
Journal of Fourier Analysis and Applications (2020) 26:63
https://doi.org/10.1007/s00041-020-09774-2

LETTER TO THE EDITORS

Linear Independence of Time–Frequency Translates in Lp

Spaces

Jorge Antezana1 · Joaquim Bruna2 · Enrique Pujals3

Received: 30 April 2019 / Revised: 31 May 2020 / Published online: 24 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We study the Heil–Ramanathan–Topiwala conjecture in L p spaces by reformulating
it as a fixed point problem. This reformulation shows that a function with linearly
dependent time–frequency translates has a very rigid structure, which is encoded in a
family of linear operators. This is used to give an elementary proof that if f ∈ L p(R),
p ∈ [1, 2], and � ⊆ R × R is contained in a lattice then the set of time frequency
translates ( f(a,b))(a,b)∈� is linearly independent. Our proof also works for the case
2 < p < ∞ if � is contained in a lattice of the form αZ × βZ.
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1 Notations

Given f ∈ S(R), �f denote the Fourier transform normalized as

�f (ω) =
�

R

f (t)e−2π iωt dt .

By f̌ we denote the inverse Fourier transform of f . The same notation is used for the
extension of the Fourier transform to the L p(R) spaces, 1 ≤ p ≤ 2.

If (a, b) ∈ R
2, then f(a,b) denotes the time frequency translation of f given by

f(a,b)(x) = e2π i xb f (x − a) .

If � = {(ak, bk)}Nk=1 is a finite family of points of the plane, the set { f(ak ,bk )}Nk=1 is
shortened as S ( f ,�).

Given an interval I ⊆ R, the space L p(I ) will be naturally identified with the
subspace of L p(R) consisting of those elements f such that f χI c = 0, where if E is
a measurable set, then χE denotes the characteristic function associated to E . On the
other hand, C0(R) is the space of continuous functions vanishing at infinity.

Finally, given x ∈ R, �x� will denote the integer part of x , and {x} = x − �x� the
fractional part of x .

2 Introduction

2.1 Statement of the Problem andMain Results

By the standardwindowedFourier transform theory, for arbitrary non-zero f ∈ L2(R),
the f(a,b) are a sort of basic building atoms in the following sense: for any h ∈ L2(R)

one has (in an appropriate sense) that

� f �2h =
�

a

�

b
	h, f(a,b)
 f(a,b) da db,

where 	·, ·
denotes the inner product in L2(R). In this context, the following conjecture
raised by Heil, Ramanathan and Topiwala in [10] is completely natural:

Conjecture 2.1 If f ∈ L p(R), 1 ≤ p < +∞ is nonzero and � := {(ak, bk)}Nk=1 is
any set of finitely many distinct points in R

2, then S ( f ,�) is a linearly independent
set of functions, that is, if

�

k

cke
2π i xbk f (x − ak) = 0, (1)

and the constants ck are not all zero, then f = 0.
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A function f with linearly dependent time–frequency translations has a very rigid
structure. In Sect. 3 we will show that this rigidity can be encoded in a family of linear
operators that allow to recover the function from its values in a compact set. This new
way to approach the problem allows us to provide a simple proof of the following
result, which as far as we know, is new for p �= 2:

Theorem 2.2 Given a finite set of points � belonging to a lattice, the family S ( f ,�)

is linearly independent for any non-zero f ∈ L p(R), for 1 ≤ p ≤ 2.

Using symplectic transformations (see Sect. 3.1 for more details), we can restrict
our attention to sets of time–frequency translation � of the form

{(α, n1), . . . , (Nα, nN )}

where n j ∈ Z+. The price to pay for this reduction is to consider functions in any
Lq(R), 1 ≤ q < ∞ or in C0(R). So, Theorem 2.2 is a consequence of the following
result:

Theorem 2.3 Given a set of points � = {(α, n1), . . . , (αN , nN )} for some α ∈
(0,+∞), the family S ( f ,�) is linearly independent for any non-zero f belonging
either to C0(R) or in Lq(R), for 1 ≤ q < ∞.

