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A general self-consistent scheme for approximating statistical operators is discussed 
within the context of Information Theory. As an application, a special correlated 
finite temperature mean field approximation is derived and applied to many-fermion 
systems. A substantial improvement over conventional approaches such as finite tem­
perature Hartree-Fock and finite temperature BCS is obtained in finite systems. 

Introduction 

Finite temperature (FT) mean field approaches such as FT Hartree-Fock (FTHF) 
[IJ, FTBCS and FT Hartree-Fock-Bogoliubov (FTHFB) [2J, constitute the basic mi­
croscopic methods for dealing with many-body systems at finite temperature. They 
provide the first step upon which further approximations and also higher order treat­
ments (such as FTRPA [3]) are constructed. The essential ingredient in these theories 
is the replacement of the full hamiltonian by an effective temperature dependent sin­
gle particle (sp) or single quasiparticle Hamiltonian in the exponent of the statistical 
operator and the use of a Grand Canonical (GC) ensemble for calculating the per­
tinent traces. As a consequence of these approximations, the Fermi-Dirac expression 
for the average sp occupation number and the finite temperature version of Wick's 
theorem for calculating averages of m-body operators, hold. 

However, important shortcomings are exhibited by these theories, especially in 
finite systems and in the so called transitional regions. In particular, the vanishing of 
the order parameter, such as the quadrupole moment or the pairing gap in systems 
like finite nuclei, at the corresponding mean field critical temperature, is not actually 
seen in exact canonical calculations [4]-[6]. 

In the present contribution our aim is first to make a short review of general self 
consistent approximations for statistical operators [7]-[8], within the general frame­
work of Information Theory [9]-[11]. As a particular case, the usual FT mean field 
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approximations are derived. Based on this general formalism, we derive next a corre­
lated mean-field approximation, including a Correlated FTHF approach [12,14] (suit­
able also for canonical and projected statistics calculations), and also a general cor­
related FTHFB scheme [13] suitable for systems exhibiting pairing-like interactions 
in addition to long range forces. Finally, a particular application in a finite pairing 
model is developed. 

General Statistical Formalism ' 

Let us consider a quantum system about which the only available information consists 
of the expectation values O. of n linearly independent observables 0 •. According to 
Information Theory, the least biased statistical operator p describing the system is 
that which maximi~es the entropy (we set Boltzmann constant k = 1) 

S = -Trplnp, (1) 

subject to the constraints 

(2) 

The result can be cast as 

p = exp{ -Ao - L A.O.}, (3) 
• 

where Ao is a normalization constant (Trp = 1) and A. a set of Lagrange parameters 
to be determined by means of the constraints (2). 

Ordinary equilibrium finite temperature descriptions are obtained when one of the 
operators O. is the Hamiltonian iI of the system and the remaining ones commute 
with iI (for instance, one of the O;'s is the particle number operator in GC treat­
ments). Nevertheless, the present formalism is completely arbitrary and allows for 
general non-commuting operators 0;, being thus suitable for off equilibrium statistical 
descriptions. 

The ensuing maximum entropy reads 

S = Ao + :E A.Oi. 
• 

(4) 

It is easy to show that Sand Ao, as functions of O. and Ai respectively, satisfy the 
conjugate relationships 

(5) 

Generalized Self-Consistent Approximation 

In many-body systems, the previous exact statistical operator (3) is not tractable in 
general and one is forced to employ approximate schemes for effectively computing 
the pertinent traces. We shall now describe a general self-consistent approximation 
for the density (3) [7]-[8]. Starting with a set of (in principle) m arbitrary operators 
Pi' m ~ n, we set up a trial approximate statistical operator possessing the form 
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Pap = exp{ -'\0 - :E '\iPj}, 
j 

(6) 



where now Aj are a set of variational parameters to be determined by maximizing the 
approximate entropy 

(7) 

subject to the constraints 
(8) 

In other words, the exponent of the statistical operator is approximately expanded in 
the (undercomplete) space spanned by the operators Pj • 

The optimum Pap can be obtained by introducing n additional Lagrange parame­
ters f3i and maximizing the quantity 

5' = Sap - L f3iOi, 
i 

(9) 

with respect to the yet unknown expectation values Pj = TrpapPj . Using equations 
(5) [applied to the operator (6)J, we obtain the fundamental relations 

Aj = Lf3i80d8Pj, (10) 
i 

which represent a self-consistent set of equations for the parameters Aj (they are given 
by a function of the expectation values they determine). By recourse to the Kubo 
transforms [15J of the operators Pj, defined here as 

it is possible to explicitly express (10) as 

Aj = Lf3iAilW/, 
ill 

where 

and B is the m X m generalized covariance matrix 

The approximate density operator can finally be written as 

with 

Pap = exp{ -Ao - Lf3iOi}, 
i 

Oi = IJ80d8Pj)Pj. 
j 

(11 ) 

(12) 

(13) 

(14) 

(15) 

(16) 

The effective operator (16) can be considered as the (density dependent) projection 
of Oi onto the space spanned by the operators Pj' 

We are thus led to a formal self consistent solution for the density operator. In 
case all operators Oi are linearly related to the Pi's we obviously recover from (10) 
the exact statistical operator. Otherwise, the operator (15) provides obviously a lower 
bound to the exact entropy (4). 

