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The Hill-Wheeler ansatz for the total wave function, within the Generator Coordinate 
Method framework, is generalized by recourse to the theory of distributions. The 
ensuing approach allows one to obtain a basis that spans the collective subspace, 
without having to deal explicitly with the eigenvectors and eigenvalues of the overlap 
kernel. Applications to an exactly soluble model and anharmonic vibrations illustrate 
the present treatment. 

1. Introduction 

The generator coordinate method (GCM) is a tech- 
nique of great physical appeal that has been devel- 
oped [1, 2] to describe collective oscillations in nu- 
clei. The flexibility of the method is firmly estab- 
lished and its applications to problems of physical 
interest are manyfold. A very small (and no by 
means representative) sample is that of [3-7]. In the 
GCM one makes the following ansatz for the total 
wave function 

I~P) = ~ daf(a) lCb(a)), (1.1) 

where I~b(a)), the generating functions, are in general 
(although not necessarily) Slater determinants which 
supposedly give a rough description of the intrinsic 
dynamics of the fermion system. 
The a-parameter(s) refer to a collective coordinate 
which describes the particular nuclear motion one is 
interested in. The weight function f(a) is determined 
by the variational principle 

~ (01/~14,) =0, (1.2) 
<010) 

the expectation value of the hamiltonian H being 
given, in terms of the "hamiltonian overlap kernel" 
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(h.o.k.) 

h(a, b) = ~ q~(a)]/4 ] ~(b)), (l.3) 

a s  

( cl)l I4 lcb ) = y da f *(a) y db f (b) h(a, b), (1.4) 

while, correspondingly, the denominator ( 0 t 0 )  is 
represented in terms of the "generator overlap ker- 
nel" (g.o.k.) 

n(a, b) = (q~(a)} q~(b)), (1.5) 

by 

< OI ~P ) = ~ da f *(a) ~ db f (b)n(a, b). (1.6) 

The variational principle [1, 2] leads to the cele- 
brated Hill-Wheeler (HW) equations (s) 

da f (a) {h(b, a ) -  en(b, a)} = 0, (1.7) 

which can be solved by recourse to well-established 
techniques [8]. Of these, three approaches should be 
singled out as the most important ones, namely: 

i) 7he Gaussian Overlap Approximation (GOA). This 
approximation uses special properties of the overlap 
kernels h(a,b) and n(a,b), which are often sharply 
peaked at a=b. Exploiting this property one can 
transform the H W  equation into a second order 
differential equation [3, 8, 9]. 
ii) Discretization of the Integrals in the Generator 
Coordinate a. This is the most frequently employed 
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approach and leads to a diagonalization problem of 
the form 

( A - B e ) f  =0, (1.8) 

where A and B stand, respectively, for those matrices 
which, after discretization, arise out of the kernels h 
and k (see for example, Ref. [63). 
iii) Expansion in Natural States [10]. These are or- 
thogonal states that can be constructed out of the 
eigenvectors and eigenvalues of the g.o.k, n(a,b) and 
span a sub Hilbert space Sc, the so-called "collective 
subspace", which is the smallest Hilbert space the 
contains all the generating states ]~(a)> [8, 10]. In 
some physical problems it is possible to deal with 
generating functions that allow for an analytical so- 
lution of the eigenvalue problem 

da n(b, a) Uk(a ) = N k Uk(b), (1.9) 

so that an expansion in natural states can be carried 
out, the approximation being now that of cutting the 
expansion after a finite number of natural states, 
which once again leads to an eigenvalue problem. 
There is a certain degree of arbitrariness inherent to 
method ii). The way in which the discretization is to 
be accomplished is not prescribed a priori by a well- 
defined and unique procedure and a lot of freedom 
exits in the selection of the corresponding mesh 
points. Method iii) is a much more elegant one, but 
is marred by the fact that one needs analytical so- 
lutions to (1.9). 
Deep studies into the mathematical foundations of 
the GCM [10-14] have shown that the structure of 
the GCM representation (1.1) i.e., the kinematics of 
theory [13, 14], is completely determined by the 
structure of the collective subspace S c, which points 
towards method iii) as the most appropriate one. 
However, in addition to the already mentioned diffi- 
culty (i.e. solving [1.9]), one encounters also the 
problem that there are vectors in S~ that cannot be 
represented as HW states of the form (1.1) [13, 
143. 
As for the dynamics of the GCM ansatz, we can 
expect to obtain wave functions IO) which resemble 
the "exact"  ones if, to a good approximation, /-) 
commutes with the projector operator /~ into the 
collective subspace [8] 