We provide the proof of this theorem in Sect. 3.3. Notice that each translation
parameter has a unique integer frequency associated. As we have already mentioned,
we reduce the problem to this special situation by using symplectic transformations.
However, a careful reading of the proof in Sect. 3.3 shows that the same arguments can
be used to prove the casewhere for each translation there aremore than onemodulation.
Moreover, the following more general result can be proved mutatis mutandis.

Theorem 2.4 Let α > 0 and let h1, . . . , hN : R → C ∪ {∞} be 1-periodic functions
that are finite and different from zero almost everywhere. Then, the equation

f (x) =
N

�

k=1

hk(x) f (x − αk), (2)

only admits the trivial solution in C0(R) and in any Lq(R) with 1 ≤ q < ∞.

For a sake of simplicity in Sect. 3.3 we only prove Theorem 2.3, and we leave to the
reader the minor changes that are necessary to adapt that proof to the general version
stated in Theorem 2.4. The proof in both cases is close to the original idea of [10],
referred as conjugates trick by Demeter (see also [5,6,13]).

2.2 Previous Related Results

In case all modulation parameters bk are zero, Eq. (1) is a convolution equation (con-
volving with a finite sum of delta masses) and the result is essentially trivial. Applying
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Fourier transform we obtain

f̂ (ξ)
�

k

cke
2π iξak = 0,

implying that f̂ is supported in a discrete set. In case 1 ≤ p ≤ 2, f̂ is a function
in L p�

(R), p� being the conjugate exponent, and hence f̂ , and so f , is zero almost
everywhere. If p > 2 an extra regularization argument is needed (see [7]). If the
dimension is greater than one, then Rosenblatt found a function, which simultaneously
belongs toC0(R

n) and all the L p(Rn) spaces for p ≥ 2n
n−1 , and it has linearly dependent

translates (see [14]).
We deal onlywith the case n = 1, where a positive answer is known in the following

cases:

(1) If f has the form f = q(x)e−x2 , where q is a nonzero polynomial (see [10] and
[9]).

(2) If f satisfies a one sided decay condition

lim
x→∞ | f (x)|ecx log x = 0.

for every c > 0 (see [2]).
(3) If the points of � are collinear (see [7,9]),
(4) If the points of � are collinear, except for one exceptional point (see [9,10]).
(5) If p = 2 and � is contained in a lattice. This result was originally proved by

Linnell using an argument involving operator algebras (see [12] and also [11]).
Although Linnell’s proof is also valid in higher dimensions, it can not be extended
to other L p(R) spaces. Later on, Bownik and Speegle in [1] obtained an important
simplification of Linnell’s result. It is interesting that their argument is specific
for dimension one. As in the case of Linnell’s approach, their approach can not
be extended to other L p(R) spaces. �

The next stability results are also known for any p and any dimension (see [10]):

(1) If the independence conclusion holds for a particular f and a particular choice of
points {(ak, bk)}Nk=1, then there exists an ε > 0 such that it also holds for any g
satisfying �g − f �p < ε using the same set of points.

(2) If the independence conclusion holds for one particular f and a particular choice
of points {(ak, bk)}Nk=1, then there exists an ε > 0 such that it also holds for that
f and any set of N points in R

2 within ε of the original ones.

3 A Reformulation

In this section we will explain a reformulation of the problem. This reformulation
requires some elementary facts about symplectic transforms already pointed out in
[10].
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3.1 Invariance by Symplectic Transformations

Let S ( f ,�) be a family of time–frequency translates. Note that this family is linearly
dependent if and only if

S
�

f(a,−b), � + (a, b)
�

is linearly dependent. Therefore, the points of � can be shifted vertically or horizon-
tally by paying the price of replacing f by a convenient time–frequency translation of
f .
The same idea can be done with other transformations of the set �. These transfor-

mations correspond to the so called symplectic group Sp(d). In our case, d = 1, this
group coincides with the special linear group SL(2,R) (see [3], [4] or [8] for more
details). In particular, any lattice � inR2 has the form αGZ

2 for some G ∈ Sp(1) and
α > 0. This will allow us to reduce Theorems 2.2 to 2.3.

