses 
SQLAlchemy [43] as its object relational mapper and sup-
ports multiple transactional relational database management 
systems (RDBMS) such as SQLite, MySQL, PostgreSQL, 
or Oracle. Upgrading the database schema is done via 
Alembic [44], which emits the necessary SQL based on the 
updated relational mapping. Since downgrading is also sup-
ported, the database schema can be restored to its previous 
state. In total, there are more than 40 tables representing the 
complete functionality of Rucio under full version control.

The catalog description is handled in Python natively 
and is used throughout the codebase instead of custom SQL 
statements. Several base classes have been developed that 
help with operational tasks, such as storing of deleted rows 
in historical tables, custom data-types, or automatically 
checking constraints. On the ATLAS Oracle instance some 
additional database internal helpers have been deployed, 
such as faster clean-up of sessions where clients had a time-
out, or PL/SQL to help with fast calculation of table contents 
for operational statistics. The functionality of these scripts 

is also available via daemons, in case a Rucio instance is 
deployed without Oracle.

Interaction with the database has been highly optimized 
to eliminate row lock contention and deadlocks. Also, tar-
geted indexes on most tables have been added to improve 
database interaction throughput. In the ATLAS instance, 
selected tables have also been initialized with index-oriented 
physical layouts to reduce tablespace. Especially noteworthy 
is the work sharding across all instances of the daemons, 
where locking would be detrimental to SQL statement 
throughput. For Rucio, the selection of work per daemon 
is based on a hashing algorithm on a set of attributes of the 
work requests. All daemons of the same type select on the 
hashes to guarantee among each other not to work on the 
same requests. This works across all supported databases 
and allows lock-free parallelism per daemon type.

Helper scripts automatically extract table contents for 
storage in Hadoop [45] for long-term backup of table con-
tents, complex reports generation for annual reports, and off-
site access for intensive clients. More details are discussed 
in Sect. "Monitoring and Analytics".

Functionality Details

In this section, we describe how the most important data 
management functionalities of Rucio are represented based 
on the concepts and the architecture, i.e., the authentication 
and authorization, the replica management and transfers, 
data deletion, data consistency and recovery, messaging, 
and monitoring. Where necessary, we also highlight some 
implementation details.

Authentication and Authorization

Rucio supports several types of authentication: username 
and password, X.509 certificates with and without prox-
ies, GSSAPI Kerberos tickets, as well as SSH-RSA public 
key exchange. Each successful authentication generates a 
short-lived authentication token, the X-Rucio-Auth-Token, 
which can be used for an infinite number of operations until 
the token expires. The token contains a set of identifying 
information, plus a cryptographically secure component. 
The token is cached locally on the client side and is secured 
with POSIX permissions based on the calling user.

Each subsequent operation against any of the REST 
servers needs the valid X-Rucio-Auth-Token set in its HTTP 
header. If the token has expired, then the request is denied 
with an appropriate HTTP error code.

The implementations of the username/password and the 
SSH RSA public key exchange are native. X.509 authentica-
tion is performed via the GridSite library [46], and GSSAPI 
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Kerberos authentication is performed via the ModAuthK-
erb library [47]. Both serve as loadable modules inside the 
Apache HTTP server.

Authorization for specific functionality is also configur-
able and customizable. Each client-facing operation, such 
as listing datasets or deleting files, is validated through a 
permission function which can limit the allowed Rucio 
accounts. Every instance of Rucio can host different sets 
of permissions and can, thus, be customized to the access 
policies of each experiment.

Replica Management and Transfers

There are two workflows in Rucio which physically place 
data on storage: when a replica is uploaded via a client and 
when a replica is created by a transfer to satisfy a replica-
tion rule. In both workflows, Rucio has to generate the 
physical path of the replica on storage. The system offers 
two paradigms to generate these file paths: deterministic 
and non-deterministic. A deterministically created path 
can be generated solely knowing the scope and name of 
a DID, ignoring the hostname or other knowledge of the 
RSE. A non-deterministic path requires additional infor-
mation describing the file, such as meta-data, the dataset 
the file belongs to, and more. Non-deterministic paths are 
useful when the backend storage system requires specific 
location properties, such as co-located paths on tape drive 
systems. Non-deterministic RSEs are also useful when 
there are storage areas which are populated by outside sys-
tems, like the ATLAS Tier-0 prompt reconstruction facil-
ity, and are then registered in Rucio for later distribution.

