
DECOUPLING DESIGN CONCERNS IN LOCATION-
AWARE SERVICES 

Andres Fortier, Gustavo Rossi, and Silvia Gordillo 
LIFIA. Facultad de Informdtica. UNLP. La Plata, Argentina 
-Candres,gustavo,gordillo} @ lifia.info.unlp.edu.ar 

Abstract: In this paper we present an original approach to design and implement appli­
cations that provide location-aware services. Our approach emphasizes a clear 
separation of the relevant concerns in the application (base behavior, context-
sensitive properties, services, etc.) to improve modularity and thus simplify evo­
lution. We first motivate the problem with a simple scenario of a virtual campus; 
we next discuss which are the most important concerns in the application, we 
explain why we must separate them and show a simple approach to achieve this 
separation. We analyze the most important (sub) models in which we decompose 
a location-aware application and explain the use of dependency mechanisms to 
trigger behaviors related with the provision of services according to the user 
position. We briefly describe a proof of concept by means of an archetypical 
implementation we developed following our ideas. We next compare our work 
with others and discuss some further work we are pursuing. 

Keywords: Location-aware services, location sensing, concern decoupling, modularity 

1. INTRODUCTION 
Context-Aware (and in particular Location-Aware) applications are hard to 

build and more difficult to maintain due to their "organic" nature (Abowd, 
1999). For this reason, improving modularity is extremely necessary when 
designing this kind of software. Dealing with location (and other kind of con­
text) information is essentially hard because this information has to be acquired 
from non-traditional devices and distributed sources, and it must be abstracted 
and interpreted to be used by applications (Dey, 2001). 

While much research on context-awareness has focused on solving these 
problems, and many Context-Aware (CA) applications and frameworks have 
been built in the last years (Bardram, 2005; Hofer et al., 2003; Salber et al.. 

This paper has been partially supported by the Argentine Secretary of Science and Technology (SeCyT) 
under the project PICT 13623 



188 Andres Forties Gustavo Rossi, and Silvia Gordillo 

1999), there is still a poor characterization of those software design issues that 
make CA software difficult to build. In addition, CA applications have to deal 
with the following problems: 

• Abstracting context means more than changing representation. Even 
though it is clearly explained in (Dey, 2001), the process of context inter­
pretation usually ends far from application concerns. While interpreted 
context data is usually dealt as strings, applications are composed of ob­
jects, which means we have to deal with this impedance mismatch. 

• Adapting to context is hard; design issues related with context-aware 
adaptation are not completely understood and thus handled incorrectly. 
For example, although rules can be useful (especially if we want to give 
the user the control of building his own commands), we claim that more 
elaborated structures are needed to improve maintenance and evolution. 

• Context-related information is usually "tangled" with other application 
behavior. For example, the location of an application object (which is 
necessary to de;ect when the user is near the object) is coupled with oth­
ers object's concerns, making evolution of both types of characteristics 
difficult. 

Our research deals with the identification of recurrent problems and design 
micro-architectures in CA software. In (Rossi et al., 2005) we argued that 
design patterns are an excellent way lo record and convey design experience 
related with CA (Abowd, 1999) adaptation. In this paper, we go further and 
describe an architectural approach for dealing with the problem of providing 
CA services (Bardram, 2005). Our approach is based on a clear separation of 
concerns that allows us not only to decouple context sensing and acquisition 
(as in (Salber et al., 1999)), but mainly to improve separation of application 
modules, to ease extension and maintenance. For this purpose we make an 
extensive use of dependency (i.e. subscribe/notify) mechanisms to provide 
context-aware services. 

Along the paper we will show how to separate application concerns related 
with context awareness to improve modularity and, as a by-product, we will 
present a strategy to extend legacy applications to provide location and other 
context-aware services. In order to be consistent, we will treat services as full 
fledged objects and make them dependent of context changes. 