The symplectic group is generated by three different kind of matrices

Ar =
�

1/r 0
0 r

�

, Br =
�

1 0
r 1

�

, and J =
�

0 1
1 0

�

.

As in the case of the horizontal and vertical translations aforementioned, the linear
dependence of family S ( f ,�) is equivalent to the linear dependence of the system

S (Dr f , Ar (�)) , S (Cr f , Br (�)) , or S( f̂ , J (�)).

Note that, as before, if we modify the set � we have to modify the function too. In
the first case, f is replaced by the Dr f (x) = f (r x). In the second case it is replace
by Cr f (x) = eπ ir x2 f (x). Finally, in the the third case , f is replaced by the Fourier
transform of f .

The equivalence between the linear dependence of these systems is not difficult to
check. Indeed, applying the dilation operator Dr f (x) = f (r x) to Eq. (1) we see that
S ( f ,�) is a linearly dependent if and only if S (Dr f , Ar (�)) is a linearly dependent.
Similarly, if we consider the Chirp operator Cr f (x) = eπ ir x2 f (x), then straightfor-
ward computations show that for each j

e−π ia2j
�

e2π i(b j+ra j )x Cr f (x − a j )
� = eπ ir x2�e2π ib j x f (x − a j )

�

.

Therefore, S ( f ,�) is linearly dependent if and only if S (Cr f , Br (�)) is a linearly
dependent. Finally, �f satisfies a similar equation as f where the modulation parame-
ters and the translation parameters interchange their roles, and the constants changed
only their argument. In consequence, S ( f ,�) is linearly dependent if and only if
S( f̂ , J (�)) is linearly dependent. It is very important to note that this transformation
is available only if �f is again a function either in Lq(R) for some q < ∞ or in C0(R).
This holds only if 1 ≤ p ≤ 2. For this reason, from now on we will assume that p
belongs to this range.
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Now, let us show how the symplectic transfoms can be used to simplify the problem.
Let g ∈ L p(R) for some p ∈ [1, 2], and let 
 = {(αk, βk)}Nk=0 be a finite set of points
in the plane such that

N
�

k=0

γke
2π i xβk g (x − αk) = 0,

where the scalars γ j satisfy that γ0γN �= 0. Using the aforementioned symplectic
transforms, the set of points 
 can be changed by a set of points � = {(ak, bk)}Nk=1
such that

0 = a0 < · · · < aN and b0 = 0.

Indeed, suppose that the original points do not satisfy these conditions. Note that we
can always assume that α0 = β0 = 0 and the rest of αk and βk are non-negative.
Otherwise, changing g by a convenient time–frequency shift of it, we set the problem
in this situation. If the new points still do not satisfy the above mentioned conditions,
we proceed in two steps. Firstly we use the transformation Br , for r > 0 big enough,
in order to get a new set of time–frequency shifts such that their projection onto the
frequency component is injective. Secondly, we use the J transform to interchange
the roles of translations and modulations. The new set of points satisfies the afore-
mentioned properties.

For this new set of points there exists a function f such that

N
�

k=0

ck e
2π ibk x f (x − ak) = 0, (3)

where c0cN �= 0. Moreover, f = 0 if and only if g = 0, where g is the original
function in L p(R). The function f belongs to L p(R) provided we did not use J to
transform 
 into �. Indeed, if we use J for the set of points, then we need to use the
Fourier transform for the function, and the Fourier transform maps L p(R) into Lq(R)

and L1(R) into C0(R). So, in that case the function f will belong either to Lq(R) or
to C0(R).

