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Principal congruences in weak Heyting algebras

Hernán Javier San Mart́ın

Abstract. Let A be a weak Heyting algebra and let a, b ∈ A. We give a description
for the congruence generated by the pair (a, b), and we use it in order to give a

necessary and sufficient condition for a function f : Ak → A to be compatible with
every congruence of A. We also find conditions on a not necessarily polynomial
function g(a, b) in A that imply that the function a �→ min{b ∈ A : g(a, b) ≤ b} is
compatible when defined.

1. Introduction

A weak Heyting algebra, or WH -algebra for short [3, 11], is an algebra

〈A,∧,∨,→, 0, 1〉 of type (2, 2, 2, 0, 0), where the reduct algebra 〈A,∧,∨, 0, 1〉
is a bounded distributive lattice and → is a binary map such that for all

a, b, c ∈ A, it satisfies the following conditions:

(a) (a → b) ∧ (a → c) = a → (b ∧ c),

(b) (a → c) ∧ (b → c) = (a ∨ b) → c,

(c) (a → b) ∧ (b → c) ≤ a → c,

(d) a → a = 1.

We write WH to indicate the variety of WH -algebras. This variety was

introduced in [11] as the algebraic counterpart of the least subintuitionistic

logic wK considered in [10]. A WH -algebra is a bounded distributive lattice

with a binary operation → with the properties of the strict implication in

the modal logic K. Each one of the varieties of WH -algebras studied in [11]

corresponds to two propositional logics wKσ and sKσ defined in [10]. The

logics wKσ and sKσ are the strict implication fragments of the local and

global consequence relations defined by means of Kripke models, respectively.

Examples of WH -algebras that appear in the literature are the basic alge-

bras introduced by M. Ardeshir and W. Ruitenburg in [1], and the subresid-

uated lattices of G. Epstein and A. Horn given in [13]; these last structures

were introduced as a generalization of Heyting algebras [2].

A basic algebra is a WH -algebra that in addition satisfies the inequality

(I) a ≤ 1 → a.
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A subresiduated lattice is a WH -algebra that in addition satisfies the fol-

lowing inequalities:

(T) a → b ≤ c → (a → b),

(R) a ∧ (a → b) ≤ b.

Besides basic algebras and subresiduated lattices, other varieties of WH -

algebras can be considered, defined by arbitrary combinations to the inequal-

ities (R), (T) and (I) above. These varieties are the varieties of WH -algebras

that correspond to certain subintuitionistic logics. In every WH -algebra, the

inequality (I) implies (T). There are at most five subvarieties obtainable in

that way, and in fact there are exactly five. They are the variety of subresid-

uated lattices (denoted by SRL), the variety of basic algebras (denoted by

B), the variety of the WH -algebras that satisfy (R) (whose elements will be

called RWH -algebras), the variety of the WH -algebras that satisfy (T) (whose

elements will be called TWH -algebras), and finally the variety of Heyting al-

gebras (which are the WH -algebras that satisfy the three inequalities (R), (T)

and (I)). The variety of RWH -algebras will be denoted by RWH and the vari-

ety of TWH -algebras by TWH. We shall denote by H the variety of Heyting

algebras.

WH

TWH RWH

B SRL

H

Figure 1. The order of the varieties

The five varieties mentioned above inherit some of the properties of their

subvariety of Heyting algebras [11]. Let A ∈ WH. It follows from [11, Propo-

sition 4.22] that A ∈ RWH if and only if for every a, b, c ∈ A, if a ≤ b → c

then a ∧ b ≤ c. Also, it follows from [11, Proposition 4.20] that A ∈ B if and

only if for every a, b, c ∈ A, if a ∧ b ≤ c, then a ≤ b → c.

Remark 1.1. Every bounded distributive lattice can be seen as an algebra in

B if we define a → b = 1 for every a, b.

Let A be an algebra and a, b ∈ A. By θ(a, b) we denote the principal

congruence of A generated by (a, b), i.e., the smallest congruence of A that

contains (a, b). A variety V has equationally definable principal congruences

(EDPC) if there exists a finite family of quaternary terms {ui, vi}ni=1 such

that for any principal congruence θ(a, b), (c, d) ∈ θ(a, b) if and only if we have
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ui(a, b, c, d) = vi(a, b, c, d) for every i = 1, . . . , n [4]. This property is also of

logical interest because a logic has some kind of deduction theorem if and only

if the corresponding variety (obtained by the process of algebraization) has

EDPC.