Rucio supports pluggable algorithms for both deter-
ministic and non-deterministic path generation which are 
defined per RSE. The hash deterministic algorithm is an 
algorithm commonly used in Rucio. The algorithm uses a 
one-way hash based on the name of the file to create the 
directory where it will place the file. Due to the charac-
teristics of hash functions, the files are distributed evenly 
over the directories, which is beneficial for the majority 
of filesystems where storage performance degrades based 
on the number of files in a single directory. For replicas 
created by transfers, the same algorithms are applied to 
generate the path.

As explained in Sect. "Concepts" transfers in Rucio are 
always a consequence of the rule engine trying to satisfy a 
replication rule. This is the only means by which users can 
request transfers. The internal workflow for transfer request 
handling works as follows:

1. During the creation of the replication rule, transfer 
requests are created which define the target destination 
RSEs of the file.

2. The registered requests are continuously read by the 
transfer-submitter daemon, which ranks the available 
sources for each request, selects the matching proto-
cols of source and destination storage based on proto-
col priorities, and submits transfers in bunches to the 
configured transfer tool, which abstracts the underlying 
transfer service of the infrastructure.

3. The transfer-poller daemon continuously polls the trans-
fer tool for successful and failed transfers. Additionally, 
the transfer-receiver daemon observes a message queue 
and listens for successful and failed transfers. Most 
transfers are checked by the transfer-receiver, as its pas-
sive workflow decreases the load on the transfer tool.

4. The last step is the transfer-finisher daemon which reads 
the successful and failed transfer requests and updates 
the associated replication rules.

For failed transfer requests, the transfer-finisher will update 
the associated replication rule as STUCK. Stuck rules are 
continuously read by the rule-repairer which will either 
decide to submit a new transfer request for an alternative 
destination RSE or re-submit, after some delay, a transfer 
request for the same RSE.

Data Deletion

Deletion is intrinsically linked to rule and replica lifetimes. 
At the end of the rule lifetime replicas become eligible for 
deletion. A daemon continuously sets timed markers on such 
expired entries, or alternatively when the last rule pointing 
to the data was removed. The deletion daemon will then 
select the marked and expired entries and actually delete 
them from storage. This can happen in two different modes: 
greedy and non-greedy. Greedy mode removes data as soon 
as it is marked, which maximizes the free space on stor-
age. Non-greedy mode deletes the minimum amount of data 
required to fulfill new rules entering the system, and keeps 
the existing data around for caching purposes. All thresh-
olds involved in this process are configurable per RSE. The 
selection of files to remove is automatically derived from 
their popularity as given through their access timestamps. 
These timestamps are created by Rucio clients downloading 
the file, either through manually downloads or automatic 
downloads of input files as part of the workflow execution. 
This means that even expired replicas can stay at an RSE if 
they are still used within a configurable period.

In general, the lifetime of the rules and replicas follows 
experiment policies. In ATLAS, the policy depends on 
whether the replica is primary or secondary data: The disk-
resident replicas, called primary data, are required to fulfill 
the ATLAS computing model or to serve ongoing activities 
like reprocessing or production. The cache data, or second-
ary data, are deleted in a Least Recently Used (LRU) manner 



 Computing and Software for Big Science (2019) 3:11

1 3

11 Page 10 of 19

when space is needed. Files in this category are replicated 
with a limited lifetime to serve more unscheduled activities 
like user analysis when necessary to reduce overall response 
time and bandwidth usage. They will be deleted automati-
cally after the lifetime period. As a safeguard, in ATLAS, 
all rule removals are configured with a 24-h delay to undo 
any potential changes. As an additional safeguard, all highly 
important data, such as detector data, are protected both by 
replication rules issued by the root account without life-
times, as well as RSEs with the deletion operation disabled.

Data Consistency and Recovery

Different tools are available in Rucio to detect inconsisten-
cies between the Rucio catalog and what is physically avail-
able on storage. One daemon is dedicated to identify lost 
files, i.e., files registered in the catalog but not present on 
storage, and dark files, i.e., files which exist on storage but 
are not registered in the catalog and must have been put on 
Rucio-managed storage areas through unsupported methods. 
It is important to remove dark files since the accounting and 
quota system depend on the correct state of the storage sys-
tem with respect to the catalog contents. The actual compari-
son is done by evaluating the lists of files from storage and 
Rucio directly. The storage lists are provided periodically 
by the storage administrators and are accessible as plain text 
files at predefined places. Two comparisons are needed to 
check the contents of the storage lists from a given times-
tamp T, with the content of the Rucio catalog from an earlier 
time T − D and a later time T + D . As such, the timestamp 

T must always be historical, for example, 1 day in the past. 
Figure 4 describes the different categories of inconsistencies 
that can be detected using the three lists. The files found in 
all three lists are consistent both on storage and the catalog. 
The ones found on the two catalog lists but not on the storage 
list are lost files. The ones found in the storage list but not in 
the catalog are the dark files. All the other combination are 
transient, that is, new or deleted files which have yet to be 
signed off in their respective workflow. The dark files identi-
fied by this daemon are then deleted by the deletion daemon 
mentioned in Sect. "Data Deletion". The lost files are flagged 
with a special state for potential recovery.

