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Summary.  - -  We give for D = 6 the general gauge transformations that keep the 
superfield within the Wess-Zumino gauge (any component with less than two indices 
of each type a, ~ is absent). We built the gauge-invariant components and write 
down all the partial Lagrangians. Finally we briefly discuss a dimensional reduction 
to D = 4 .  

PACS 11.10- Field theory. 
PACS ll.30.Pb - Supersymmetry. 

1. - I n t r o d u c t i o n .  

This work is complementary and a continuation of a previous one [1] in which we 
discussed the gauge superfield in six dimensions. 

The choice D = 6 has for us two main reasons, namely: 
In the first place, in that number of dimensions, the equations of motion 

resulting from the natural application of supersymmetry are of fourth order[2] 
for the lowest component of the gauge superfield and this is the simplest example 
of a higher-order equation resulting from supersymmetry. In the second place, 
among the physical components of the gauge superfields we noted the presence 
of several interesting fields, which we called[i]: graviton, gravitino, photon, 
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photino and also a complex vector field and a real three-vector, with the additional 
property that we have them all unified in a single superfield. 

D = 6 has not only the appeal of the possibility of extended supersymmetric 
theory [3] and a realistic supersymmetric GUT [4], but for us it provides the simplest 
example of higher-order equations of motion for physical fields [2]. In this sense, we 
noted previously that in higher-order equations the potentials, i.e. the couplings of 
the different orders of derivatives, should be related so as to obtain equations with 
physical significance[5]. We think that perhaps sypersymmetry is the only 
relativistic symmetry that can relate the couplings in such a way that these 
conditions are fulfilled. 

With that motivating ideas in mind we are developing the theory with the hope 
that it can provide us with a guidance to get a treatment fit for higher-order 
equations. In particular one hopes that by coming down to fourth dimensions with 
,,Kaluza-Klein procedures,, one can obtain here fourth-order differential equations 
which have physical content. 

With regard to this last point it is worth taking into account that by using the 
D o  ~ method in a higher-order invariant equation, one obtains a second-order 
equation as an approximation to the exact wave equation of the theory. So in this 
sense an invariant higher-order equation has a second-order equation as an 
approximation. (A note on this point will be published elsewhere.) 

2. - N o t a t i o n s  and  d e f i n i t i o n s .  

For the sake of clarity we repeat here some definitions we have used in ref. [1] 
which are based on Elie Cartan's book [6]. 

Dirac matrices in d = 6 are defined by 

(0 ,~) 
(2.1) EL = ~, 0 ; {F~,F~} = 2r,,~, 

where y.~+ = y~ = ~ for ~ = 1, ..., 5 are five Hermitian four-dimensional Dirac matrices 
and ~,o = -~0 = 1. 

The transposition matrix is 

(2.2) C =  (O  C C), C = y2]'5, C2= - 1 ,  C~"=Y~Tc, C~tL--Y t~TC. 

The scalar product of two Weyl spinors of different types is defined by 

(2.3) ~ C~ r = ~t~r = scalar. 

The conjugate spinor is defined by 

(2.4) r = Cr r = r C. 

Note that, while the transposition matrix C =/"o/'2/"5, the conjugation matrix (in 6D) 
is 
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In order to construct a chiral field with Weyl spinors of the first type we take the 
Grassmann variables as spinors of the second type 0~ and 0~. 

3. - G a u g e  t r a n s f o r m a t i o n s .  