[/~,/~3 =0, (1.10) 

which once more points towards the importance of 
appropiately dealing with S c. 
The purpose of the present effort is to present a 
systematic method of working within the collective 
subspace while avoiding the difficult problem posed 

by [1.9]. In other words, we wish to implement 
method iii) without having to face its main pitfalls. 
Our central idea is that of exploiting (and generaliz- 
ing) a well-known fact connected with the appli- 
cation of the GCM to the one-dimensional har- 
monic oscillator. In this case it is found that, for 
certain values of the oscillator length, the corre- 
sponding solution has the character of a distribution 
[8]. This suggests a generalization of the GCM an- 
satz which is presented in Sect. 2.1, while the con- 
nection with S c is discussed in Sect. 2.2. Sections 3 
and 4 deal with illustrative examples of our tech- 
nique and conclusions are drawn in Sect. 5. 

2. Present F o r m a l i s m  

2.1. A Generalized GHW Ansatz 

In view of the fact that there are vectors in the 
collective Hilbert subspace S c that cannot be repre- 
sented as Hill-Wheeler states of the form 

[~9) = ~ daf(a)l eb(a)), (2.1) 

we propose here a generalization of the ansatz (2.1). 
Instead of restricting the weight f(a) to the class of 
"well-behaved" (square integrable) functions of the 
variable(s) a, we would suggest to give f(a) the char- 
acter of a distribution [15-17] 

k 

f(a) = ~ f , (ao)(-  1)"6(")(a -a0) ,  (2.2) 
n = 0  

so that, after the introduction of what we will here- 
after refer to as "m-states" 

[m, ao ) = ~ ( - 1 )" 6cm)(a - ao)] q~(a)) da 

d" 
- da m I cb(a))l . . . .  (2.3) 

the following generalized G H W  ansatz would ensue 

k 

10G)= ~ fm(ao)lm, ao>. (2.4) 
m = 0  

It will be shown in the next sub-section that the m- 
states, i.e., the vectors Jm, ao), provide us with a 
basis of the collective subspace S c With this result, 
the variational principle 

<0al/410a) =0,  (2.5) 
<0GLOG> 

leads to an eigenvalue problem for the "moments"  
fm(ao) of the distribution (2.2) 

2 [gm,(a0) - eOm,(ao)]f,(ao) = 0, (2.6) 
n 
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with the hamiltonian matrix 

t4.~.(ao) = (m, ad ,0 In, ao), (2.7) 

and the overlap matrix 

Om,(ao) = (m, aoln, ao), (2.8) 

which can be solved by applying well-known tech- 
niques. 
Notice that (2.6) does not arise here (as it does 
within the ordinary GHW framework) as a result o f  
approximating the integral (2.1) by a finite sum. On 
the contrary, no approximations are involved in 
writing down (2.6), except possibly in what refers to 
the selection of k (cf. Eq. (2.2)), which will be dis- 
cussed presently. Moreover, we are free to select the 
distribution point support (an isolated point) a 0 so 
as to actually minimize the ground state energy (no- 
tice that (2.5) entails only stationarity)*. Finally, in 
what respects to the choice of k, one should here 
follow the usual procedure; namely, when faced with 
an eigenvalue problem of the type (l.8) one must be 
sure that the overlap matrix B has no zero eigenval- 
ues. The size of k is then limited by the requirement 
that no eigenvalue of B should be smaller than a 
given positive constant e. Of course, a posteriori 
(and rather obvious) criterium would be that of cut- 
ting the number of moments fm(ao) when one sees 
by inspection that "convergence" has been achieved 
(this will illustrated below). 

2.2. The "m-States" Span the Collective Subspace 

In order to prove that the "m-states" provide us 
with a basis of the collective subspace St, we have to 
consider diagonalizing the overlap (hermitian) kernel 

n(a, a') = (q~(a)l ~(a')), (2.9) 

and obtain its eigenvectors Uk(a ) (and eigenvalues 
Nk) 

S da'n(a, a') Uk(a' ) = N k Uk(a), (2.10) 

that form a complete orthogonalized set [8] 

y, u~(~) U*(a')=6(a-.'), 
k 

~ da V*(a) Uk,(a)=fkk,. (2.111 

The spectrum N k (k= l, 2, ...) is guaranteed to be 
discrete if n(a,a') is of the Hilbert-Schmid type [8]. 
Should one face a situation in which the g.o.k is not 
of such a kind, recourse can be made to clever 