We show in this paper that in some cases, a good characterization of princi-

pal congruences is still possible, taking the following form: there exists a family

of quaternary terms {u(i,m), v(i,m)} (with i = 1, . . . , n and m ≥ 0) such that

for any principal congruence θ(a, b), (c, d) ∈ θ(a, b) if and only if there exists

k ≥ 0 such that u(i,k)(a, b, c, d) = v(i,k)(a, b, c, d) for every i = 1, . . . , n. In [11],

it was proved that TWH has EDPC, but WH and RWH do not. However, an

explicit description of the principal congruences was not given.

Let A ∈ WH, a, b ∈ A and n ∈ N (the set of natural numbers). Abbreviate

1 → a by �(a); then the iterated operator �n is defined in the usual way. If

n = 0, we define �0(a) = a. As usual, define a ↔ b = (a → b) ∧ (b → a).

Remark 1.2. Let A be an algebra and a, b, c, d ∈ A.

(a) If A is a distributive lattice, (c, d) ∈ θ(a, b) if and only if a∧b∧c = a∧b∧d

and a ∨ b ∨ c = a ∨ b ∨ d [5, 17].

(b) Taking into account [18], we have that for A ∈ RWH, (c, d) ∈ θ(a, b) if

and only if there exists n ∈ N such that �n(a ↔ b) ≤ c ↔ d. Moreover, if

A ∈ B, then (c, d) ∈ θ(a, b) if and only if a ↔ b ≤ c ↔ d.

It is interesting to note that if A ∈ RWH, we obtain the following:

(i) There exists an order isomorphism between the lattice of congruences of

A and the lattice of open filters of A, where an open filter is a filter closed

by � [11, Theorem 6.12].

(ii) If θ is a congruence of A, then (a, b) ∈ θ if and only if (a ↔ b, 1) ∈ θ [18,

Lemma 2].

The characterization of the principal congruences of the algebras in RWH

given in (b) of Remark 1.2 was proved in [18], taking into account (i) and (ii).

However, if A ∈ WH and A /∈ RWH, the assertions (i) and (ii) are not true in

general.

In this paper, we provide a description of the principal congruences of any

weak Heyting algebra. This description is motivated basically by the asser-

tions in (a) and (b) of Remark 1.2. Taking into account that compatible

functions are closely related with principal congruences, we give a necessary

and sufficient condition on a function to be compatible. Finally, we find con-

ditions on a not necessarily polynomial function g(a, b) that imply that the

map a �→ min{b : g(a, b) ≤ b} is compatible when defined.

2. Principal congruences

In this section, we give an explicit description for the principal congruences

of weak Heyting algebras.
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Let n ∈ N. We introduce the binary term

tn(a, b) = (a ↔ b) ∧�(a ↔ b) ∧ · · · ∧�n(a ↔ b).

Let A ∈ WH and a, b ∈ A. Let R(a, b) be the binary relation in A defined

as follows: (x, y) ∈ R(a, b) if and only if there exists n ∈ N satisfying

(C1) x ∧ a ∧ b ∧ tn(a, b) = y ∧ a ∧ b ∧ tn(a, b),

(C2) (x ∨ a ∨ b) ∧ tn(a, b) = (y ∨ a ∨ b) ∧ tn(a, b),

(C3) tn(a, b) ≤ x ↔ y.

We say that n ∈ N is associated with a pair (x, y) if (C1)–(C3) hold.

The following remark is part of the folklore of distributive lattices.

Remark 2.1. Let A be a distributive lattice, θ a congruence and (x, y) ∈
A× A. If there exists c ∈ A such that (x ∧ c, y ∧ c) ∈ θ and (x ∨ c, y ∨ c) ∈ θ,

then (x, y) ∈ θ.

In what follows, we give one of the main results of this work.

Theorem 2.2. Let A ∈ WH and a, b ∈ A. Then θ(a, b) = R(a, b).