We can distinguish now two different applications: a) Those in which the expec­
tation values of the operators Oi are actually given; b) Those in which the Lagrange 
parameters f3i are supposed to be known and we are interested in the behavior of the 
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approximation as a function of the f3i's. In case a), it is obvious that situations may 
exist in which we cannot fulfill the constraints (8) (i.e. we cannot obtain a solution for 
the f3i's), since the range of expecta.tion values spanned by the approximate density 
may be smaller than the exact range. 

We shall consider in the present work case b) with the aim of applying the formal­
ism to finite temperature problems. In this case, we shall take the operator 01 as the 
Hamiltonian iI of the system and the associated parameter f3 == ..\1 will be the inverse 
of the temperature T. We can write in this situation (15) in the more familiar form 

Pap = exp( -"\0' - f3h'), (17) 

where 
n 

h' = h - 1: P,;C'i, (18) 
i=2 

with h the effective Hamiltonian constructed as in (16) and P,i = -..\i/f3 the chemical 
potentials. 

As we shall see, the present formalism contains as a very particular case the usual 
FT mean field approaches. We shall proceed now to a rigorous and quite general 
rederivation of microscopic FT and statistical mean field theories. 

Extended FTHF Formalism 

In order to extract from the previous formalism a useful approximation for many-body 
systems, it is necessary to suitably select a set of operators Pj such that the ensuing 
density operator becomes tractable. The most obvious choice is to restrict the Pj's 
to single particle operators of the type ctc; in which case the density becomes 

i,i 

(19) 

where at, ai are related to the original operators by means of a unitary (HF-like [16]) 
transformation 

Ci = 1: Uijaj, uut = I, 
j 

(20) 

such that Ut AU = A', with A and A' the matrices of elements ..\ij, ..\i/jij respectively. 
In what follows we shall consider the fermion case [7], so that lel, Cj]+ = /ji; (for the 
boson case see [8]). 

The formalism becomes in this situation equivalent to a generalized statistical HF 
approximation. The ensuing variational equations can be cast in two different pieces: 
one involving the parameters Ai and the other the transformation matrix U. We 
obtain, using (10), 

..\i = Trpap 1:[( a!aj - /; )O']B;/ , 
; 

with 0' = 'Ed~iOi' and where the covariance matrix B reduces now to 
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(22) 



with I; and lij the generalized average one and two-body occupation numbers, 

such that 

(23) 

(24) 

(25) 

Minimization with respect to the HF transformation leads to the fundamental equa­
tion 

(26) 

Equations (21 )-(26) are completely general and hold in any type of ensemble. 
The usual FTHF equations are recovered if the pertinent traces are taken in a Grand 
Canonical ensemble. Only in this case the familiar Fermi-Dirac expression for the 
one-body occupation numbers, 

(27) 

and the finite temperature Wick's theorem [17J for calculating averages of m-body 
operators (m > 2) hold. This implies in the present context 

(28) 

In this case, Bii = li(1 - M8ij , corresponding to a fully uncorrelated picture, and 
equations (21)-(26) reduce to the usual HF equations (see next section). We remark 
however that in other ensembles, expressions (27) and (28) do not necessarily hold 
and one should calculate them using the diagonal density operator (19). 

Hence, the previous formalism allows us to extend the usual GC FTHF equations 
to any type of ensemble and to a general statistical context. We are thus in a posi­
tion to perform Canonical FTHF calculations [12,14J (conserving exactly the number 
of particles). The formalism is also suitable for projected statistics [12J (ensembles 
which are microcanonical with respect to some set of operators ), as for instance, an­
gular momentum projected statistics, of much interest in finite temperature Nuclear 
Physics. 

Nevertheless, the two-body occupation numbers are obviously still dependent on 
the one-body mean values, and do not constitute new degrees of freedom in the 
present formalism. Up to now, we have considered thus the possibility of introducing 
correlations just in the trace, but not in the density operator itself. We will now 
attempt to go beyond the statistical HF approximations (whether GC or not) by 
introducing special correlations in the density operator but preserving at the same 
time its tractability. 

Correlated FTHF 

We shall now consider the addition of diagonal two-body terms in the exponent of the 
density operator, such that 

Pap = exp{ -'\0 - E '\ia!ai - E '\ija!a}aiai}, (29) 
i i,; 
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with the operators at, D.j given again by (20). In this way, (29) remains diagonal 
in an independent particle basis (i.e., consisting of Slater Determinants), so that no 
diagonalization is required for calculating traces. 