Rucio also takes care of automatic data recovery in case 
of data loss or data corruption. Replicas can be marked as 
bad either by privileged accounts or by Rucio itself, when it 
detects that a replica has caused repeated failures, e.g., when 
used as a source replica or when downloads have checksum 
mismatches between the downloaded file and the checksum 
recorded in the Rucio catalog. A daemon identifies all bad 
replicas and recovers the data from another copy by injecting 
a transfer request if possible. In the case of the corrupted or 
lost replica being the last available copy of the file, the dae-
mon takes care of removing the file from the dataset, updat-
ing the metadata, notifying external services, and informing 
the owner of the dataset about the lost data.

Messaging

Asynchronous communication with external systems is 
done via message queues. Rucio supports STOMP protocol 
compatible queuing services, e.g., ActiveMQ [48], as well 
as email notifications. Every component can schedule mes-
sages for delivery to either STOMP or email providers. Each 
message consists of an event type and a payload. The event 
type can be used by queue listeners to filter for messages, 
such as transfer-done or deletion-queued. The payload is 
always schema-free JSON and can be arbitrary. Typically, 
the JSON payload consists of information about the opera-
tion and which data it acted upon, such as the protocol used 
for a transfer, or the time it took to delete a file.

These messages are typically used to asynchronously 
update external services with Rucio operations, e.g., work-
flow management systems are interested to listen for repli-
cation rule completeness events. Additionally, these events 
are used for monitoring and analytics as described in the 
next section.

Monitoring and Analytics

Rucio uses a variety of tools to monitor the different compo-
nents of the system. Most importantly, there are three main 
monitoring systems: internal, dataflow, and reporting. These 
are split across a small number of different technologies due 

Fig. 4  Consistency comparison diagram with their outcomes. The 
content of each catalog at a historical point in time ( T − D ), current 
point in time (T), and future point in time ( T + D)
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to different requirements on the storage and display of the 
monitoring data. The internal monitoring is used to follow 
the state of the system metrics, such as the size of queues or 
server response times. The monitoring for the dataflow, such 
as transfers and deletions, is used to check throughput or 
bandwidth and to identify problems due to user interactions, 
for example, trying to move Petabytes of data to a single 
data center. And lastly, regular reports and summaries are 

provided which are used for a variety of tasks, for example, 
site administrators use them to verify the usage of their stor-
age, the consistency daemon uses them to check for storage 
problems, reports of the usage and access patterns of data 
are included in resource planning, and many more.

For the internal monitoring, pystats [49] is used directly in 
the core components of Rucio and in probes to report inter-
nal metrics. pystats is a Python client library for statsd [50] 
which is a network daemon that listens for statistics, such as 
counters and timers, and aggregates them to send them to 
a Graphite [51] server. An example of this is the reporting 
of queue sizes per activity for the transfer daemon. A probe 
regularly checks the database and sends the metrics using 
a counter to the central statsd server. From there, they are 
aggregated and flushed every 10 seconds to Graphite. The 
overview of the architecture is shown in Fig. 5. For visuali-
zation, Grafana is used. An example dashboard can be seen 
in Fig. 6.

Another part of the internal monitoring is based on the 
server and daemon logs. These logs are sent to Elastic-
search [52] to be visualized with Kibana [53]. To do this, a 
td-agent [54] collector is running on each server and daemon 
node that reads the local log files and streams them to a cen-
tral Redis [55] data store. The data in Redis are only stored 
temporarily to act as a buffer. A Logstash  [56] daemon 
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Daemon
Daemon
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td-agent/fluentd logstash
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Fig. 5  Overview of the internal system monitoring using pystats on 
the server and daemons to send metrics to a central statsd collector 
and from there to the Graphite database. Grafana is used to visual-
ize the metrics. System logs are monitored using td-agent to send 
the logs from the server and daemon machines to a Redis buffer. 
From there Logstash collects them and writes them to Elasticsearch. 
Furthermore, daily logrotate jobs also write the logs to HDFS for 
backup, and can be examined via the Zeppelin web-based notebook

Fig. 6  One example plot from the internal Grafana dashboard used to monitor the internals of the system. This plot shows the number of 
requests submitted to FTS split by activity over time
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collects the logs from there to write them to Elasticsearch. 
Logstash is not just forwarding the data to Elasticsearch but 
also parses some of the data and adds additional informa-
tion, e.g., it translates numerical values to a human-readable 
format. The logs are then written into different Elasticsearch 
indexes for server and daemons. Different dashboards are 
available to check the server API usage, the API errors, or 
the daemon activities in a similar style as the internal moni-
toring. Additionally there are daily logrotate jobs on each 
node to send the logs to HDFS [57] for backup and long-
term storage. In some cases, the logs on HDFS can be ana-
lyzed via special web-based notebooks using Zeppelin [58].