3.2 The Reformulation

As we have mentioned in Sect. 3.1, the Conjecture 2.1 for p ∈ [1, 2] has positive
answer if we prove that given a finite set of points in the plane� = {(ak, bk)}Nk=1 such
that

0 = a0 < · · · < aN .
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then the equation

N
�

k=0

ck e
2π ibk x f (x − ak) = 0,

only admits the trivial solution in C0(R) or Lq(R) (1 ≤ q < ∞), provided the
coefficients are not all equal to zero. Without loss of generality we can assume that
c0 = −1 and b0 = 0. Hence, f satisfies the following identity

f (x) =
N

�

k=1

ck e
2π ibk x f (x − ak). (4)

Equation (4) has a dual version, obtained by the change of variable u = x −aN and
some simple algebraic manipulations:

f (u) =
N

�

k=1

�ck e
2π i�bk u f (u +�ak). (5)

Hence, a measurable function f in the real line satisfies (4) if and only if it satisfies
(5). The coefficients in (5) are related with the coefficients in (4) in the following way:

�ak = aN − aN−k, �bk = bN−k − bN , and �ck = −cN−k

cN
exp(2π i�bk aN ), (6)

where a0 = b0 = 0, c0 = −1. Note that, 0 < �a1 < · · · < �aN = aN .
Note that the solutions of (4) and (5) have a very rigid structure. Indeed, let f be

one of such solutions, and suppose that we only know the values of f for almost every
point of some interval [a, b) of length aN . By Eq. (4), these values give the values of f
in [b, b+a1). Then the values of f in [a+a1, b+a1] give the values in [b+a1, b+2a1]
and so on. Analogously, by Eq. (5), the values of f in the interval [a − â1, a) can be
obtained a.e. from the values of f in [a, b). By the same observation, there is no
restriction on the values of f in [a, b]: starting from an arbitrary measurable function
in [a, b], this “deploying” procedure provides a measurable function on the real line
satisfying (4) and (5). Hence we can state

Proposition 3.1 If I is an interval of length aN , the mapping f → g = f |I is one-
to-one between the space of measurable solutions of (4) and the space of measurable
functions in I . In particular, if f |I = 0 (almost everywhere), then f = 0.

Proving the conjecture amounts to prove that no nontrivial g can be deployed in
an L p(R) function. Equations (4) and (5) motivate the introduction of the following
operators.

Definition 3.2 For any x ∈ R and 0 < � ≤ min{a1, â1} we define the operator

R�(x) : L p([x, x + aN )) → L p([x, x + aN ) + �)
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by

R�(x)g(y) :=
	

g(y) if y ∈ [x + �, x + aN )

N

k=1 cke
2π ibk yg(y − ak) if y ∈ [x + aN , x + aN + �)

. (7)

Straightforward computations show that L�(x) = R�(x)−1 is defined by

L�(x)g(y) :=
	

g(y) if y ∈ [x + �, x + aN )

N

k=1�cke
2π i�bk yg(y +�ak) if y ∈ [x, x + �)

.

For � = min{a1, â1}, and n ∈ Z, let fn denote the restriction of f to the interval
[n�, aN + n�), and Rn = R�(n�), Ln = R−1

n . Then, f satisfies (4) if and only if
Rn( fn) = fn+1 or, iterating,

⎛

⎝

n


j=0

Rk+ j

⎞

⎠ fk = fk+n+1, (8)

⎛

⎝

n


j=0

Lk+1− j

⎞

⎠ fk = fk−n . (9)

The operator products here, as well as in the rest of this note, should be understood
as an ordered product from the left to the right. Now note that �Rn�, �Ln� ≤ M for
some constant M , whence

� fk+n�p ≤ Mn� fk�p, k, n ∈ Z.

With this reformulation, one can recover previously known results regarding suf-
ficient conditions on the decay of f at infinity (see [2]). Suppose that f ∈ L p(R)

satisfies (4) and one of the following two decay conditions hold

lim
k→∞ Mk

� aN+k�

k�
| f |pdx = 0 or lim

k→∞ Mk
� aN−k�

−k�
| f |pdx = 0. (10)

Then, f = 0. Indeed, assume that f satisfies the second condition. With the above
notations, this second condition can be written as

lim
k→∞ Mk� f−k�p

p = 0.