* See, however ,  Sects. 4 a n d  5 

methods devised by Toledo-Piza etal. [12, 13] and 
by Lathouwers [10] in order to transform the given 
n(a,a') into one of the Hilbert-Schmidt sort. The so- 
called "natural states", that one can build with the 
help of the eigenvectors and eigenvalues of the g.o.k. 
[10] 

Ik)=~Nk~U~(a)lcb(a))da" Nk4=O, (2.12) 

can be shown to span the collective subspace S, 
[8]. 
The proof that follows rests upon the assumption 
that the generating functions are analytical in a 
given region. Consequently, they can be Taylor-ex- 
panded within that region (and moreover, uniform 
convergence is guaranteed there). Assuming that a 0, 
the distribution point support, is located within this 
region, we can then Taylor-expand the function 
I(P(a)> in the neighbourhood of ao (cf. Eq. (2.2t) 

 /a-ao) 'o 
14)(a))=~/Y \ da,~ ,=,o! m! 

__ ~,  (a _--ao) m I m, a o ) ,  (2.13) 
'Z,, m! 

which, if introduced into (2.12)yields 

[k) = ~ B,,k(ao)]m , %), (2.14) 
m 

with 

1 
Brag(a~ = m !liNk ~ Uk(a)(a -- a o) m da. (2.15) 

Equation (2.14) is tantamount to asserting that the 
natural states admit of expantions in terms of the m- 
states. If the latter span a subspace M, then 

S c c M .  (2.16) 

Conversely, if we expand the generating functions in 
terms of the natural states 

14~(a)) = ~ (kl 4~(a))]k) 
k 

= ~ Ck(a)lk ), (2.1"]) 
k 

and introduce this expansion into the definition (2.3) 
we are lead to 

Ira, %)  = ~ Okm(ao) lk), (2.18) 
k 

with 

dmCkla) 
Dkm(a~ da m , .... (2.19) 
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It follows from (2.18) that 

M c Sc, (2.20) 

which together with (2.16) completes our proof. 
Notice that we have employed the eigenvectors and 
eigenvalues of the g.o.k, only to show that the m- 
states provide us with a basis of S~. Of course, this 
in no ways entails the need for actually using the 
Uk(a) and N~ in a given practical problem. 

3. An Exactly Soluble SU(2) Model 

As a first application we shall consider an exactly 
soluble model (e.s.m.) of the Lipkin type [18] pro- 
posed by Abecasis et al. [19]. One deals in this 
e.s.m, with two N-fold degenerate single-particle 
(s.p.) levels, separated by the s.p. energy ~, and N 
identical fermions. Two quantum numbers character- 
ize a given s.p. state. One of them adopts the values 
- 1  (lowest level) and 1 (upper level). The other, 
which may be called the p-spin, singles out a state 
within the N-fold degeneracy. The model of 1-19] has 
been introduced in order to obtain an e.s.m, for 
which the Hartree-Fock (HF) state is never the trivi- 
al one provided by the unperturbed ground state. 
This does happen in the Lipkin model because the 
interaction is there unable to produce l p - l h  exit- 
ations. The idea of Abecasis et al. is, consequently, 
to modify Lipkin's hamiltonian so as to introduce a 
monopole force which can produce forward scatter- 
ing. As the treatment of the Lipkin model within the 
GCM context has been exhaustively discussed [8], it 
may be of some interest to illustrate the formalism 
of Sect. 2 within the slightly different context of [19]. 
In order to write down the corresponding hamil- 
tonian we introduce first the celebrated quasi-spin 
operators [18] 

N 

Z c;+G_, 
p ~ l  

N 

j ~ - - � 8 9  ~ ' (3.1) 
p - 1  ( ~ - 1  

which fulfill the S U(2) angular momentum commu- 
tation rules. With the energy given in units of the 
s.p. energy e the hamiltonians reads 

12I=J~ + �89 ~x + jx}, (3.2) 

with 

Yx=�89 +Y_), 
y2=~+~(y+y_+y y+). (3.3) 