Another component associated with internal monitor-
ing is transfer and deletion monitoring. This monitoring 
is mainly based on two other systems: the traces and the 
events. The traces are access information reported both by 
the ATLAS computing job execution environment, known 

as pilots, of the workload management system and the Rucio 
CLI tools. Every time a file has been used as input for a job, 
and therefore has been copied to any execution environment, 
a trace is created that is then sent to the central Rucio server 
via HTTP. The same is done for output files that are written 
back from the execution environment to the storage. Simi-
larly, when a user downloads or uploads data from or to the 
storage using the Rucio CLI, the same traces are sent. The 
Rucio servers forward these traces to an ActiveMQ topic 
from which it is distributed into different queues for several 
applications, one of which is then used by the monitoring 
framework. Next to the traces there are also Rucio events for 
deletion and transfers on storage themselves. The transfer 
daemon produces messages when a transfer is submitted, 
waiting, done, or failed which are then written to a database 
table. The same is done by the deletion daemon. From there, 
the messaging daemons pick up the messages and send them 
to a topic on ActiveMQ.

The operational monitoring is provided by the Unified 
Monitoring Architecture (UMA) [59] of the CERN IT moni-
toring team and is described in Fig. 7. The UMA is based on 
collectors that retrieve the traces and events from ActiveMQ 
and put them in Apache Kafka [60] and is enriched with 
topology information from the ATLAS Grid Information 
System (AGIS) [61], such as country or facility names. From 
there, continuous Spark [62] jobs running on a Hadoop clus-
ter get the data from Kafka, aggregate and further enrich 
the data, and write them back to a different topic in Kafka. 
Then, the aggregated data are written to different storage 
systems: HDFS for long-term backup, Elasticsearch for 
detailed searches, and InfluxDB for real-time monitoring. 
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Spark
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Fig. 7  Overview of the monitoring architecture. The traces and events 
are sent to ActiveMQ from which they are forwarded to a Kafka 
processing queue. A continuously running Spark job aggregates 
and enriches the data and writes it back to Kafka. From there, col-
lectors write the data to HDFS for backup, Elasticsearch for detailed 
searches, and InfluxDB to be used with Grafana to produce the dash-
boards

Fig. 8  Matrix from the Grafana dashboard based on CERN IT UMA. It shows the efficiency of transfers between the source on top and the desti-
nation on the side, depicting geographical regions
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Everything is then used together in Grafana dashboards as 
shown in Fig. 8. There shifters, site-admins and operations 
can check the transfer efficiency, throughput, bandwidth and 
more and they also can drill down to find possible error 
reasons for failing operations.

The last important system used for monitoring is simple 
CSV lists produced on a regular basis. These lists are cre-
ated using data imported to HDFS from different sources. 
Sqoop [63] is used to import the important tables from the 
database, such as replicas, DIDs, dataset contents, or RSEs, 
and Flume is used to stream the traces directly from an 
ActiveMQ topic to HDFS. Then, a set of daily and weekly 
Pig [64] jobs are run on Hadoop to combine and process 
these data to create a variety of reports. They are provided as 
CSV files which can be read by users directly from Hadoop 
using Tomcat [65] containers. The most important daily 
reports are the list of file replicas per RSE, which is used by 
the consistency daemon, lists of dataset locks per RSE used 
by site administrators to monitor site usage of their users, 
and a full list of all available datasets according to a specific 
pattern for the test system HammerCloud [66]. The weekly 
reports include lists of suspicious and lost files for site 
administrators, dataset access statistics based on traces for 
centrally managed storage areas, and a list of unused data-
sets that are used in reports for resource planning groups. 
Detailed storage accounting is available both as CSV lists 
and also in Elasticsearch for easy access for management 
and physics groups.

Operational Experience

Development Workflow

The current development workflow is the result of several 
years of experience and iterations with a large distributed 
development team. It is distributed under the Apache V2 
license and thus free and open-source software. The devel-
opment workflow relies on an agile development paradigm 
with time-based releases, and selected long-term support 
and selected 24-month long term support releases.