Proof. First we will prove that R(a, b) is an equivalence relation. The reflexiv-

ity and symmetry are immediate. In order to prove that R(a, b) is a transitive

relation, let (x, y), (y, z) ∈ R(a, b). Let n and m be two natural numbers asso-

ciated with the pairs (x, y) and (y, z), and let k = max{n,m}. It is clear that
x∧a∧b∧tk(a, b) = z∧a∧b∧tk(a, b) and (x∨a∨b)∧tk(a, b) = (z∨a∨b)∧tk(a, b).
Also, taking into account that

tk(a, b) ≤ (x → y) ∧ (y → x) ∧ (y → z) ∧ (z → y) ≤ (x → z) ∧ (z → x),

we obtain that tk(a, b) ≤ x ↔ z. Thus, R(a, b) is a transitive relation, and in

consequence it is an equivalence relation.

Now we will see that R(a, b) is a congruence. Let (x, y), (z, w) ∈ R(a, b).

Let n be a natural number associated with the pair (x, y), let m be a natural

number associated with the pair (z, w), and let k = max{n,m}.
(i) First we will show that (x ∧ z, y ∧ w) ∈ R(a, b). It is clear that

x ∧ z ∧ a ∧ b ∧ tk(a, b) = y ∧ w ∧ a ∧ b ∧ tk(a, b).

Using the distributivity of the lattice,we have:

((x ∧ z) ∨ a ∨ b) ∧ tk(a, b) = (x ∨ a ∨ b) ∧ (z ∨ a ∨ b) ∧ tk(a, b)

= (x ∨ a ∨ b) ∧ (w ∨ a ∨ b) ∧ tk(a, b) = tk(a, b) ∧ (x ∨ a ∨ b) ∧ (w ∨ a ∨ b)

= tk(a, b) ∧ (y ∨ a ∨ b) ∧ (w ∨ a ∨ b) = tk(a, b) ∧ ((y ∧ w) ∨ a ∨ b).

Finally, we have

(x ∧ z) ↔ (y ∧ w) ≥ (x → y) ∧ (z → w) ∧ (y → x) ∧ (w → z)

= (x ↔ y) ∧ (z ↔ w) ≥ tk(a, b).

Hence, we have (x ∧ z, y ∧ w) ∈ R(a, b).

(ii) Analogously, it can be proved that (x ∨ z, y ∨ w) ∈ R(a, b).
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(iii) In what follows, we will see that (x → z, y → w) ∈ R(a, b). Note that

(x → z)∧ a∧ b∧ tk+1(a, b) = a∧ b∧ tk+1(a, b)∧ (x → z)∧ (y ↔ x)∧ (z ↔ w);

a∧ b∧ tk+1(a, b)∧ (x → z)∧ (y ↔ x)∧ (z ↔ w) ≤ a∧ b∧ tk+1(a, b)∧ (y → w).

Hence, we have that (x → z)∧ a∧ b∧ tk+1(a, b) ≤ a∧ b∧ tk+1(a, b)∧ (y → w).

The other inequality can be proved in the same way, so we obtain that

(x → z) ∧ a ∧ b ∧ tk+1(a, b) = (y → w) ∧ a ∧ b ∧ tk+1(a, b).

Similarly it can be proved that tk+1(a, b) ∧ (x → z) ≤ (y → w) and

tk+1(a, b) ∧ (y → w) ≤ (x → z), so this and the distributivity of the lat-

tice yield ((x → z) ∨ a ∨ b) ∧ tk+1(a, b) = ((y → w) ∨ a ∨ b) ∧ tk+1(a, b).

In order to prove that tk+1(a, b) ≤ (x → z) → (y → w), note that the

inequality tk(a, b) ∧ (x → z) ≤ (y → w) implies that

(x → z) → tk(a, b) ≤ (x → z) → (y → w). (2.1)

On the other hand, using that x → z ≤ 1, we have that for every l ≥ 1, it holds

that �l(a → b) ≤ (x → z) → �l−1(a → b). Thus, we obtain the inequality

�l(a ↔ b) ≤ (x → z) → �l−1(a ↔ b). Hence,

tk+1(a, b) ≤ (x → z) → tk(a, b). (2.2)

By equations (2.1) and (2.2), we conclude that

tk+1(a, b) ≤ (x → z) → tk(a, b) ≤ (x → z) → (y → w).

Thus, (x → z, y → w) ∈ R(a, b).