As in the Lipkin model, H commutes with jz  and 
thus the exact solution is found by diagonalization 
within the (ground-state) multiplet J =N/2. One has 
to emphasize that the structure of these e.s.m, is very 
simple. In both cases [18, 19] there exists a collective 
subspace which coincides with the space spanned 
by the HW representation (1.1). This space is finite 
and, due to the quasi-spin symmetry, it decouples 
exactly from the rest of Hilbert space [8] (the op- 
timal situation for the application of the method). 
For illustrative purposes, however, these e.s.m, pro- 
vide one with an excellent testing ground, which has 
proved to be quite useful in trying new many-body 
techniques [8]. 
As the generator coordinate we shall select that 
angle (h (defining rotations in quasi-spin space) in- 
troduced by Agassi et al. [20] in constructing the HF 
solution for the Lipkin model, which is tantamount 
to adopting generating functions of the form 

I~(qS)) = cosU(~b/2) exp [tg(4)/2) J+] tO), (3.4) 

i.e., our generating functions resemble the coherent 
states of the Lipkin model, as discussed by Gilmore 
and Feng [21-23] and Kan et al. [-24]. In (3.4)10) 
denotes the unperturbed ground state 

N 

10)= I-I C;_lparticle vacuum), (3.5) 
p = l  

i.e., the lowest-lying eigenvector o f /q  when the cou- 
pling constant v vanishes. The states (3.4) can also 
be written in terms of the eigenstates of j2 and Jz as 
[21-25] 

J l(b(qS)) = E ( 2J ]~ 

M= -a  \ g  + M /  

[ O\J+M (cos~)S-M,JM), (3.6) " t s i n 5  } 

an expression that immediately yields our "m- 
states", which within the present context read 

Im, Oo)-- (3.7) 

with 

(3.8) 

We see now that the corresponding overlap matrix 
is independent of the distribution point support q~o, 
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Table l. The ratio (Approximate g.s. energy/Exact g.s. energy) is displayed, for the A.F.P. model [19], in the 
case N = 2 0  and several values of the coupling constant v. The critical coupling constant [25] is attained at v 
=0.025. The number of moments employed in obtaining the different approximate solutions is indicated by a 
superscript. The last column gives the exact energies in units of the single particle energy 

1 E 3 / E  . . . . .  E5/E . . . . .  E 7 'E 9 v EG/Eexac t 6/ . . . .  t EG,/Ee~ct Ee~act./~: 

0.1 0.9985263 0.9999757 0.9999997 1.0000000 1.0000000 -7.9148887 
0.013 0.9970961 0.9999092 0.9999982 1.0000000 1.0000000 -7.2978635 
0.015 0.9956945 0.9998064 0.9999944 0.9999999 1.0000000 -6.8901010 
0.017 0.9938286 0.9996159 0.9999843 0.9999996 1.0000000 - 6.4862530 
0 . 0 2 1  0.9885648 0.9987614 0.9999670 0.9999957 0.9999999 - 5.6968243 
0.024 0.9847567 0.9977246 0.9997423 0.9999820 0.9999992 5.1330449 
0.026 0.9841631 0.9973427 0.9996146 0.9999646 0.9999981 -4.7810156 
0.03 0.9873703 0.9982495 0.9996905 0.9999537 0,9999958 -4.1648255 
0.035 0.9916015 0.9994189 0.9999344 0.9999896 0.9999984 - 3.5713947 
0.04 0.9940274 0.9997913 0.9999765 0.9999988 0.9999998 -3,1249994 
0.05 0.9964684 0.9999579 0.9999992 1.0000000 1.0000000 -2.4999999 

Table 2. Moments j~, evaluated at the distribution point support. 
The second column exhibits figures corresponding to the A.F.P. 
model and the third one those for the 2x 4 anharmonic oscillator 

Convergence of the distribution moments 

A.F.P. Model Anharmonic oscillator 
N = 20, v = 0.025 2 = 1 
~9 o = -0.1594662 % - 1.6475659 

.f~ 1.2225035 0.9896210 
ft  - 0.1428172 - 0.9009049 
j~ 0.819399 10 -I 0.3380986 
[3 - 0.44244 10 -z -0.625560 
j~. 0.19159 t0 -2 0.35321 
f~ -0.451 10 -~ 0.3505 
j~, 0.207 10 -4 0.2273 
f7 --0.2 10 -6 -0.140 
fs 0.8 10 -7 0.3 

10 - l  

10--2 
10 3 
10 3 

10 -~ 
10 ~ 

namely 

1 

0 

Oil, in = 

fo r  /T/=H 

for m + n  odd 

( -  1) m+n v '  