As we pointed out in ref. [1], the real superfield has the general form 

4 
al ...~% * (3.1) V =  E -Oa~...~*A~'.::;~'O~'...O ~', (A~,...~, ) =A~'...;: '. 

s,t=O 

The Abelian gauge transformation is given by 

V' = V + i(~ - ~), (3.2) 

where 

(3.3) D~, Da~ ~ = 0 and D~, D~ ~ = 0 ; 

D~, D~ are the usual covariant derivatives. 
By means of the transformation (3.2) we can go to the Wess-Zumino gauge where 

the components of V with less than two indices of each kind are zero. In that  
gauge 

4 

(3.4) V ~ 0~, �9 ~, ..... ~ ~. = ...O~A~...~, 0 ~ .. .0 ~ 
s,t=2 

We can still remain in this gauge, as can be verified, by a transformation induced by 
the following general double chiral superfield: 

(3.5) ~ exp [i030][), + 0 ~ ~ + ~,~ 0~ + - = O" O~ ( ~  - i8~ ~) + 2i0 ~ 0 ~ 0~ 0~: ) ~ j ,  

where 2, ~ ,  22 are arbi t rary up to the restrictions 

(3.6) ~ = ~* , ~ a = (),~)* . 

The corresponding gauge transformation is 

(3.7) i(~ - ,~) = 0 ~ 0 ~20~, 0~ ~ :  ~ + i0 ~10 ~ 0~, 0~ 0~ ~ ~ ~ + i0 ~, 0 ~2 0 a2 0~'10~2 ~ :  ~2 2 )~3 + 

ctl ~2 ~ 3  

+ + 

Using (8.2) and (8.4) it is easy to see that  the components of V transform in the 
following way: 

(3.8) 

(3.9) 

(3.10) 

A t a l ~ 2  " " c ~ l  ~2 ~,~2 = A ~  2 + ~1 )'~2, 

�9 " + i a  ~ l a ~  ~3" A'~1~2 = A ] , : ~  2 + "  ~ ~ 

A '  ~2~2 = A ~ ~8  + a~ a~ a ~ )  
1 :t2 ~3 ~ l ~2 z{3 ~ 1 c{2 ~3 ~ ' 
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(3.11) 

(3.12) 
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A,~, ~, , , , , , ,  = A , , , , , ,  + -~6,, ; ,,...,, = A, ,  ..... + -~v,, a,, 

A ! ~1 ~ 2 ~ 8 ~  4 

In the right-hand members of these equalities it must be understood that the 
terms containing the gauge parameters are to be antisymmetrized for both types of 
indices a and ~. 

. . . . .  ~I&2~3~4 It is easy to see that A],~:~, A:I:~:~, and A ~ 8 ~ ,  can be replaced (or redefined) by 
linear combinations which are gauge invariants 

(3.13) 

a 1 a2 0{3 ~4 

where again the terms with derivatives must be antisymmetrized in both types of 
indices. 

According to Cartan [6] we can express the multispinor field components into its 
tensor components 

(3.14b) A~ = A~ ~ + A (~, ~ ~)~ 
VlV2V3 ~ ~ ~ �9 �9 

A~,~,~ is a completely antisymmetric self-dual tensor. 

(3.15) n ~  = (y~C)~,~ (Cy~)~ '~n~,  

(3.16) ~'~'~ - ~'~'~'-;~ (y~ C)~,~, A ~ l ~ 2  - -  ~ X"I.,4. 4 

(3.17) n~ '~  ~ '  = ~ ' ~ '  B~ ( ~  C)~, ~ ,  

(3.18) A ~' ~ ~ ~' = ~ '  ~ A ~' 

Also, in particular, for A~, we have 

~ (~ v I y~  (3.19) ~ = A~y ~ + ~ ,~ , (y  y~)~. 

Using these formula, together with (3.8) to (3.12) we find 

(3.20) A('~ o = A(~) + a~, ~,~ + ~,~t~ - r~  a~ ~.~, 

(3.21) AI',~ ] = A[,~] + ~ ~ , ,  ~A[~,~ 1 = gauge invariant, 

where (~v) means symmetric part and [~v] antisymmetric one. 

(3.22) n~ ~ = A~ + (C~r, ~)~ ~ ,  

(3.23) A~ = A~ + ~, [] ~, A~, ~ = gauge invariant, 

(3.24) B" = gauge invariant, D = gauge invariant, B, = gauge invariant, 
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from (3.22) 

(3.25) ~ '~ ~ ~ (T C)~A,  = (7~C)~A~ + (7 C)~ (C~.~ ~)~ ~ = (7' C)~A,  + 4 [] )~ . 