Thus, we have proved that R(a, b) is a congruence which contains the pair

(a, b). Let θ be a congruence with (a, b) ∈ θ. We will show that R(a, b) ⊆ θ. In

order to see this, let (x, y) ∈ R(a, b) and let n be a natural number associated

with the pair (x, y). Taking into account that (a, b) ∈ θ, we obtain that

(tn(a, b), 1) ∈ θ. Put c = a ∧ b ∧ tn(a, b). We will show that (x ∨ c, y ∨ c) ∈ θ

and (x∧ c, y∧ c) ∈ θ. Easy computations show (x∨ c, (x∨a∨ b)∧ tn(a, b)) ∈ θ,

(y∨ c, (y∨a∨ b)∧ tn(a, b)) ∈ θ, and (x∨a∨ b)∧ tn(a, b) = (y∨a∨ b)∧ tn(a, b),

so we obtain that (x∨ c, y ∨ c) ∈ θ. Taking into account that x∧ c = y ∧ c, we

have that (x ∧ c, y ∧ c) ∈ θ. Thus, it follows from Remark 2.1 that (x, y) ∈ θ.

Hence, R(a, b) ⊆ θ. Therefore, θ(a, b) = R(a, b). �

Remark 2.3. (1) Let A ∈ RWH and a, b ∈ A. Taking into account that

�a = 1 ∧ (1 → a) ≤ a, we have that �n(a) ≤ a for every n ∈ N. In

particular, �n(a ↔ b) ≤ a ↔ b for every n ∈ N.
(2) Let A ∈ RWH, a, b, x, y ∈ A and n ∈ N such that �n(a ↔ b) ≤ x ↔ y. In

particular, we have that x∧�n(a ↔ b) ≤ y and y∧�n(a ↔ b) ≤ x. Thus,

x ∧ a ∧ b ∧ �n(a ↔ b) ≤ y ∧ a ∧ b ∧ �n(a ↔ b). In a similar way, we can

prove the other inequality, so x∧a∧b∧�n(a ↔ b) = y∧a∧b∧�n(a ↔ b).

Analogously (and taking into account the distributivity of the lattice), it

is possible to show that (x∨ a∨ b)∧�n(a ↔ b) = (y ∨ a∨ b)∧�n(a ↔ b).
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(3) Let A ∈ TWH and a, b ∈ A. Then a → b ≤ 1 → (a → b) = �(a → b), so

a → b ≤ �n(a → b) for every n ∈ N. Moreover, a ↔ b ≤ �n(a ↔ b) for

every n ∈ N. Thus, tn(a, b) = a ↔ b.

(4) Let A ∈ SRL and a, b ∈ A. Then �n(a ↔ b) = a ↔ b for every n ∈ N.

Proposition 2.4. Let A ∈ RWH, and a, b ∈ A. Then (x, y) ∈ θ(a, b) if

and only if there exists n ∈ N such that �n(a ↔ b) ≤ x ↔ y. Moreover, if

A ∈ SRL, then (x, y) ∈ θ(a, b) if and only if a ↔ b ≤ x ↔ y.

The previous proposition is also a consequence from [18, Lemma 2].

Proposition 2.5. Let A ∈ TWH and a, b ∈ A. Then (x, y) ∈ θ(a, b) if and

only if the following conditions hold:

(TC1) x ∧ a ∧ b ∧ (a ↔ b) = y ∧ a ∧ b ∧ (a ↔ b),

(TC2) (x ∨ a ∨ b) ∧ (a ↔ b) = (y ∨ a ∨ b) ∧ (a ↔ b),

(TC3) a ↔ b ≤ x ↔ y.

In every basic algebra, we have the inequality a ≤ b → a. Then we obtain

the following result.

Proposition 2.6. Let A ∈ B and a, b ∈ A. Then (x, y) ∈ θ(a, b) if and only

if the following conditions hold:

(BC1) x ∧ a ∧ b = y ∧ a ∧ b,

(BC2) (x ∨ a ∨ b) ∧ (a ↔ b) = (y ∨ a ∨ b) ∧ (a ↔ b),

(BC3) a ↔ b ≤ x ↔ y.

Note that the well-known description of principal congruences for distribu-

tive lattices follows from Remark 1.1 and Proposition 2.6.

3. Compatible functions

Compatibility of functions is a classical topic in Universal Algebra. In [7],

compatible functions were studied in Heyting algebras as the algebraic coun-

terpart of intuitionistic connectives in the propositional intuitionistic calculus

(see also [6]). In [18], these ideas were generalized in order to study compatible

functions in the variety RWH. In this section, we study compatible functions

in weak Heyting algebras using basically Theorem 2.2 and its consequences.