Since Rucio is a full-stack open-source project, we rely 
on established tools in the open-source community, most 
notably GitHub [67] for version control management and 
Travis [68] for automated testing.

Prior to any development, a traceable issue has to be cre-
ated on GitHub describing the change, the planned modi-
fications, the severity of the issue, and the affected com-
ponents. This gives the entire developer community the 
chance to discuss the issue and point out possible implica-
tions. Each development gets classified into one of three 
categories: feature, patch or hotfix, which corresponds to 
the type of release in which the change will be included. 

Feature developments include database schema changes, 
new features, API changes, or any other larger enhance-
ments. Patch developments include bugfixes or smaller 
enhancements to components. Hotfixes address a specific 
critical bug which requires an immediate software release 
and are commonly done within the integration testing, so the 
bug will not reach production. The release cycle is as fol-
lows: Patch releases (1.17.NN) are issued every two weeks; 
Feature releases (1.NN.00) are issued three to four times a 
year, mainly corresponding to LHC technical stops; Hotfix 
releases (1.17.3.postNN) are issued on-demand whenever 
necessary. Scripts are provided to help with this.

Modifications to the code are submitted as pull requests. 
These are merged into distinct branches, such that future 
feature developments do not impact the patch developments 
of the current feature branch. At the point of issuing a new 
feature release all future patch developments are based on 
this feature release. At the moment there is no long-term 
support for previous feature releases, thus patches will not 
be issued for previously released versions. The release model 
is based on the requirements of the organizations currently 
using Rucio and can be evolved based on the future land-
scape of the Rucio community.

All pull requests are automatically tested by the Travis 
tool. Currently there are over 400 unit tests which are exe-
cuted against several databases, such as Oracle, PostgreSQL, 
MySQL, and SQLite in Python 2.6, 2.7, 3.5, and 3.6 envi-
ronments. We emphasize test-driven development; thus, it is 
the responsibility of each developer to supply a good cover-
age of test cases for their developments. We require human 
review of all pull requests, which is open to the entire devel-
oper community. For a pull request to be merged, it requires 
approval by at least one member of the core development 
team of Rucio. Merging is then done by the Rucio develop-
ment lead who ensures the long-term stability of the project 
and curates the tickets and release roadmaps.

Deployment schema

Figure 9 shows the recommended deployment schema. It 
allows robustness and horizontal scalability of the service 
by accommodating multiple instances of each service and 
daemon. This allows to theoretically infinitely scale the sys-
tem, up to the point of the IO throughput of the underlying 
database. The actual volume of data to manage is, thus, irrel-
evant to the scaling of Rucio; only the number of entries in 
the catalog is affected by the database.

There is also the possibility to run a minimal Rucio sys-
tem, either on bare metal or virtual machines, with good 
performance. This can already be accomplished by any off-
the-shelf node with 4 cores and 8 GB of memory, a sepa-
rate node for the database, as well as a separate node for 
FTS if third-party-copy functionality is needed. There is no 
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installation of software needed at any of the participating 
data centers or institutions.

As shown in Fig. 9, the clients operate on three end-
points: the authentication, the REST API, and the graphical 
web-based user interface. Each of these endpoints is in a 
domain name service (DNS) load-balanced group, which 
comprises the perimeter network of the data center. It is rec-
ommended to place a load-balancer, such as HAProxy [69], 
in the perimeter REST API, and keep the servers within 
the trusted networks. This way, clients of different kinds 
can benefit through custom load-balancing rules to point 
to selected to backend REST API servers. The authentica-
tion group is a separate DNS load-balanced group, both for 
separation of privileges as well as web-server authentication 
module encapsulation. The web-based UI itself is not within 
the trusted network, and communicates via asynchronous 
JavaScript with the REST API load-balancer. This allows us 
to treat web-based clients fairly when compared to program-
matic access, and also reduces the risk of service stability 
the risk of malicious service stability attacks.

The web server itself spawns multiple instances and each 
instance controls multiple WSGI containers which execute 
the Python code. The default combination of Apache HTTP 
Server, mod_ssl, mod_auth_kerb, and mod_gridsite for 
authentication, as well as mod_wsgi as the WSGI container 
have shown to be extremely reliable and efficient.

Almost every component has to interact with the central 
database. Modern sharding, partitioning, and hot swapping 
techniques for databases reduce the risk of service failure 
in case of database problems. For a very large database 
installation, dedicated expert effort is recommended. The 
system internal monitoring also provides detailed views on 

the database state; so, early interventions on the database are 
easily possible by database administrators.