The essential difference which is introduced now is that the two-body occupation 
numbers (24) are now independent quantitie8. In other words, they constitute new 
degrees of freedom. As we shall explicitly see, the density operator (29) is able to 
provide one with an essentially different probability distribution at finite temperature, 
in comparison with that given by ordinary or extended FTHF. 

In order to determine the parameters ~" ~ij, we employ now equations (10). We 
shall restrict ourselves to one and two-body operators 0" so that 0' can be written 
as 

(30) 

(31) 

with 
(32) 

in obvious notation. 
In this case, the expectation value of 0' with respect to (29) will be a linear 

function of the elements Ii, Iii. Hence, eqs. (10) lead to 

(33) 

so that we obtain the expected result 

Pap = exp( -~o - O~), (34) 

where 
(35) 

is just the diagonal part of 0' in the independent particle basis. 
The general equation determining the HF matrix U is still given by (26). For the 

case of a two-body 0', it can be cast as 

e~i(fi -Ii) + L Vi~ile(Jile - lile) = 0, (36) 
Ie 

which is the fundamental equation of the CFTHF approach. We note that if Wick's 
theorem is applied in eqs. (36) [i.e. eq. (28)], we recover the ordinary FTHF equations 

e~i + L Vi~ileJ,. = 0, (37) 
Ie 

with lie given by expression (27). However, this does not obviously hold any longer in 
the correlated approach (whatever the ensemble) and equations (36) must be solved 
self-consistently with respect to the (U-dependent) diagonal operator (34). 

We should bear in mind that in the statistical HF approximation, recovered in 
the present scheme for ~ii = 0, we have in addition to solve the non linear eqs. (21) 
(i.e., we must solve for the sp energies), which represent the projection of O~ onto 
the space spanned by the diagonal sp operators. On the other hand, in the present 
CFTHF treatment, eqs. (36) are the only ones to be solved, since the ~i'S and the 

92 



>',;'s are already known [eqs. (33)]. In this sense, the CFTHF eqs. are structurally 
simpler than the ordinary FTHF equations. 

Hence, the central point we have considered is the addition of diagonal two-body 
correlations in the density operator. Equation (36) can be considered now as the 
extension of the usual FTHF eqs. to density operators diagonal in an independent 
particle basis. In some sense, this CFTHF treatment can be regarded as the 'true' 
or correct statistical extension of HF. For the operator (29) is, for one and two-body 
operators Oi, the belt statistical operator diagonal in this type of basis, that can be 
constructed. The extension of the present scheme to arbitrary m-body operators 0, 
is straightforward (one should just include in (29) diagonal m-body terms). 

Finally, for thermal applications, it seems more familiar to cast the density (34) 
as 

Pap = exp( ->'0 - PH:"), (38) 

where iI:" is the diagonal part of the generalized Hamiltonian [see (18)] H' = H -
Ei=21-',Oi' 

Extension to Pairing Interactions; Correlated FTHFB 

The extension of the approximations of the previous sections to systems containing 
pairing-like interactions is straightforward. The standard FTBCS and FTHFB theo­
ries can be derived by considering just the set Pi = {c!ci,c!c1,CiCj}, i.e., by restricting 
the exponent of Pap to a general quadratic function of fermion operators. The ensuing 
pairing extension of the correlated FTHF, leading in general to a correlated FTHFB 
(CFTHFB) [13J approximation, can be obtained again from a trial density of the 
form (29) but with the operators a! 4i related to the original operators by means of 
a Bogoliubov transformation 

with 

ci = E(Uijaj + Vijal), 
j 

uvt,. + vut,. == 0, UUt + VVt = I, 

(39) 

(40) 
in order to ensure fermion commutation relationships for the operators 4i, Ci. In 
this way, the density operator (29) is diagonal now in an independent quasiparticle 
basis. The formalism obviously reduces to a correlated FTBCS (CFTBCS) approach 
if (39) is restricted to a BCS transformation [13]. We recover the ordinary FTBCS 
and FTHFB approaches by setting ).ij = ° in (29). 

We again obtain for Pap an expression similar to (34), where Od is now the full 
diagonal part of 0' in the quasiparticle representation. In order to perform simple 
calculations, it is necessary to take the traces now in a GC ensemble. The fundamental 
equations that determine the transformation (39) are 

Trpap[a!aj,O'J = 0, Trpap[a!a},O'J = 0, i 1= j, (41) 

which, for two-body operators Oi, can be cast as the equation (36) plus 

e?l(fi + /; - 1) + E VIe~j(fi1. + /;Ie - fie) = 0, (42) 
Ie 

where now e~j' Viileh e?l and Vlet,!j represent, respectively, the (suitably antisym­
metrized) coefficients of ala;, al a} a, ale , aj4i and alale4j4i in the quasiparticle ex­
pansion of 0', and are obviously transformation dependent. Thus, equations (36) and 
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(42) must be solved self-consistently. Again, we can recover the conventional FTBCS 
and FTHFB equations (or more adequately, the general statistical extensions of these 
approximations) if Wick's theorem and the Fermi-Dirac expression are employed in 
(36) and (42). 