We start with the following.

Definition 3.1. Let A be an algebra and let f : Ak → A be a function.

(1) We say that f is compatible with a congruence θ of A if (ai, bi) ∈ θ for

i = 1, . . . , k implies (f(a1, . . . , ak), f(b1, . . . , bk)) ∈ θ.

(2) We say that f is a compatible function of A provided it is compatible with

all the congruences of A.

Let A be an algebra. If n ∈ N and f : An → A is a function, then f is

compatible if and only if the algebras A and 〈A, f〉 have the same congru-

ences. For n = 1, f is compatible if and only if (f(a), f(b)) ∈ θ(a, b) for every
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a, b ∈ A. The simplest examples of compatible functions on an algebra are the

polynomial functions; note that in particular, all term functions (and constant

functions) are compatible.

Corollary 3.2. Let A ∈ WH and f : A → A a function. Then f is a compat-

ible function if and only if for every a, b ∈ A, there exists n ∈ N that satisfies

the following conditions:

(C1) f(a) ∧ a ∧ b ∧ tn(a, b) = f(b) ∧ a ∧ b ∧ tn(a, b),

(C2) (f(a) ∨ a ∨ b) ∧ tn(a, b) = (f(b) ∨ a ∨ b) ∧ tn(a, b),

(C3) tn(a, b) ≤ f(a) ↔ f(b).

Proof. This follows from Theorem 2.2. �

If L is a bounded distributive lattice, and if we define the operation → on

its domain by

a → b =

{
1, if a ≤ b,

0, if a � b,

then the algebra 〈L,→〉 is a WH -algebra. Moreover, we have that

a ↔ b =

{
1, if a = b,

0, if a �= b.

Then by Corollary 3.2, every unary function on 〈L,→〉 is compatible.

Corollary 3.3. Let A ∈ RWH and f : A → A a function. Then f is a

compatible function if and only if for every a, b ∈ A, there exists n ∈ N such

that �n(a ↔ b) ≤ f(a) ↔ f(b). Moreover, if A ∈ SRL, then f is a compatible

function if and only if a ↔ b ≤ f(a) ↔ f(b).

Proof. This follows from Proposition 2.4. �

Corollary 3.3 is also a consequence of [18, Proposition 3] and of [18, Corol-

lary 3].

Corollary 3.4. Let A ∈ TWH and f : A → A a function. Then f is a

compatible function if and only if for every a, b ∈ A, the following conditions

hold:

(TC1) f(a) ∧ a ∧ b ∧ (a ↔ b) = f(b) ∧ a ∧ b ∧ (a ↔ b),

(TC2) (f(a) ∨ a ∨ b) ∧ (a ↔ b) = (f(b) ∨ a ∨ b) ∧ (a ↔ b),

(TC3) a ↔ b ≤ f(a) ↔ f(b).

Proof. This follows from Proposition 2.5. �

Corollary 3.5. Let A ∈ B and f : A → A a function. Then f is a compatible

function if and only if for every a, b ∈ A, the following conditions hold:

(BC1) f(a) ∧ a ∧ b = f(b) ∧ a ∧ b,

(BC2) (f(a) ∨ a ∨ b) ∧ (a ↔ b) = (f(b) ∨ a ∨ b) ∧ (a ↔ b),

(BC3) a ↔ b ≤ f(a) ↔ f(b).
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Proof. This follows from Proposition 2.6. �

Let A be an algebra, f : Ak → A a function, and a = (a1, . . . , ak) ∈ Ak. For

i = 1, . . . , k, we define unary functions fa
i : A → A by

fa
i (x) := f(a1, . . . , ai−1, x, ai+1, . . . , ak).

Then we have the following characterization for the compatibility of a k-ary

function f .

Lemma 3.6. Let A be an algebra and f : Ak → A a function. The following

conditions are equivalent:

(a) f is compatible.

(b) For every a ∈ Ak and every i = 1, . . . , k, the functions fa
i : A → A are

compatible.

Let a = (a1, . . . , ak) ∈ Ak. For every m = 1, . . . , k, we define aml :=

(a1, . . . , am) and amr := (am, . . . , ak). Corollary 3.2 together with Lemma 3.6

allow us to characterize the compatible k-ary functions on a WH -algebra.