So, if we fix any n ∈ Z then

� f0�p
p ≤ Mk� f−k�p

p −−−→
k→∞ 0.
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This proves that f0 = 0 almost everywhere, and by Proposition 3.1, f = 0 almost
everywhere. The same argument, using the operators L(x) can be done if f satisfies
the first decay condition. In particular if

lim
x→+∞ ecx | f (x)| = 0 or lim

x→−∞ ec|x || f (x)| = 0, c > 0,

then f = 0. This improves the results of [2] provided (4) holds. The general case
requires other techniques and a slightly faster decay (see [2] for more details).

3.3 Proof of Theorem 2.3

Now, we will use the aforementioned reformulation to prove Theorem 2.3. Suppose
that there exists function f in C0(R) or in some Lq(R) for some q ∈ [1,∞), which
satisfies

f (x) =
N

�

k=1

ck e
2π i(nk )x f (x − αk), nk ∈ N. (11)

Then it also satisfies the symmetric formula

f (u) =
N

�

k=1

�ck e
2π i(�nk ) u f (u + αk), (12)

where the coefficients �ck and �nk are computed using (6). Note that in particular for
every k

�nk = nN−k − nN ∈ Z.

Motivated by these two formulas, for each x ∈ R, we define the linear operator
M(x) : CN → C

N whose matrix in the canonical basis is

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1

βN (x) βN−1(x) . . . β2(x) β1(x)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where βk(x) = ck e2π i(nk )x . Note that M(x) is 1-periodic. If for every x ∈ R we
define

F(x) := �

f (x − Nα), f (x − (N − 1)α) . . . , f (x − α)
�

, (13)
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then Eq. (11) reads1

F(x)
M(x)−−−−→ F(x + α).

The matrix of the inverse operator M(x)−1, mapping F(x + α) to F(x), is

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−βN−1
βN

−βN−2
βN

. . . − β1
βN

1
βN

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

By induction, for any k > 0 we get that

F(x + αk) =
k−1


j=0

M(x + jα)F(x) and F(x − αk) =
k



j=1

M(x − jα)−1F(x).

(14)

If f ∈ Lq(R), then for any integer m

Nm� f �qq =
� mα

0

�

k∈Z

�

�F(x + αk)
�

�

q
q dx .

Choosing m = (�α−1� + 1), the minimal number of intervals of size α needed to
cover the interval [0, 1] we get

mN� f �qq ≥
� 1

0
�F(x)�qq dx +

� 1

0

∞
�

k=1

�

�F(x + αk)
�

�

q
q dx +

� 1

0

∞
�

k=1

�

�F(x − αk)
�

�

q
q dx,

and we obtain that

� 1

0

∞
�

k=0

�

�

�

�

�

�

k


j=0

M(x + jα)F(x)

�

�

�

�

�

�

q

q

dx < ∞ and
� 1

0

∞
�

k=1

�

�

�

�

�

�

k


j=1

M(x − jα)−1F(x)

�

�

�

�

�

�

q

q

dx < ∞. (15)

In particular

�

�

�

�

�

�

k


j=0

M(x + jα)F(x)

�

�

�

�

�

�

q

+
�

�

�

�

�

�

k


j=1

M(x − jα)−1F(x)

�

�

�

�

�

�

q

−−−→
k→∞ 0, a.e. (16)

1 Since the translation parameters belong to a lattice, roughly speaking, the value of f at the point x depends
only on the fiber x + αZ. This symmetry is inherited by the operators Rα(·), which can be decomposed in
operators acting on the �2 space associated to these fibers. The matrices M(x) are related, in some sense,
to those operators acting on the fibers.
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On the other hand, if f ∈ C0(R) then (16) also holds by (14). Actually, in this case
it holds not only almost everywhere, but it holds for every x ∈ R. From now on, the
strategy is different depending on whether α is rational or not.