Application 

As a particular illustration of the previous formalism, we shall consider a schematic 
two-level pairing model. We shall label the sp states as Ip, v), p = 1, ... ,0, v = ±1. 
We shall examine the quasispin pairing Hamiltonian [18] 

(43) 

where 
(44) 

are collective operators satisfying, together with Qz = HN - 0) and Jv = Ep ctvCp-v 

an SU(2) x SU(2) algebra [18]. The present Hamiltonian represents a pairing inter­
action between levels separated by an energy e, and reduces to the degenerate pairing 
model [2] for e = O. We shall consider the case N = O. 

The relevant Bogoliubov transformation reduces here to the BCS transformation 

- 10 + icf> t . 10 cpv - apv cos 2" ve ap_v sIn 2" ' (45) 

which gives rise, in the conventional FTBCS approach [5,6], to a non vanishing pairing 
tensor represented here by 

(46) 

where q = HI - i+ - 1-), with Iv = (a!vapv), and A the FTBCS pairing gap. This 
particle number symmetry breaking tensor is the essential ingredient in the FTBCS 
theory of superconductivity. The mean value of the interaction becomes -2A2 /G in 
this approximation (neglecting small contributions of relative order I/O to the HF 
potential). For GO > 4e, the systems starts at T = 0 in a superconducting state 
characterized by q = l, 0 = l1l", and, as T increases, the gap decreases approaching 
o at the critical temperature determined by 8Tc cosh2(e/4Tc ) = OG [5], where there 
is a transition to the 'normal' state characterized by q = O. For T > Te, no effect of 
the interaction is seen in FTBCS (A = 0). On the other hand, the exact canonical 
results exhibit no sharp transition for finite values of 0, and the expectation value of 
the interaction decreases smoothly with temperature but does not vanish. 

When considering the correlated FTBCS treatment based on the operator (29) and 
using the transformation (45) [13], the thermal description of the pairing interaction 
is substantially different from that given by ordinary FTBCS. One finds in CFTBCS 
a smooth thermal evolution of the system, with no sharp transitions and a smooth 
decrease of the mean value of the interaction as T increases, in agreement with exact 
results. Moreover, one finds also (Q+) = 0, implying thus a vani6hing pairing tensor 
and hence an approzimate symmetry re6toration [13) (actually the particle number 
fluctuations are still non vanishing). 

This behaviour is depicted in figure 1, for a typical situation. Since the gap 
is essentially a mean field parameter, we have defined the gap for the exact and 
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Figure 1. The pairing gap ~ as a function of the temperature T in the quasispin 
pairing model (see text). ~o denotes the gap at T = 0, N is the number of particles 
and 9 = OG. (a) denotes exact results, (b) results corresponding to the present 
correlated FTBCS treatment and (c) the conventional FTBCS results. 

correlated treatment as ~ = ~GJ(Q+Q-), which coincides with the gap defined in 
(46) in case we use the FTBCS expectation value. It is clearly seen that a substantial 
improvement over FTBCS results is obtained in the correlated approach for finite 
values of O. 

Results in other finite systems containing different interactions, including realistic 
nuclei such as 2oNe, are qualitatively similar (see [12J-[14]). A much better qualitative 
description of the pertinent physics is found in the correlated approach, in comparison 
with that given by ordinary FT mean field treatments. 

Conclusions 

Based on a general self-consistent approximation for statistical operators derived 
within the framework of Information Theory, we have developed a general correlated 
finite temperature mean field approximation. The method is based on the inclusion 
of special diagonal correlations in the density operator, and can be easily applied in 
arbitrary ensembles and general statistical contexts. 

It is seen that the method provides a substantial improvement over the conven­
tional FT mean field treatments, especially in finite systems and in transitional re­
gions. Moreover, it is able to approximate restore some of the symmetries broken in 
mean field calculations, providing one with a much better global description of the 
pertinent physics. 

In particular, we have seen in the example considered that a correct description 
of the pairing interaction is obtained in the correlated FTBCS treatment with a 
vani3hing value of the pairing tensor. Furthermore, the interaction effects do not 
completely vanish at high temperatures, in contrast with ordinary FTBCS results. 
No sharp transition is obtained at finite temperatures for a finite value of the number 
of particles, in agreement with exact canonical results. 
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