The rest of the paper is organized as follows: In Section 2 we introduce a 
simple motivating example both to present the problems and to use it through­
out the paper; in Section 3 we describe the most important concerns in this 
kind of software and introduce our criteria to decompose the application into 
layers and components. A complete description of each of the different mod­
els comprising our architecture is shown in Section 4. In Section 5 we briefly 



Decoupling Design Concerns in Location-Aware Services 189 

describe an archetypical implementation. In Section 6 we compare our work 
with related work in this field and finally, in Section 7, we conclude and discuss 
some further work. 

2. MOTIVATING EXAMPLE 
Suppose we are adapting an existing software system in a University Cam­

pus to provide context-based services (in particular, location-based ones), in 
the style of the example in (Sousa and Garlan, 2002). Our system already pro­
vides information about careers, courses, professors, courses material, time­
tables, etc. We now want that users carrying their preferred devices can get 
information or interact with the system while they move around the campus. 
For example, when a student enters a classroom, he can get the corresponding 
course's material, information about its professor, etc. At the same time, those 
services corresponding to the containing location context (the Campus) should 
be also available. When he moves to the sport area, the course's related ser­
vices disappear and he receives information about upcoming sport events and 
so forth. It sl;ipuld be noticed that different contextual information such as the 
user's role or activity might also shape the software answer. 

The first design problem we must face is how to seamlessly extend our ap­
plication in order to be location-aware, i.e. to provide services that correspond 
to the actual location context. The next challenge involves adapting the behav­
ior to the user's role (a professor, student, etc) and other meaningful contextual 
parameters such as current time or user's activity. While applications of this 
kind have always been built almost completely from scratch, we consider that 
this will not be the case if context-aware computing becomes mainstream; we 
will have to adapt dozens of legacy applications by adding new, context-aware 
behaviors. 

When working with CA applications we can find typical evolution patterns 
such as adding new services related to a particular location, improving sensing 
mechanisms (for example moving from GPS to infrared), changing the loca­
tion model (from symbolic to geometric), and so on. While most technological 
requirements in this scenario can be easily fulfilled using state-of-the art hard­
ware and communication devices, there are many design problems that need 
some further study. The aim of this paper is to focus on a small set of those 
problems, mainly those that characterize the difficulties for software evolution. 
We stress on those features specific to this particular example because it is a 
good stereotype of a family of software applications with similar problems. 



190 Andres Fortier, Gustavo Rossi, and Silvia Gordillo 

3. IDENTIFYING AND SEPERATING DESIGN 
CONCERNS 

As previously mentioned, well-known approaches to context-aware appli­
cations design have clearly identified some broad concerns that must be sep­
arated for achieving modularity: sensing (implemented for example as Wid­
gets in (Dey, 2001)), interpretation (also mentioned as context management in 
(Hofer et al., 2003)) and application. Layered architectural approaches such as 
in (Hofer et al., 2003), or MVC-based ones like (Salber et al., 1999) provide 
the basis for separating those concerns using simple and standard communica­
tion rules. However, applications (the third concern) are considered as being 
monolithic artifacts that deserve little or no attention. It is easy to see in the 
motivating example that the gap between application objects (in particular their 
behaviors) and the outer (context-related) components is not trivial. Of course, 
one could argue that once captured and interpreted, context information is not 
different to other "old-fashioned" application data, and thus we can use the 
very same techniques, which allowed us to survive in the past when dealing 
with input information. As a simple counter example let us take into account 
location data: to check that a user is in a campus' room, we must compare 
his position with the room location; is this location an attribute of the room 
object? What happens if we use different location models? Should we clutter 
the room object with these variants? Moreover, suppose that we are adding 
location-aware functionality to an existing system; should we change the base 
application behavior and write the code for providing location-awareness in­
side application objects? Following this thread, we may ask ourselves how to 
cope with services: are they supposed to be application behaviors (i.e. should 
we consider the services as methods of the room object?) or should they be 
decoupled into independent objects? The same problems also appears when 
dealing with other contextual information that cross-cut application objects. 

In our research we have identified a set of concerns that should be clearly 
separated to improve evolution and maintenance: applicative, location and ser­
vice concerns should be as independent as possible. 