So, one can adjust ~ so as to have a zero ,,gamma trace,~ gauge 

(3.26) (T~C)~A~ ~ ---- 0. 
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4. - Lagrangian .  

The redefinitions we have introduced in (3.13), (3.14) to obtain gauge-invariant 
tensors induce modifications in the partial Lagrangians for the corresponding field 
components. In particular this is so for A~'~ 2 and A~'~ 2~. Instead there are no changes 
for the Lagrangians corresponding to the rest of the fields. 

Let us recall the construction of our Lagrangian 

~tl ~2 a 3  ~4 (4.1) L = ~  W=l=2W~,l~+h.c. 

(see form (24) of ref. [1]), where the chiral superfield strength is given by [1] 

4_4_ 
W=, ~2 = DD=I D~ V. 

Let us start with the ,,diagonal), component terms. The Lagrangian is built from 
the following part of W~,~2 : 

. . . .  &l~2~3a4 2 ~ ' ~  ~ "  a~a~2A ~ ,  ~i ~ ,  A ~ . ~  " ~,A ~ + 12A~,~,~ }, 

but according to (3.14) we must add and subtract to the last term the quantity 

(4.2) 12a:~ a]~2 A :]: ' ,  

properly antisymmetrized, then D~'::~'appears in the Lagrangian explicitly, and at 
the same time, the Lagrangian of A~'~ ~ is now 

" ~ . . . .  ~2  ~3 ~4 . 

�9 ~, .... %...~, ~,...z, (~, a~ A ~ ,  + 2 ~  ~ a~:,~, + ~ ,  ~ A~,~, 

using now (3.15) we obtain 

(4.4) _~, 2,2~'-- 8~ ~ A ( ~ ) ~  A(;~)+6[-]A(.~)[-]A (~)-  [-]A;[~2~;- 

- 12 [] A(~,,) 0 ~ 0~ A ~ + 4 [] A~ ~ ~'A(~,) + 12~  ~ A [ ~  3 ~-" ~, A [,~3. 

The last term is the only contribution of the antisymmetric part of A~, which 
appears through its gauge-invariant divergence ~ A ~ ,  3 . For the symmetric part we 
can then choose ~,De Donder gauge,, ~ A : - - 2 ~ A ~ ,  for which the Lagrangian takes 
the simplest form: 

(4.5) _ ~  = [~ A(~) [::]A(~'); 4e~',~ = ~c~A[~,~c~" a .A [~'] . 
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It is easy to see that one can still remain in this gauge if we make transformations 
generated by ~ such that [] ~ = 0, a ~ ~ = 0. A similar procedure can be followed for 
the component A ~ ' ~  for which we find (taking into account (3.13)) 

(4.6) 4f72, ~ = (a:~ a~A~, .~  + 2c1~ c~A:?~_,~) % ~ ,  ~ , ~ , .  

And with the use of (3.16) and the ,,gamma gauge,, (3.26) 

= 4 "  " ~ a --~ i A ~ a ~  (4.7) -(~,a za A~ ~ ~A~ + �9 - - - # - - a - - r  " 

The Lagrangian for A , ~  =''~`' is easily written down 

�9 ~=1 .-.~4 ~ .  . =, .  =, r  r  

which, with (3.17), takes the form 

(4 .9)  _ ~ , ~  = 2 B  ~ c~ ~" B~ - B ~ [ ]  B~ . 