The Rational Case If α = a
b ∈ Q, then n �→ M(x + αn) is b-periodic. Thus, if we

define

�M(x) = M(x + (b − 1)α) · M(x + (b − 2)α) . . . M(x + α) · M(x),

then �M−1(x) = M(x)−1M(x +α)−1 . . . M(x + (b−1)α)−1 = �b
j=1 M(x − jα)−1

and so

� 1

0

∞
�

k=0

�

�

�

�Mk(x)F(x)
�

�

�

q

q
dx =

� 1

0

∞
�

k=0

�

�

�

�

�

�

kb


j=0

M(x + j)F(x)

�

�

�

�

�

�

q

q

dx < ∞ and

(17)

� 1

0

∞
�

k=0

�

�

�

�M−k(x)F(x)
�

�

�

q

q
dx =

� 1

0

∞
�

k=0

�

�

�

�

�

�

kb


j=1

M(x − j)−1F(x)

�

�

�

�

�

�

q

q

dx < ∞. (18)

In conclusion, if f ∈ Lq(R) satisfies (11) and F is defined by (13) then

� 1

0

�

k∈Z

�

�

�

�Mk(x)F(x)
�

�

�

q

q
dx < +∞,

which implies that

�

�

�

�Mk(x)F(x)
�

�

�

q
−−−−→|k|→∞ 0, a.e.

On the other hand, if f ∈ C0(R), then same should hold as a consequence of (14). The
following simple lemma shows that this is possible only if F(x) = 0, which proves
Theorem 2.3 in the case α ∈ Q.

Lemma 3.3 Let T be an invertible operator on C
N . Given v ∈ C

N , if

�T nv�q −−−−→|n|→∞ 0, (19)

then v = 0.

Proof Suppose that (19) holds for some non zero vector v ∈ C
N . Then, it does for

every element of the subspace S generated by {T nv : n ∈ Z}. Since this subspace is
T -invariant, T induces an invertible operator on S, which we denote by TS . Note that

�T n
S w� −−−−→|n|→∞ 0 for every w ∈ S. (20)
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Let λ be an eigenvalue of TS . Note that λ �= 0 because TS is invertible. Now, take a
unitary vector vλ ∈ S such that TSvλ = λvλ. Then

�T n
S vλ� = λn,

which clearly does not satisfies (20). ��
The Irrational Case Now, we assume that α /∈ Q. There are two key facts in the
argument for the irrational case. Firstly, the matrix valued function M is 1-periodic,
i.e., M(x + 1) = M(x). Secondly, for almost every x ∈ R, the matrix M(x) is
invertible. The periodicity of M reduces the problem to the torus, which we will
identify with the interval [0, 1). Consider the map τα : [0, 1) → [0, 1) defined by
τα(x) = {x + α}, where {·} denotes the fractional part function. This map is ergodic.
The main idea of the proof is that in (16) the products inside the norms are in some
sense inverse one to each other, so that they cannot be small simultaneously.

For every x ∈ [0, 1), we define the following subspace of CN :

Lx =
⎧

⎨

⎩

v ∈ C
N :

�

�

�

�

�

�

k


j=0

M(x + jα)v

�

�

�

�

�

�

q

+
�

�

�

�

�

�

k


j=1

M(x − jα)−1v

�

�

�

�

�

�

q

−−−→
k→∞ 0

⎫

⎬

⎭

Using the fact that τα is ergodic and the operators M(x) are invertible we get the
following result.

Lemma 3.4 Suppose that there exists a non-zero function f satisfying (11), which
belongs either to C0(R) or to Lq(R). Then, there is a positive integer d, and a full
measure τα-invariant subset � of [0, 1] such that for every x ∈ �

dimLx = d.

Proof For d = 0, 1, . . . , N , define �d = {x ∈ [0, 1) : dimLx = d}. Since
M(x)Lx ⊆ Lτα(x) and each operator M(x) is invertible, one has τα(�d) = �d .
Because of the ergodicity of τα , this shows that |�d | = 0 or |�d | = 1. Since the sets
�d are disjoint, and their union is the full measure subset of [0, 1], there exists only
one d such that |�d | = 1. Our assumption on the existence of a non-zero f satisfying
(11) implies that (16) holds (at least) almost everywhere. So, for almost every x the
dimension of Lx is positive, which concludes the proof of the lemma. ��

Before going on, we will introduce some notation. For each x ∈ �, we will identify
Lx with Cd and Sd will denote the unit sphere of Cd with respect to the p-norm, i.e.

S
d = {v ∈ C

d : �v�p = 1}.