In the rest of the paper we will elaborate our strategy for building location-
aware software and we will describe the previously mentioned concerns and 
how they interact with the lower-level ones (such as the sensing concern). 

4. DESIGNING LOCATION AWARE SERVICES 
In the following sub-sections we assume that we need to extend an existing 

application with location-aware services. This application implements the base 
behaviors on top of which services are built. For the sake of understanding we 
first describe the overall architecture and concentrate later on each software 
component. The preceding example is used throughout the paper. 



Decoupling Design Concerns in Location-Aware Services 

4.1 The Overall Architecture 

191 

To improve the description of the important architectural decisions, we present 
two orthogonal views showing different design concerns and how they relate 
with each other: an application-centered view and a sensing view. 

Application view. This view (shown in Figure 1(a)) concentrates on the 
application model. In the first layer we specify the application model with 
its "standard" behaviors; application classes and methods are not aware of the 
user's context. In our example we would have classes to handle room reser­
vations, professors and material associated with each course, etc. Note that in 
this layer the concept of a "user" does not exist, though we might have objects 
that correspond to different user roles, such as students, professors and so on. 

Hardware Abstractions 

1 

Application Model 

n̂  
i 

Location 

4_ 
1 1 

(--, 

1 i 

L t 

Time 

i i ^ 

[ 

Services 

Sensing Aspects 

±1 

(a) (b) 

- > . Knowledge 

> Dependency 

Figure 1. A layered architecture for Location-Aware Services 

The second layer contains a set of components that extend the application 
model with information needed to provide context-aware behavior. For exam­
ple, the campus, the sport field and the rooms have an associated location that 
is used to determine if the user is inside one of those areas. It is important 
to notice that Location objects do not belong to the application concern; ac­
cording to our approach the basic behavior of a room should not be cluttered 
with geographic information. As described in section 4.3, decoupling location 
from other application objects allows us to deal with different location models 
transparently. 



192 Andres Fortier, Gustavo Rossi, and Silvia Gordillo 

Finally, the third layer contains the (location-aware) services. These ser­
vices are modeled as objects that will be further associated to certain geo­
graphic areas by means of a subscription mechanism. 

Relationships among objects in different layers follow two different styles: 
typical knowledge relationships (such as the relationship between the object 
containing a room's location and the room itself) and dependency relation­
ships (in the style of the Observer pattern (Gamma et al., 1995)) that allow 
broadcasting changes of an object to its dependent objects. In Figure 1(a) we 
also show an additional Package (Time) as an example of other context-related 
modules that may be included in the second layer. 

In Figure 2 we show a small example exploiting the packages in Figure 
1(a). Classes like Course, Teacher and Room belong to the application model and 
have no location-related behaviors. Location-aware classes (in the bottom of 
the diagram) "observe" application model classes and add additional context 
behavior. Notice that in this layer we introduce the notion of a Location.User, 
i.e. the location aspect of the user of our context-aware application. This aspect 
relates with the actual user's role through a Person instance. 

Application 
Model 

^ currentRoleO: Role 
*• librarylDQ: Number k-

4\ 
K-

t- librarylDQ: Number 

_ ^ 

\ •*• libraiylDQ : Number ^ iibrarylDO: Number 

Location 
Model 

Location.User 

•location: Locatio 

Location.Room 

location : Location 

Locatlon.Corridor 

•locatbn: Location 

Figure 2. Location-Aw are Classes vs. Application Classes 

Sensing View. In Figure 1(b) we present another architectural view of our 
approach. In the first layer we find the hardware abstractions used for gathering 
data, such as IButton, InfraredPort, GPSSensor, and so on; this abstractions 
have some points in common with Dey's Widget components (Dey, 2001). 

The second layer comprises higher level sensing aspects implemented as ob­
jects that plug the lower level sensing mechanisms (in the hardware abstraction 
layer) with the aspects that are relevant to the application's context that have to 
be sensed. This decoupling guarantees that the location model and the sensing 
mechanisms can evolve independently. For example, we can use a symbolic 
location model (Leonhardt, 1998) to describe locations, and infrared beacons 
as sensing hardware; we can later change to a non-contact iButton seamlessly 
by hiding this evolution in the sensing layer. 