Corollary 3.7. Let A ∈ WH and f : Ak → A a function (k ≥ 2). The

following conditions are equivalent:

(1) f is compatible.

(2) For every a, b ∈ Ak, there exists n ∈ N satisfying the following conditions

for every i = 2, . . . , k:

(G1) f(a) ∧ a1 ∧ b1 ∧ tn(a1, b1) = f(b1, a
2
r) ∧ a1 ∧ b1 ∧ tn(a1, b1),

f(bi−1
l , air) ∧ ai ∧ bi ∧ tn(ai, bi) = f(bil, a

i+1
r ) ∧ ai ∧ bi ∧ tn(ai, bi),

(G2) (f(a) ∨ a1 ∨ b1) ∧ tn(a1, b1) = (f(b1, a
2
r) ∨ a1 ∨ b1) ∧ tn(a1, b1),

(f(bi−1
l , air) ∨ ai ∨ bi) ∧ tn(ai, bi) = (f(bil, a

i+1
r ) ∨ ai ∨ bi) ∧ tn(ai, bi),

(G3)
∧k

j=1 tn(aj , bj) ≤ f(a) ↔ f(b).

Proof. Suppose that f is compatible, and let a, b ∈ Ak. Let ni be a natu-

ral number associated with the pair (ai, bi). Consider n = max{n1, . . . , nk}.
Straightforward computations prove the conditions (G1) and (G2). Also, we

have that

tn(a1, b1) ≤ f(a1, a2, . . . , ak) ↔ f(b1, a2, . . . , ak)

tn(a2, b2) ≤ f(b1, a2, . . . , ak) ↔ f(b1, b2, a3, . . . , ak)

...

tn(ak, bk) ≤ f(b1, b2, . . . , bk−1, ak) ↔ f(b1, . . . , bk)

Since in WH -algebras we have that (x → y) ∧ (y → z) ≤ x → z, we obtain

that
∧k

j=1 tn(aj , bj) ≤ f(a1, . . . , ak) ↔ f(b1, . . . , bk).

Conversely, assume condition (2) holds and let a ∈ Ak. Let x, y ∈ A. For the

k-tuples (a1, . . . , ai−1, x, ai+1, . . . , ak) and (a1, . . . , ai−1, y, ai+1, . . . , ak), there

exists a natural number n which satisfies the conditions (G1), (G2), and (G3).
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Then Corollary 3.2 together with Lemma 3.6 allow us to claim that f is com-

patible. �

An algebra A is affine complete if any compatible function of A is given by

a polynomial of A. It is locally affine complete provided that any compatible

function is given by a polynomial on each finite subset of A. The variety of

boolean algebras is affine complete [16]. The variety of Heyting algebras is not

affine complete but it is locally affine complete [7]. Moreover, the variety of

residuated lattices is locally affine complete [9].

It follows from [18, Corollary 7] that the variety RWH is locally affine com-

plete. However, the variety B is not locally affine complete (this follows from

Remark 1.1 and [17, Theorem 5.3.6]).

4. Some applications

In what follows, we shall use similar ideas to those in [8, 14, 19] in order

to study compatible functions in the variety WH in terms of the minimum

operator.

Definition 4.1. Let A be a poset and let g : A × A → A be a function. We

say that g satisfies condition (M) if the following condition holds:

for all a, b, c ∈ A, c ≥ b implies g(a, c) ≤ g(a, b). (M)

If A is a ∨-semilattice and g is a function which satisfies condition (M),

then g(a, g(a, b) ∨ b) ≤ g(a, b) ∨ b for every a, b ∈ A.

Let A be a poset and g a binary function. When an expression of the

type min{b ∈ A : g(a, b) ≤ b} is used, it means that the minimum of the set

{b ∈ A : g(a, b) ≤ b} exists for every a ∈ A.

Lemma 4.2. Let A be a ∨-semilattice, and let g : A × A → A be a function

which satisfies the condition (M). The following conditions are equivalent.

(a) There is a map f : A → A given by f(a) = min{b ∈ A : g(a, b) ≤ b}.
(b) There exists a map h : A → A which satisfies the following conditions for

every a, b ∈ A:

(i) g(a, h(a)) ≤ h(a),

(ii) h(a) ≤ g(a, b) ∨ b.