The daemons run inside the trusted network and interact 
with the database directly for performance reasons, they do 
not go through the REST API and are, thus, privileged. Each 
daemon can be instantiated multiple times in parallel, both 
for service robustness and horizontal scalability, just like 
the servers. Some daemons also interact with the message 
queue, both producing and consuming messages. STOMP 
protocol compatible services such as ActiveMQ have shown 
to be stable and scalable. Other daemons interact with the 
underlying transfer services via the transfer tools. Redundant 
installations of the FTS system across the globe have shown 
to be stable and scalable as well.
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Fig. 9  The deployment schema is able to accommodate multiple instances of each component for robustness and throughput

Fig. 10  Total ATLAS volume managed by Rucio, approaching 450 
Petabytes of data at the end of 2018
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System Performance

Rucio’s performance can be evaluated in several ways, most 
importantly, volume of managed data, interaction through-
put, client response delay, database utilization, and node 
utilization.

The largest Rucio deployment to date is for the ATLAS 
Experiment. The full deployment is hosted in the CERN data 
center, including the database and the main FTS server, with 
additional FTS servers in the United States and the United 
Kingdom. As shown in Fig.  10, the total volume of data 
approached 450 Petabytes by the end of 2018, with linear 
growth rates both during and between data taking periods. 
This data includes centrally produced experiment data, such 
as detector data and Monte-Carlo simulation, but also user 
data from individual data analysis groups or persons. At the 
end of 2018, the number of DIDs was 25 million contain-
ers, 13 million datasets, and 960 million unique files. The 
curious skew between containers and datasets is due to the 
use of containers for grouping of physics simulation, auto-
matic data derivation and processing, and user analysis; the 
datasets themselves are mainly used as the unit of parallel 
workflow processing, thus having a comparatively small 
number of files per dataset. The number of RSEs is 860 and 
the number of replicas is 1.2 billion across all disk and tape 
storage. There is no discernible performance difference on 
Rucio catalog operations for files on disk when compared 
to files on tape.

The data transfer and deletion rates are historically an 
indirect result of the computational needs of the experi-
ment. As shown in Fig. 11, ATLAS generally transferred 
at least 30 Petabytes of data per month in 2018, peaking at 
a record 55 Petabytes in November. The workload is quite 
regular both in the long term and short term, and there are 
few bursts with the exception of weeks leading up to physics 
conferences. On average, 50–70 million files are transferred 
between data centers per month, with a transfer failure rate 

of roughly 10 million per month mostly due to storage and 
network configuration problems. These transfer failures are 
automatically recovered by Rucio, and the users do not need 
to worry about them. The deletion rate is higher than the 
transfer rate with up to 100 million files commonly deleted 
per month, amounting to 30 Petabytes and more, with an 
error rate of 10–20 million per month. Again, these are 
mostly attributed to storage configuration problems related 
to authorisation. The large number of files to delete are 
mostly intermediate data products stemming from compu-
tational physics workflows. Tape recall is considerably lower 
than transfers. Per month, ATLAS recalled about 1 Petabyte 
with fewer than 1 million files and with less than 10% recall 
issues that required recall retries. This high percentage usu-
ally comes from very large requests, which eventually time 
out and have to be retried. Historically, tape is considered 
as a write-only archive, but in case large samples are needed 
for simulation or users require raw data these can be staged 
from tape efficiently.

In addition to the interactive users, essentially all com-
putational jobs interact with the Rucio server to locate and 
register data. The global server interaction rate is averaging 
250 Hz, with frequent spikes up to 400–500 Hz. Average 
response time as measured by HAProxy is less than 50ms, 
though streaming the content of the replies can extend the 
total connection duration up to multiple seconds; this does 
not block other clients though. This interaction rate causes 
only low utilization of the 15 nodes (4 core CPU, 8 GB 
RAM) hosting the Rucio REST API servers at 5–7% CPU 
utilization each and no measurable IO-Wait. The service is, 
thus, almost one order of magnitude over-provisioned just to 
ensure robustness in case of catastrophic data center failures 
where single nodes might become unavailable.

The database usage is split into its CPU usage, its session 
handling, and its tablespace volume. In the CERN Oracle 
instance with 16 logical CPUs, Rucio core utilization is on 
average about 20%. To keep up with the high interaction rate, 
session sharing is used which keeps the number of active 
sessions consistently below 20. Peak streaming content from 
the database through the Rucio servers to the clients can 
easily reach up to 1500 concurrent sessions. Physical read 
rate on the database disk is less than 100 Mbps at more 
than 1 million IOPS, corresponding to 3000 transactions per 
second. Frequent spikes to multiple hundreds of Mbps are 
possible though. Current total database volume is 3.7 TB, 
with consistent growth rates of around 1 Terabyte per year 
since 2015. A hot standby of the database is hosted outside 
of CERN in the Geneva city center.