Decoupling Design Concerns in Location-Aware Services 193 

Modeling and describing the user. As shown in Figure 1(a) we decided 
to model each context concern in a separate package. This idea is also applied 
to model the user: we consider the user model as being composed of different 
aspects, each one acting (differently) on the services that are available to the 
user. In our example, these services depend on the user's location and thus 
we need to model a user's aspect that handles the location concern. If, in 
the future, we decide that the way in which services are presented to a user 
may also depend on his preferences (explicitly stated by him or inferred from 
his usage history) we will need to add a new view which handles this aspect. 
Once the different concerns are modeled, we need some object to coordinate 
all views and decide how changes affect the user's services. We decided to 
design this coordinator in the service layer. This object, from now on called 
user object (or Service.User) knows, and it is dependent of, every concern that 
affects the user and reacts based on those concern's changes. The user model 
can be thought as cross-cutting the Services and Location layers; it comprises 
packages that belong to each of them. 

4.2 Application Layer 
In our architectaral framework, the application model contains those classes 

specific to the intended domain and whose behavior do not depend on contex­
tual information. In Figure 3 we show a simplified class model for the ex­
emplary application. Notice that, for example, a room can return the courses 
occurring on that room at a particular time; a course meanwhile can provide 
its content material, the list of enrolled students, and so on. Also, the differ­
ent roles modeled in the application might be eventually used for role-aware 
services. Notice also that there is no information on location, space, etc. 

4.3 Location Layer 
In the location layer we design components that seamlessly "add" location 

properties to those objects (in the application model) that must "react" when 
the user is in their vicinity. For example, to be able to say that a user is in room 
"A" we first need to create a location abstraction of the corresponding room ob­
ject. By clearly decoupling the location from the application object we can use 
different location models (Leonhardt, 1998) in an unobtrusive way. In Figure 
4 we show the class diagram of a simple location "map" of the campus. Note 
that the location layer also comprises classes for "pure" location concepts; for 
example corridors and maps don't have a counterpart in the application layer. 
In our example, we may be interested in representing a map of the university 
building, where we find rooms that are connected by corridors. 

To achieve higher levels of reuse, we further decouple location objects from 
the specific location model we use for them. As a result of this separation, we 



194 Andres Fortier, Gustavo Rossi, and Silvia Gordillo 

I- librarylDQ: Number 

3^ 

+ librarylDO: Number + librarylDQ : Number 

H render (gc: GraqphicsContext) 
^ 

H render (gc : GraqphicsContext) + render (gc : GraqphicsContext) 

-^ 

k-
>• currentRoleO: Role 
^ librarylDO: Number 

-professor 

+ registeredStudentsO : Collection of Students 
+ professorO: Teacher 
+ materialO : Collection of Material 
+ startDateO: Date 
+ endDate(): Date 

kr 

+ course(date: Date, time: Time) 

Figure 3. Class Diagram of the University Campus 

end up with location objects (like rooms and corridors) that are aware of having 
a specific location, but that are independent of the location model being used. 
This independence is achieved trough the Location interface, which specifies 
the basic behavior that every location model should implement Using this 
approach, implementation details (for example, knowing if a location is inside 
another) are hidden in each location model and allows us to change between 
location models dynamically without any impact on the system. 