Moreover, in this case we have that f = h.

Proof. This follows from [8, Lemma 15]. �

Then we have the following characterization for unary compatible functions

in WH.

Proposition 4.3. Let A ∈ WH and let f : A → A be a function. The following

conditions are equivalent.

(1) f is compatible.
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(2) There exists a function g : A× A → A which satisfies (M), compatible in

the first variable and such that f(a) = min{b ∈ A : g(a, b) ≤ b}.
(3) There exists a function ĝ : A × A → A which satisfies (M), compatible

in the first variable and such that it satisfies the following conditions for

every a, b ∈ A:

(i) ĝ(a, f(a)) ≤ f(a),

(ii) f(a) ≤ ĝ(a, b) ∨ b.

Moreover, in this case we have that g = ĝ.

Proof. Suppose that f is compatible; define g : A× A → A by g(a, b) = f(a).

Hence, the condition (2) is obtained. The equivalence between (2) and (3)

follows from Lemma 4.2.

Finally, we shall prove that condition (3) implies condition (1). Let a, b ∈ A.

Taking into account that g is compatible in the first variable and Corollary

3.2, we have that there exists n ∈ N such that

g(a, f(b)) ∧ a ∧ b ∧ tn(a, b) = g(b, f(b)) ∧ a ∧ b ∧ tn(a, b),

g(a, f(b)) ∨ a ∨ b ∧ tn(a, b) = g(b, f(b)) ∨ a ∨ b ∨ tn(a, b),

tn(a, b) ≤ g(a, f(b)) ↔ g(b, f(b)).

We define T(n,f)(a, b) := f(b) ∧ a ∧ b ∧ tn(a, b). Then we obtain that

f(a) ∧ a ∧ b ∧ tn(a, b) ≤ (f(b) ∨ g(a, f(b))) ∧ a ∧ b ∧ tn(a, b)

= T(n,f)(a, b) ∨ (g(a, f(b)) ∧ a ∧ b ∧ tn(a, b))

= T(n,f)(a, b) ∨ (g(b, f(b)) ∧ a ∧ b ∧ tn(a, b))

≤ T(n,f)(a, b) ∨ T(n,f)(a, b) = T(n,f)(a, b).

The other inequality is proved in a similar way. Then (C1) holds and the proof

of condition (C2) is similar. We also have that

tn(a, b) ≤ g(a, f(b)) ↔ g(b, f(b)) ≤ g(a, f(b)) → g(b, f(b)). (4.1)

Also, taking into account that g(b, f(b)) ≤ f(b), we obtain that

g(a, f(b)) → g(b, f(b)) ≤ g(a, f(b)) → f(b). (4.2)

Taking into account that f(a) ≤ g(a, f(b))∨ f(b), and the inequalities (4.1)

and (4.2), we have that

f(a) → f(b) ≥ (g(a, f(b)) ∨ f(b)) → f(b) = g(a, f(b)) → f(b)

≥ g(a, f(b)) → g(b, f(b)) ≥ tn(a, b).

Hence, tn(a, b) ≤ f(a) → f(b). Taking into account that tn(a, b) = tn(b, a),

we conclude condition (C3). Therefore, by Corollary 3.2, we have that f is

compatible. �

In what follows, we introduce a definition we shall use in order to give some

examples of compatible functions.
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Definition 4.4. Let V be a variety of algebras of type F and let ε(C) be a set

of identities of type F ∪ C, where C is a family of new function symbols. We

say that ε(C) defines C implicitly if in each algebra A ∈ V , there is at most one

family {fA : An → A}f∈C such that (A, fA)f∈C satisfies the universal closure

of the equations in ε(C). In this case, we say that each f is implicitly defined

in V .

Let A ∈ WH. We define the unary compatible function Ŝ by

Ŝa = min{b ∈ A : b → a ≤ b}.

Equivalently, Ŝ can be implicitly defined by the inequalities

(S1) Ŝa → a ≤ Ŝa,

(S2) Ŝa ≤ b ∨ (b → a).

The map Ŝ generalizes the successor function considered in [7] on Heyting

algebras. In [12], another generalization of the successor function was intro-

duced for weak Heyting algebras; the operator was denoted by S and it was

given by the inequalities a ≤ Sa, Sa ≤ b∨ (b → a), and Sa → a ≤ a. It follows

from [12, Lemma 3.3] that if there exists S in a weak Heyting algebra, then

there exists Ŝ (moreover, S = Ŝ). The converse of this property is not true in

general (see [12, Example 3.7]). In Heyting algebras, S exists if and only if Ŝ

exists.