Finally, the operation of the ATLAS instance is covered 
by the core development team with DevOps-style full-
stack responsibility. In practice, however, the only time the 
instance is actively touched is to upgrade to newer Rucio 
releases, which is negligible effort. Actual operation of 

Fig. 11  Total ATLAS volume transferred per month is consistently 
30 Petabytes and above, reaching more than 50 Petabytes in Novem-
ber 2018. Colors denote different geographical regions
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ATLAS data management is a dedicated effort by a sin-
gle person, who follows up on larger experiment requests, 
for example, massive data transfer campaigns above user-
allowed quotas, to discuss experiment-wide configurations 
with the physics groups, or to pinpoint problems with stor-
age and network. There are no ATLAS data operations per-
sons at the data centers. The administrators at the data cent-
ers are only responsible for the configuration and running of 
their storage, both in software and hardware.

Advanced Features

This section describes three advanced features that can be 
used separately or in conjunction. The effectiveness of these 
methods is entirely dependent on the actual dataflows of 
each experiment and should be carefully evaluated with real 
experiment workload. Some of them can even be counter-
productive if important system metrics are not available, 
such as automated movement of data which is needed to 
cope with storage imbalance.

Dynamic Data Placement

On top of the rather static replication policies that make sure 
that the data are well distributed across the grid to make 
them available for analysis by users, dynamic data placement 
helps to exploit computing and storage resources by remov-
ing replicas of unpopular datasets and creating additional 
replicas of popular ones at different RSEs. New replicas 
are created if a threshold of queued jobs is exceeded, tak-
ing into account the available resources, dataset popularity 
and network metrics to make sure that the new replicas are 
created quickly. Especially, the number of queued jobs is 
always specific to the actual computation workload of the 
experiment, therefore this requires an interaction with the 
experiment’s workflow management system. The currently 
used algorithm concentrates on free space and network con-
nectivity between sites; so, it weighs each site based on those 
criteria to find a suitable storage endpoint but also ensures 
that it does not put too much stress on single RSEs.

The current configuration of the dynamic data placement 
tool constantly scans incoming user jobs and collects the 
input datasets. The placement algorithm runs for every data-
set containing official Monte Carlo or detector data. First, the 
algorithm checks if there has already been a replica created 
in the recent past. It then checks how many replicas already 
exist below a configurable threshold and the popularity 
of the dataset. The algorithm continues to check network 
metrics for links between RSEs having an existing replica 
and possible destination RSE, as well as metrics such as 
free space, bandwidth and queued files, or if other replicas 
have been recently created there. If a suitable RSE has been 

found, the algorithm creates a replication rule, which will 
then take care of the transfer. Finally, detailed information 
about the decision is written to Elasticsearch for further 
analysis by operators and infrastructure providers.

On average, 60% of these newly created replicas were 
quickly used again by the workload management system, 
i.e., within 2  weeks. On a longer time scale, half of the 
accessed datasets are accessed more than once, i.e., the 
algorithm successfully creates replicas that are popular for 
several months.

Automated Data Rebalancing

Data rebalancing is a very common workflow in distributed 
data management systems, historically carried out by human 
operators. Rucio offers an automated service for these 
rebalancing workflows. The service provides three separate 
modes of operation: automatic background rebalancing, RSE 
decommissioning, and manual rebalancing executed by a 
human operator.

The automatic background rebalancing mode aims to 
equalize the ratio of primary and secondary replicas on 
a set of RSEs. By means of an equalized ratio, it is guar-
anteed that there is relatively the same amount of second-
ary replicas available for deletion to make space for new 
data. For example, for the ATLAS experiment, the back-
ground rebalancing is active for all RSEs with larger stor-
age capacities. In each iteration, the algorithm calculates 
the average ratio and moves data from the RSEs above 
ratio to RSEs below it. The selection criteria for the data 
can be modified, but older, unpopular data, with a long 
lifetime is preferred. Replication rules are selected whose 
RSE expression would not conflict with the new destination 
RSE. The service links the original replication rule with 
the newly created one and only allows the removal of the 
original rule once the data has been fully replicated. The 
maximum volume of data and files to be transferred per day 
can be configured, as well as the activity of the transfers to 
separate the data from more important transfer activities. 
This helps to avoid overload of the storage and network 
resources with rebalancing activities.