1 
Campus 

LocatedObject 

+ includes (lo : LocatedObject): Boolean 
+ intersects (lo : LocatedObject): Boolean 

A 
-buildings 

1 

1 
Building 

t 

-rooms 

1 

-location 

1 1 

1 
Room 

-room : Model.Room 

«interface» 
Location 

+ includes (location : Location): Boolean 
+ intersects (location : Location): Boolean 

1 

-connects 

1 
Corridor 

, 
<n 

-con-idors 

Figure 4. Class diagram of the University Campus Location package 

4.4 Service Layer 

We consider (context-aware) services as possible independent artifacts which 
are developed individually and do not need to interact with each other. We also 
view them as extending some existing application behavior and thus they might 
need to interact with application objects. Also, service users are immersed in a 



Decoupling Design Concerns in Location-Aware Services 195 

service environment, which reifies the real-world environment. A Service .User 
(i.e. the user considered from a services point of view) is modeled so that we 
can reflect those services to which a person is subscribed to, which services 
are currently available and so on. The Service.User object is also used to build 
the whole picture of a user, mediating between every possible context aspect 
that is relevant to that person. In this layer, the Service.User knows (and is 
dependent of) a Location.User, SO that the service layer can react to changes in 
the location layer. In the remaining sections of this paper, each time we talk 
about a user we will be referring to a Service.User. 

The service environment is in turn responsible for handling available ser­
vices, configuring service areas and mediating between users and services. A 
service may be as simple as an alarm (that is triggered when we enter a place at 
a certain time) or as complex as a full-fledged application. Services are mod­
eled as first-class objects which share a common super-class (or implement a 
given interface); this allows our framework to treat them uniformly and sim­
plify the addition of new services. In the following sub-sections we give a brief 
outline of how services are modeled and implemented using this approach. 

Creating New Services, New services are defined as subclasses of the ab­
stract class Service, playing the role of a Conmiand (Gamma et al., 1995). 
The specific service's behavior is defined by overriding appropriate methods 
of Service such as start () (used to perform initialization stuff), activate () 
(triggered when the users selects the service form the available services list), 
etc. In our example, the CourseMateriai service is defined as a sub-class, and 
the message activate () is redefined so that a graphical interface is opened 
to display the courses material. Once the service class has been created and 
its behavior defined, it has to be published to allow users to subscribe to the 
service; the addAvaiiableService message is used to inform the environment 
about the new service. 

Subscribing to Services. Users can access the available services and decide 
to subscribe (or unsubscribe) to any of them. The details of the subscription 
mechanism are beyond the scope of this paper; however, is important to men­
tion that a service can be customized by its user. 

Once a user is subscribed to a service and provided he satisfies the service's 
constraints (for example in relationship to the user's role), he can use the ser­
vice when entering the area associated with the service. 

Service Areas. A key aspect in our approach is that services are associated 
with (registered to) specific areas, called service areas. When the user enters 
a service area, all services registered to the area (to which the user has sub­
scribed) are made available. Service areas are defined to achieve independence 



196 Andres Fortier, Gustavo Rossi, and Silvia Gordillo 

from the sensing mechanism. To illustrate the idea, suppose that our sensing 
mechanism is based on infrared beacons. Since a beacon's signal range is lim­
ited, we may need to use more than one beacon to detect the presence of a 
person in a certain area. As an example, suppose that two beacons (Bl and 
B2) are placed in the opposite comers of a room (Room A) to detect the user 
presence. Even when there is a clear distinction between capturing El ' s id 
and B2's id from the location-model point of view, this difference should be 
transparent to services allocated to the Room (area) A. 

Services are not associated to physical areas (in terms of location models) 
but to logical areas named service areas. In this way, we can think of the ser­
vices that are available in Room A or in the hall, instead of thinking about the 
services that are triggered by a group of beacons. In Figure 5 we show a class 
diagram indicating the relationships between the Environment, the Service Ar­
eas and the associated Services. 

1 

A 

-users 
"s 
^ 

ServiceEnvironment 

User 

^ 
^ 1 
• — 

1 

^— 
^ 1 

•— 

-serviceAreas 

* 
-subscribedServises 

^ -activeServices 

H 

Service Ajea 

, • 1 
1 

~| -availableServices 1 

\l/ Service 
* 

< 1 
-services 

Figure 5. Services and Service Areas 

Service Activation. When the person's movement is captured by a sen­
sor, it sends the location (newLocation) message to the Location.User cor­
responding to the actual user. This message triggers a change in the loca­
tion model that is captured (by means of the dependency mechanism) by the 
User object in the service layer. This object interacts with its environment to 
calculate, based on the user's old location, if the user left a service area. If 
this is the case, the user object is told to leave that service area by means 
of the leaveArea (aServiceArea) message, which will remove the services 
provided by that service area from the user's active services. In a similar 
way, according to the new user's location, the environment checks if the user 
has entered a new service area. In that case, the user object receives the 
enterArea (aServiceArea) message in order to add the corresponding ser­
vices. 