Let A ∈ WH. We define the unary compatible function γ̂ by

γ̂a = min{b ∈ A : a ∨ ¬b ≤ b},

where ¬b = b → 0. This map can be also implicitly defined through the

inequalities

(γ1) a ∨ ¬γ̂a ≤ γ̂a,

(γ2) γ̂a ≤ a ∨ ¬b ∨ b.

Equivalently, γ̂ can be implicitly defined through the inequalities

(Γ1) ¬γ̂0 ≤ γ̂0,

(Γ2) γ̂0 ≤ b ∨ ¬b,
(Γ3) γ̂a = a ∨ γ̂0.

In particular, if γ̂ exists in A, then γ̂ is a polynomial function on A. The map

γ̂ is a possible generalization of the gamma function studied in [7] for the case

of Heyting algebras. In [12], there was given another possible generalization of

the gamma function on weak Heyting algebras; this operator was called γ and

it was defined by ¬γ0 = 0, γa ≤ b ∨ (b → a) and γa = a ∨ γ0. It follows from

[12] that given a weak Heyting algebra, if γ exists, then γ̂ exists, with γ = γ̂.

However, taking into account [12, Example 3.7], we have that the converse of

the previous property is not true in general. In Heyting algebras, γ exists if

and only if γ̂ exists.

Let A ∈ WH. We define the unary compatible function G by

Ga = min{b ∈ A : (b → a) ∧ ¬¬a ≤ b}.
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Figure 2

In an equivalent way, G can be implicitly defined through the inequalities

(G1) (Ga → a) ∧ ¬¬a ≤ Ga,

(G2) Ga ≤ b ∨ ((b → a) ∧ ¬¬a).
The map G is a possible generalization of Gabbay’s function studied in [7]

for the case of Heyting algebras (see also [15, 19]).

Consider the bounded distributive lattice given in Figure 2, which will be

called A. In what follows, we define binary operations → on A in order to

obtain weak Heyting algebras 〈A,→〉, and we use these algebras in order to

give examples of compatible functions.

Example 4.5. We define the following binary operation:

→ 0 c a b 1

0 1 1 1 1 1

c b 1 1 1 1

a b 1 1 1 1

b c a a 1 1

1 c a a 1 1

Then 〈A,→〉 ∈ B and it is not a Heyting algebra because, for example, we

have a → c = 1 �= b. We also have that

→ Ŝx γ̂x G

0 b b 0

c 1 b c

a 1 1 c

b 1 b b

1 1 1 1

Example 4.6. We define the following binary operation:

→ 0 c a b 1

0 1 1 1 1 1

c 1 1 1 1 1

a c c 1 c 1

b c c c 1 1

1 c c c c 1
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Then 〈A,→〉 ∈ TWH and it is not a basic algebra because, for example, we

have a � c = 1 → a. Straightforward computations show that it is not possible

to define Ŝ and γ̂ (consider the element 0). However, G0 = 0, Gc = c, Ga = b,

Gb = a, and G1 = 1.

Example 4.7. We define the following binary operation:

→ 0 c a b 1

0 1 1 1 1 1

c 1 1 1 1 1

a 1 1 1 1 1

b b b b 1 1

1 b b b 1 1

Then 〈A,→〉 ∈ TWH and it is not a basic algebra because, for instance, we

have a � b = 1 → a. We also have that

→ Ŝx γ̂x G

0 b b 0

c b b b

a b 1 b

b 1 b 1

1 1 1 1

Finally, we define the following binary operation:

→ 0 c a b 1

0 1 1 1 1 1

c a 1 1 1 1

a a 1 1 1 1

b c b b 1 1

1 c b b 1 1

Then 〈A,→〉 ∈ WH. We have that 〈A,→〉 /∈ RWH because a → 0 = a and

a ∧ (a → 0) � 0. But, because b → a = b and a → 0 � b → (a → 0), we have

〈A,→〉 /∈ TWH. It is possible to prove that Ŝ, γ̂, and G do not exist (for Ŝ

and γ̂, consider the element 0, and for G, consider the element c).
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