~ 1 ~ 2 ~  3 For A~I~ ~ we have 

(4.10) _~,~ ~ 8 ~ ' A ~ ' ~ ' ~ + ~ ' a ~ ' ~ ; ~ ' A ~ ' ~ = ~ + ~ ' A ~ ' ~  ~ ~ 1 " " ~ 4 ~ 1 . . . ~ 4 ~ ' ~ 1 " ' ~ 4 ~ t ~ 1 . . . ~ 4  

Using (3.14), we obtain 

t ~v , (4.11) _~~ 3 = F F,,  with F~v = 8 ,A~-  &,A,, 

(4.12) -C'~,8 = G"~G.~ with G~ = ~ :A~ .  

~1 ~2a3  r162 For A ~ , ~  , taking into account (3.13): 

(4.13) ~ 3,4 - ~,~z, ~z, ~%~,&~ ~ %...~, e~'' ~' %...~," 

And using (3.18) we obtain 

(4.14) -~'a,4 = iB  ~ 8: B~. 

Finally, with the definition (3.14) 

(4 .15)  ~ 4 , 4  - D2. 

5. - D i s c u s s i o n .  

The gauge superfield has the following tensor content: a second-rank tensor, A,~, 
a real vector A n and a real self-dual antisymmetric three-vector Av, ~2~, a vector spinor 
A2, a complex vector B~, a spinor B ~ and an auxiliary scalar field D. 

It is perhaps interesting to perform a naive-dimensional reduction to four 
dimensions (fields independent of x4, xs). We shall do that together with a brief 
comment on each of them. 
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A~: the symmetric part when reduced to four dimensions (independence of 
x4, xh), gives rise to a symmetric tensor Aij, two vectors Ai4, Ai5 and three scalars: 
A~, A~, A45, all of them obeying [313A~ = 0. The antisymmetric part appears (see 
comment below (4.4)) only through its gauge-invariant divergence which generates a 
four-vector and two scalars satisfying the usual wave equation. 

A2 reduces to a four vector-spinor A/~ and two Dirac spinors A~A~. The 
Lagrangian is 

(5.1) ~ ~ a ~ j a ~ j DA2A!  + V1AIO~A 4 + []A~O~Aha, = 48 A~ O~ ajAa + []Aj a~A~ + 

with the corresponding third-order equations of motion: 

(5.2) [--lO~Aja ~ -482 ~o 8~ aA~ ~ = 0 (,,gravitino,, equation), 

(5.3) [] O~A(4) = O. 

Ags) is not really independent as the ,,gamma gauge,, condition (7" C)~A~ = 0 can be 
used to eliminate it. 

A~ leads to a four-vector and two scalars, one of which can be eliminated with 
the gauge condition. 

It is easy to see that the Lagrangian (4.11) reduces to the usual Maxwell 
Lagrangian for the four-vector Ai together with the wave Lagrangian for the 
scalar. 

A,,~.~3: it reduces to a pseudovector At:Aij  k SijktA, and an antisymmetric 
tensor A~j4. Due to self-duality A~j5 is not independent of A~j4 and Ai4 5 is not 
independent of A~jk. 

It is perhaps amusing to see that the Lagrangian (4.12) implies 

(5.4) 2"~ = OiAi.,o O j A  j~P 

and splitting the pseudovector part 

(5 .5)  ~'~33' = Oi $ijkra ~tL Ol $ljknnn ~-- rlnkln,  w h e r e  Fin : o i n  n - O n n l .  

This Lagrangian gives Maxwell equations for the pseudovector -41 who should be 
generated by pseudoscalar charges (of the type of magnetic monopoles), while Az 
corresponds to an electromagnetism generated by charges of the electric type. 

The other part of the Lagrangian 

~/3', 3 ~-- oi Aij4 0l A IN4 

generates as equations of motion 

OiOZA~4 = OjOlAl~, 

which means that 

(5.6) 8 l Ali  4 -- 0 i r w i t h  [ ]  r = O. 

B~: It gives rise to a four-vector Bi and two complex scalars obeying the 
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equations of motion 

B~. 
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2ai a j By = [] Bi and [] B4 = [] B5 = 0. 

B ~  ~ , a~ B~. when reduced to four dimensions it gives Dirac massless equations for 
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