Decoupling Design Concerns in Location-Aware Services 197 

4.5 Sensing Concerns 
We introduce the idea of a sensing concern to separate the context model 

from the way it is sensed. A sensing concern represents the "glue" between the 
different aspects that are relevant to our context-aware application and the way 
they are sensed. A sensing concern is created and configured to be an observer 
of one (or more than one) sensing mechanism. When a sensor indicates that an 
event occurred (i.e. some context information changed), the sensing concern 
acts on its subject by sending an appropriate message. 

In this layer, the core behavior is modeled in the SensingConcem class and 
its subclasses. A sensing concern is attached to a sensor with a fetch policy 
suited for it; for example, a GPS system may need a pull policy while a bar­
code reader a push one. Additionally, we specify the message that should be 
sent to the object that models a specific context concern in order to update its 
aspect (in our example the location (newLocation) message should be sent 
to the Location.User). Depending on the programming environment used, this 
behavior can be achieved by sub-classing SensingConcem or via reflection. 

Continuing with our example, when the student enters Room A the infrared 
port of his PDA captures B2's id, and the port abstraction (in the hardware 
layer) reacts by notifying its dependents that a new id has been received. Since 
a sensing concern has been created to modify the user's location, it receives 
the notification and reacts by adding the beacon's covering area to the user's 
active areas. Once this happens the corresponding user object interacts with its 
environment to find out which new services are active and available. 

4.6 Putting all Things Together 
In order to clarify the objects interactions occurring in our architecture, in 

Figure 6 we present an interaction diagram that shows how a change in the 
location layer triggers the service assignment to a user. From the services point 
of view, a change can drive the framework to add or remove service areas 
depending on the user's previous and current location. To keep the diagram 
simple, we assume that the initial interaction begins with a message sent by an 
object of the Sensing Aspects layer. When the sensing hardware (whatever it 
is) detects the presence of a user in a room, the sensing concem attached to 
it sends the message location (newLocation) tO the user. The newLocation 

parameter is an object that implements the Location interface. 
Once the Location.User receives the message it triggers a change. Since the 

user in the service layer is dependent of the Location.User it gets an update 
which, in turn, triggers a change that is captured by the ServiceEnvironment. 
When the environment gets this notification it calculates (by interacting with 
the user and the available service areas) which service areas the user left (if 



198 Andres Fortier, Gustavo Rossi, and Silvia Gordillo 

Service.User ServiceEnvironment 

location{newLocation> 
>pL, changed('locationChanyed',oldLocation) 

i? locationChanged(oldLocation) 

u:. 

v T 

changed('locationChanged',oldLocation) 

locationChanged{oldLocation) £ 
I leaveArea(aServiceArea) 

E 
W 

enterArea(aServiceArea) 

Figure 6. A three layer architecture for Location-Aware Services 

any) and which ones he entered. After the message JeaveArea (or enterArea) 
is sent to the user, he will end with oid servicris removed (or new added), 

4.7 Adding other Context Models 
In this section we briefly describe how we can add time constraints to our 

application using the same philosophy described in the paper. Suppose that 
we want to specify that a service is available at a certain area in a particular 
period of time. Following with the campus example, we would expect the 
course material service to be available at the time the course is being held; 
once the lecture is over, the material shouldn't be accessible as a room service. 
To implement this mechanism we must first add the notion of time and time 
events to the context abstractions; in order to do so we add a Time package 
containing the class Timer. The Timer class is a Singleton (Gamma et al., 1995) 
that has two main responsibilities: it can be queried for the current time and it 
can be configured to send time events in predefined moments. 