2 , + m + N  1 ' 
k=O 

(3.9) 

where T stands for N/2 and k for T+M. The hamil- 
tonian matrix reads 

N N 

�9 FL (q~~ (4'~ V .  _ k + l  1)I-EL 1"(4~ 

v, ~ " ~ "  ~?"-~ " ~'  v (k+2N)(k + 2)(k +1) 

(r) (T) (r) (T) �9 [F~+ 2,,(q~o) V~. (q~o) + F~,, (~bo) F~+ 2,(~bo)]j,. (3.10) 

Some typical results are exhibited in Table 1. We 
show there the degree of agreement between the 
exact ground state energy and the approximate one, 
evaluated with different numbers of "moments"  (cf. 
Eqs. (2.1)-(2.6)). It is to be seen that convergence is 
quite rapidly achieved, long before the number of 
moments equals (2J+  1), where our treatment will, 
of course, yield the exact solution. 
This rapid convergence is the most salient fact to be 
commented, as it points towards the feasibility of the 
present approach in realistic calculations, and is also 
illustrated in Table 2 (second column) where, for the 
case N = 2 0  and v=0.025, we show how the fm be- 
come rapidly smaller as m grows. 

4. The One-Dimensional Anharmonic Oscillator 

In the case of a continuous generator coordinate, 
one faces, in trying to implement the GCM pre- 
scriptions, difficulties which demand some degree of 
caution [8]. This can already be seen in the GCM 
treatment of the one-dimensional harmonic oscil- 
lator [8], of great importance in the theory of col- 
lective motion. We shall, in the present section, 
tackle a slightly more involved (but related) problem, 
i.e., that of the anharmonicity in collective exitations 
at low energy, assuming, for the sake of simplicity, 
only one degree of freedom and an x4-anharmonic 
term. 
The anharmonic oscillator poses a problem which 
has been the subject of much work both from the 
analytical and the numerical point of view. During 
the last years the corresponding literature has been 
greatly enriched, a very small sample being the set 
of [-26-36]. The interest in this subject arises in 
diverse fields in addition to the one referred to 
above, such as molecular physics or field theory 
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[26-36]. Here it will serve as a rather severe test of 
the formalism presented in Sect. 2. Moreover, as this 
is really a one-body problem and not a many-body 
one, it will make sense to interpret the eigenvaIues 
of (2.6) as approximations not only to the ground- 
state (g.s.) but to the excited states also, on account 
of the theorem of separation (of eigenvalues [37]). 
By employing suitable units one can cast the rele- 
vant hamiltonian in the form 

d 2 
Iq--  d x  2 ~ - X 2 - ~ X  4,  (4.1) 

and we shall use as generating functions the (x- 
representation of the) harmonic oscillator wave func- 
tions corresponding to the g.s. (in order to look for 
approximations to both the g.s. and exited states of 
even parity) 

r x) = ( ~ f - e  -~xz , (4.2) 

and to the first excited state (to be employed so as 
to construct approximations to excited states of odd 
parity) 

ff,(c(,x) = 2  ( ~ f c ~ x e  - ~  . (4.3) 

The (x-representations (xlm,%) of the) m-states are 
easily seen to be 

/20~ \�88 " 0 (1) - k  

and 

(4.4) 

a {2~ 0~'~ ~ /3 ~(2) ' " --k 
/~m(%,x)=2cg \ = ] ,ffo~,. ~ .~_~t~o,X)~o , 

with 

(4.5) 

4)(') ~,, X)=(_l),.-kxZ(,.-k)e .... ~, m - k ~ 0 (4.6) 

,p~.G(~o,X)--~(" ' -  x), - -  ~ m  - k ~ O  ' 
(4.7) 

(4k - l ) ( n -  k) 
C n k + l  = Cnk ; k = l , 2  . . . . .  n, (4,8) 

4 ( k - l )  

( 4 k -  3 ) (n -  k) 
D , k + l =  D,k; k = l , 2  . . . .  ,n, (4.9) 

4(k - 1) 

C,o = 1 for all n, (4.10) 

D , o = l  for all n, (4.11) 

The corresponding overlap and hamiltonian mat- 
rices are, respectively (the superscript 1(2) refers to 
a state of even (odd) parity) 

{ Hl""(ct~ (~9-t~-{ 1 } L ~ t  C'k C"l} 
Hn2m(gO)) = 4~o k=O l=otD,k D,,,t 

(1) (1) 

X 
0(~1+ l 

(1) (I) 
rb(2) la5(2) \ 
~ n - k l  ~ m - I /  • 

~ko+ l 

 tc. c4 
k~=O t=o kD,k P,,,J 

with 

(r ( ~ f [2(N+M)--I]!! 