The decommissioning mode allows an operator to select 
an RSE for removal from the infrastructure. The task of 
migrating RSE data to be able to decommission it is very 
labor intensive and error prone, especially when unique 
data are located at the RSE. However, with this service, 
it can be done very quickly and safely. In contrast to the 
background rebalancing mode, where only some data are 
selected to be moved, the decommissioning mode selects 
all data resident on the RSE and moves them to a different 
RSE, following the original RSE expression policies of the 
individual rules.
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The manual rebalancing mode allows operators to move a 
certain volume of data away from an RSE, in case of storage 
shortages or other data distribution considerations. This can 
be triggered at any time. The internal workflow is similar to 
the background rebalancing mode, with the operator only 
needing to specify the amount of volume to be rebalanced 
from an RSE.

Transfer Time Prediction

A trace record is created for every single transfer managed 
by Rucio. Most importantly, this includes the selected source 
and destination, the file size, and a series of timestamps indi-
cating milestones in the transfer life cycle. It is possible to 
apply large-scale statistical analysis techniques to character-
ize the time spent for every transfer in each of its life cycle 
stages and thus predict the characteristics of large-scale data 
movement to improve task scheduling, network and storage 
optimization due to better endpoint selection [70].

Rucio supports extension modules which can access these 
internal instrumentation data. The Transfer Time To Com-
plete ( T3

C ) extension explores the possibility to model the 
transfer characteristics, with the aim of providing reliable 
transfer time estimates to Rucio core and other clients. In 
the general case, when a user creates a new rule, Rucio will 
reply with an estimate of when the rule will be finished. This 
includes calculations across all potential file transfers neces-
sary to satisfy the rule. The module allows use of simultane-
ous models and features the ability to easily compare their 
performance. This extension opens the possibility for inter-
ested students to develop new machine learning algorithms 
to model the system characteristics.

Summary

Conclusions

Effective management of large sets of data, both in terms of 
volume and namespace, has been shown to be an extremely 
difficult problem. Rucio provides a solution to this prob-
lem with demonstrated usability, performance, scalability, 
and robustness, allowing scientific collaborations to fully 
use their distributed heterogeneous storage resources. The 
design of policy-driven data management has proven to 
be an excellent choice, giving the users the possibility to 
express their needs without having to worry about how to 
actually achieve them. Additionally, dynamic policy man-
agement allows the system to optimize itself during runtime 
based on self-instrumentation. The modular and horizon-
tally scalable architecture has also been shown to handle 
the load of the ATLAS Experiment, and allows for the pos-
sibility to improve components selectively without having to 

re-engineer the core of the system. It is important to mention 
that this came out of operational experience over many years 
which helped to address all these issues. The monitoring of 
the system has been especially well received by the users, 
giving them detailed insights into their data management 
workflows. Synchronization with external systems is also 
decoupled through API backwards compatibilities and asyn-
chronous messaging, giving both Rucio and external systems 
the possibility to evolve separately. Finally, the integration 
with storage, network, and transfer follows clear interfaces 
but custom implementations, which allows Rucio to benefit 
from individual optimizations which are exposed by differ-
ent providers and can be extended quickly.

Outlook

The Rucio community is also growing. The system is now in 
use by two additional collaborations in production, ASGC/
AMS [71] and Xenon1T [72], currently being deployed into 
production by the CMS [73] and DUNE [74] experiments, 
and is being evaluated by many other collaborations also 
outside of the high-energy physics field, such as LIGO [75] 
and SKA[76].

The future development of Rucio follows a dual approach: 
support for the High-Luminosity LHC data needs, as well as 
the development of features relevant to the non-LHC com-
munities and experiments.

With the start of the High-Luminosity LHC (HL-LHC), 
the year 2026 will see a significant increase in the data rates 
due to the increase in the number of HL-LHC collisions, 
higher event triggering accept rates, and more data prod-
ucts in offline computing. This presents both a funding and 
technological challenge, and will require several research 
and development initiatives. Currently identified topics are 
focusing on smart content delivery, data staging, and cach-
ing. Rucio will take the role as the orchestrating component, 
and ensure the reliable and efficient communication among 
the participating components, such as Software-Defined Net-
works (SDNs) [77], caching services [78], and High Perfor-
mance Computing (HPC) centers [79]. These new workflows 
and functionalities will require integration and development 
efforts without breaking the existing horizontal scalability 
of Rucio.

Support for non-LHC communities will be driven by their 
requirements, and are mainly coming from the neutrino and 
astronomy sciences. The major feature requests include 
the support for arbitrary and mutable metadata, which was 
recently implemented, flexible user data synchronization 
and sharing, a stand-alone file transfer service for non-grid-
style storage systems using WebDAV or HTTP, interfacing 
with other workflow management systems such as HTCon-
dor [80] or DIRAC [81], time-based embargoes of data for 
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scientific publications, as well as connectors to research 
databases like Zenodo [82] to link publications to their data.
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