Once this package is added to the application, we need to configure our 
services to have a time constraint: the service will only be activated in a pre­
defined period of time. At first glance, the implementation of this constraint 
seems to be straightforward: as we have seen before, when the user enters a 
room, he triggers a change that ends with the user asking for the services avail­
able in a service area. When a service area is asked for its available services, 
it checks the service's constraints; a service will be available if and only if the 
time constraint is satisfied (this can be verified by asking the timer for the cur­
rent time). Now, suppose that the user enters the room before the course starts; 
since the time constraint is not satisfied, the course's material is not presented 
to the user. After a couple of minutes the course begins, but since the user is 



Decoupling Design Concerns in Location-Aware Services 199 

still inside the room (i.e. he hasn't left the room and re-entered it again) he 
doesn't have the course material service. The problem in this case is that, so 
far, service changes are only triggered by location changes, while time changes 
should also affect the services available for a user. To solve this problem, we 
need to be able to configure time events associated with time constraints: when 
a service is accessible during a specific period of time, time events should be 
generated at the beginning and at the end of the period, so that the services 
available for a user are re-evaluated. The events generated by the timer, are 
captured by the dependency mechanism and dispatched to the environment, 
which in turn asks the user object to analyze again the services provided by the 
service area that has just changed. 

5. AN ARCHETYPICAL IMPLEMENTATION 
We have built a proof of concept of our architectural framework using a 

pure object oriented environment (VisualWorks Smalltalk) that supports de­
pendency mechanisms and reflection, and where truly transparent distribution 
can be implemented. To achieve distributed objects collaboration in a transpar­
ent way we used the Opentalk framework, which we adapted to support PDAs 
sockets; we also extended the framework to perform object migration from one 
device to another. We used HP iPaq 2210 PDAs as user devices; user's loca­
tion sensing was performed using-infrared beacons and we are now adapting 
the sensing mechanism to work with bluetooth signals. 

Our design prototype is not conceived to work on a client-server style, but 
mainly on a fully distributed environment shared between different devices. 
This approach promotes an environment where we can find different kinds of 
PDAs and desktop machines working together in a transparent way. We have 
filled our expectations so far, since we are interacting with wireless PDAs and 
wired PCs without any trouble; we also have upgraded our PDA hardware to 
HP iPaq hx2750 without even noticing it. 

6. RELATED WORK 
We found our model of context to be quite similar with the one presented 

by Dourish (Dourish, 2004). While in most approaches, context is viewed as 
a collection of data that can be specified at design time and whose structure is 
supposed to remain unaltered during the lifetime of the application, Dourish 
proposes a phenomenological view of context. In this approach, context is 
considered as an emergent of the relationship and interaction of the entities 
involved in a given situation. Similarly, in our approach, context is not treated 
as data on which rules or functions act, but it is the result of the interaction 
between objects, each one modeling a given context concem. In addition, we 



200 Andres Fortier, Gustavo Rossi, and Silvia Gordillo 

do not assume a fixed context shape, and even allow run-time changes on the 
context model. 

From an architectural point of view, our work can be rooted to the Con­
text Toolkit (Dey, 2001) which is one of the first approaches in which sensing, 
interpretation and use of context information is clearly decoupled. We obvi­
ously share this philosophy though pretend to take it one step further, attacking 
inner application concems. Hydrogen (Hofer et al., 2003) introduces some im­
provements to the capture, interpretation and delivery of context information 
with respect to the seminal work of the Context Toolkit. However, both fail to 
provide cues about how application objects should be structured to seamlessly 
interact with the sensing layers. Our approach proposes a clear separation 
of concems between those object features that are "context-free", those that 
involve context-sensitive information (like location and time) and the context-
aware services. By placing these aspects in separated layers, we obtain mod­
ular applications in which modifications in one layer barely impact in others. 
From an architectural point of view, our work has been inspired in (Beck and 
Johnson, 1994): the sum of our micro-architectural decisions (such as using 
dependencies or decorators) also generate a strong, evolvable architecture. 