(4.12) 

(4.13) 

, (4.14) 

< 4,~)1 n l ~ ) >  = <e~'l ~g)> (t2(N + M)+ 1 ~- 

(1-4~ g) q - - [ 2 ( N + M ) + I ]  
4 ~  o 

[2(N+M)+3]!!  1 } 
+ )L [ 2 ( N  + M ) -  1] ! !  (4~-o) 2- ' (4.15) 

~(2)Id)(2)\_ _/d)(i) laS(1) ~N ,~MZ--  \rS+~,--M+~>, (4.16) 

(4,~)1 fl l~)) (u * (u (4.17) = - <'/'N+ ~l n I'/'M+ ~->. 

Some typical results are exhibited in Table 3 for 2 
= 1 (a rather large anharmonicity). We compare, for 
different numbers of "momen t s "  n (cf. Eqs. (2.1)- 
(2.6)), our results with the (almost) exact ones of 
Biswas et al. [36]. The latter are obtained by re- 
course to the Hill-determinant method and involve 
dealing with matrices of the order of 40 x 40 [36]. 
The rather excellent agreement between our figures 
and those of [36], which are obtained with just a 
few (say, 6) moments, should give an idea of the 
power of the present approach. 
Within the present context our results are strongly 
dependent upon the value chosen for the distribu- 
tion point support %. This is to be expected, as S c is 
infinite here, and illustrates thc assertion made in 
Sect. 2.1: it is possible to take advantage of the fact 
that % is a free parameter  in order to truly minim- 
ize the g.s. energy. 
Finally, a glance at the third column of Table 2 (cf. 
Sect. 3) should convince the reader that the s  
diminish rather rapidly as m grows. 
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Table 3. Ratio of approximate energies to those obtained in [36], 
for, respectively, the ground state, and the 2 "a, 4 a' and 6 'h excited 
ones. The corresponding number of moments, n, is given in the 
first column, while the last row displays the energy values report- 
ed in [36] 

The ).x "~ anharmonic oscillator 

E ~E-(o) , (2) E /b - (4 )  (6~ 
H 0/12' Bis~ as E2/EBiswas 4 / ~ B i s w a s  E6/EBiswas 

2 1,000346538 1,0291993 
3 1 , 0 0 0 0 2 4 3 2 1  1.0026793 1.0715371 
4 1.000002t31 1.0002705 1.0120754 1,1175670 
5 1.000000213 1.000029i 1.00t9383 ~,0294024 
6 1.000000006 [0000009 1.0000664 1.0008184 
7 1 . 0 0 0 0 0 0 0 0 1  1,0000001 1.0000065 1.0001351 
8 1.000000000 1.0000000 1.0000004 1.0000084 
9 1.000000000 1.0000000 1.0000000 1.0000005 
Esiswa~ 1.392351641 8.6550499 18.0575574 28.8353384 

5. Conclusions 

A generalization of the HW ansatz has been devel- 
oped which allows one to exploit the properties of 
the collective subspace, as suggested by the pioneer 
work of Wong [11], Lathouwers [10] and de Tole- 
do-Piza et al. [13, 14], without having to diagonalize 
the generator overlap kernel (1.5). Since this diagon- 
alization is feasible only in very special cases, the 
main result of the present paper is seen to be the 
introduction of a practical method that allows for 
implementing the powerful ideas of Refs. [10-14 7 in 
a rather simple fashion, 
The examples discussed in Sects. 3 and 4 show that 
our approach works satisfactorily both in a finite 
(discrete} case and in a continuous one. It should be 
pointed out that theae examples, although simple, 
have not been tackled before (as far as we know) 
within the GCM scheme. Of course, related prob- 
lems have been exhaustively discussed before [8]. 
The HW equations emerge from the variational 
principle, and, in solving them within any approxi- 
mate scheme, one is guaranteed to obtain upper 
bounds to the g.s. energy. Our generalized HW an- 
satz provides us, additionally, with a free parameter 
(the distribution point support %) that allows for 
improving this upper bound. Of course, this will be 
of practical usefulness only in the continuous case, 
when we are Jbrced adopt a truncation scheme, or in 
finite problems of such a dimension that any exact 
diagonalization becomes prohibitive. 

One of us (A.P) wishes to thank Prof. A. Faessler for his kind 
hospitality at the tnstitut f/it Theoretiscl~e Physik der UniversitSt 
Ti_ibingen. 
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