We denote by S the (measurable) vector bundle � × C
d , and by S1 = � × S

d . In
S1 we will consider the probability measure given by the product of the Lebesgue
measure in � and the rotational invariant measure in S

d .
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Finally, we define the function Tn : S1 → [0,+∞) by

Tn(x, v) =
�

�

�

�

�

�

n


j=0

M(x + jα)v

�

�

�

�

�

�

q

+
�

�

�

�

�

�

n


j=1

M(x − jα)−1v

�

�

�

�

�

�

q

.

By definition of the subspaces Lx we have that Tn −−−→
n→∞ 0 pointwise in S1. So, by

Egorov’s theorem, given η ∈ (0, 1) there is a set S(η)
1 ⊆ S1 such that |S(η)

1 | = 1 − η

and

lim
n→∞ Tn = 0 uniformly on S(η)

1 .

Lemma 3.5 There exists �0 ⊆ � such that |�0| ≥ 3
4 and lim

n→∞ Tn = 0 uniformly on

�0 × S
d .

Proof Let e1, . . . , ed be the elements of the canonical basis of Cd . For each j ∈
{1, . . . , d} let C (δ)

j be the spherical cap centered in ek of measure δ. If δ is small
enough, there exists a universal constant ε ∈ (0, 1) such that for any choice of vectors
w j ∈ C (δ)

j , 1 ≤ j ≤ d, one can write for every u ∈ S
d

u =
d

�

j=1

c jw j with
d

�

j=1

|c j |q ≤ (1 + ε)q . (21)

Let S(η)
1,x be the section of S(η)

1 corresponding to x ∈ �, that is:

S(η)
1,x =

�

v ∈ C
d : (x, v) ∈ L(η)

1

�

.

and �β = {x ∈ � : |S(η)
1,x | ≥ β}, so that

1 − η = |S(η)
1 | =

� 1

0
|�β | dβ ≤ β + (1 − β)|�β |, 0 < β < 1.

Choosing η = δ
4 and β = 1 − 4η = 1 − δ we see that there exists a subset �0 of �

such that |�0| ≥ 3
4 and |S(η)

1,x | > 1 − δ, x ∈ �0.

Fix x ∈ �0. Then, for every j ∈ {1, . . . , d} it holds that |S(η)
1,x ∩ C (δ)

j | > 0.

Therefore, for each u ∈ Sd we can take wx, j ∈ S(η)
1,x ∩ C (δ)

j for each j for which (21)
holds. Then, since

Tn(x, u) ≤
�

max
1≤ j≤d

|c j |
�

d
�

j=1

Tn(x, wx, j )
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≤ (1 + ε)

d
�

j=1

Tn(x, wx, j ),

we conclude that Tn(x, u) −−−→
n→∞ 0 uniformly in �0 × S

d . ��

Consider a set �0 as in the previous lemma. Then, there exists n ≥ 1 so that

Tn(x, v) <
1

2
, ∀ (x, v) ∈ �0 × S

d .

Fix this n ≥ 1. Since τα is measure preserving, |τ nα (�0)| ≥ 3
4 . Therefore

�

�τ nα (�0) ∩ �0
�

� > 0.

So, there exists x ∈ �0 so that τ nα (x) also belongs to �0. In consequence we have that
for every v,w ∈ S

d

�

�

�

�

�

�

n


j=0

M(x + jα) v

�

�

�

�

�

�

q

<
1

2
and

�

�

�

�

�

�

n


j=0

M(τ nα (x) − jα)−1 w

�

�

�

�

�

�

q

<
1

2
.

However, since

n


j=0

M(τ nα (x) − jα)−1 =
⎛

⎝

n


j=0

M(x + jα)

⎞

⎠

−1

,

taking v ∈ S
d and combining the above inequalities we get

1 =

�

�

�

�

�

�

�

⎛

⎝

n


j=0

M(x + j)

⎞

⎠

−1 ⎛

⎝

n


j=0

M(x + j)

⎞

⎠ v

�

�

�

�

�

�

�

q

<
1

4
.

This contradiction completes the proof of Theorem 2.3.
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