In the Java Context Aware Framework (Bas'dram, 2005), a Java-based frame­
work is presented for building context-aware applications. Even though the 
framework presents a behavior oriented structure, it still models context in a 
traditional way (by means of context and context items) and makes an explicit 
separation between the entities and their context (in fact, entities explicitly 
know their context). In our proposal, we think of context as extending the base 
application behavior instead of viewing context as data to be acted upon. Since 
the layers are built on top of the application model, there is no need to change 
the core of the system in order to make it context-aware. 

To summarize, in our approach we see context aspects as active objects 
and the context itself as an emerging property of their interaction. To achieve 
independence between the contexts aspects and the sensing mechanisms we 
placed a layer between them, so that changes in one model does not affect 
the other. At the architectural level, and thanks to the increasing power of the 
mobile devices, we decided to work with distributed objects instead of using 
a client-server architecture. In this way the applications running on the PDAs 
are responsible of handling the services of each user and can provide more 
advanced services than the ones provided by web pages, avoiding at the same 
time the scalability problems associated with concentrating all the processing 
in a single server. Lastly, in order to be isolated from lower level details, we 
decided to implement our framework on a pure object oriented environment as 
Smalltalk. 



Decoupling Design Concerns in Location-Aware Services 201 

7. CONCLUDING REMARKS AND FURTHER WORK 
We have presented a new approach for designing location aware services 

and described how to enhance existing applications with new context-aware 
behaviors. By using a dependency mechanism to connect locations, services 
and application objects we have been able to avoid cluttering the application 
with rules. We have also improved separation of different design concerns, 
such as applicative, spatial, temporal, sensing, etc. Additionally, we showed 
how to achieve a finer granularity of design concerns with respect to existing 
approaches. 

Our view represents a step forward with respect to existing approaches in 
which context information is treated as plain data that has to be queried to 
provide adaptive behavior. We briefly described a prototype system that we 
are using as a proof of concept for building context-aware services. 

We are now working on the definition of a composite location system that 
allows symbolic and geometric location models to co-exist seamlessly. We 
are also planning to enhance the simple dependency mechanism to a complete 
event-based approach, delegating specific behayior to events and improving at 
the same time the framework's reusability. We are additionally researching on 
interface aspects to improve presentation of large number of services. 

References 
Abowd, G. D. (1999). Software engineering issues for ubiquitous computing. In ICSE '99: 

Proceedings of the 21st international conference on Software engineering, pages 75-84, 
Los Alamitos, CA, USA. IEEE Computer Society Press. 

Bardram, J. E. (2005). The Java context awareness framework (jcaf) - a service infrastructure 
and programming framework for context-aware applications. In Pervasive, pages 98-115. 

Beck, K. and Johnson, R. E. (1994). Patterns generate architectures. In ECOOP, pages 139-149. 
Dey, A. (2001). Providing Architectural Support for i^uilding Context-Aware Applications. PhD 

thesis, Georgia Institute of Technology. 
Dourish, P. (2004). What we talk about when we talk about context. Personal and Ubiquitous 

Computing, 8(1): 19-30. 
Gamma, E., Helm, R., and Johnson, R. (1995). Design Patterns. Elements of Reusable Object-

Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley. 
Hofer, T, Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., and Retschitzegger, W. 

(2003). Context-awareness on mobile devices - the hydrogen approach. In HICSS, page 292. 
Leonhardt, U. (1998). Supporting Location-Awareness in Open Distributed Systems. PhD thesis, 

Dept. of Computing, Imperial College. 
Rossi, G., Gordillo, S., and Lyardet, R (2005). Design patterns for context aware adaptation. 

Workshop on Context-aware Adaptation and Personalization for the Mobile Internet. 
Salber, D., Dey, A. K., and Abowd, G. D. (1999). The context toolkit: Aiding the development 

of context-enabled applications. In CHI, pages 434-441. 
Sousa, J. P. and Garlan, D. (2002). Aura: an architectural framework for user mobility in ubiq­

uitous computing environments. In WICSA, pages 29-43. 




