Starchy food residue on a potsherd from a late Holocene hunter-gatherer site in Argentine Patagonia: towards the visibility of wild underground storage organs
Vegetation History and Archaeobotany
Maria Laura Ciampagna, Soledad Molares, Ana Haydeé Ladio, Aylen Capparelli
División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata-CONICET, Argentina. aylencapparelli@fcnym.unlp.edu.ar
 domesticated, $\mathrm{s} / \mathrm{d}=$ sine data

Taxa	Oxalis spp. L. (wild)	Arjona tuberosa Cav. (wild)	Araucaria araucana (Molina) K. Koch (wild)	Prosopis spp. L. (wild)	$\begin{aligned} & \text { Zea mays } \mathrm{L} . \\ & (\text { dom.) } \end{aligned}$	Convolvulaceae (dom.)	Ephedra spp. L. (wild)	$\begin{aligned} & \text { Chenopodium } \\ & \text { spp. L. } \\ & \text { (wild/dom.) } \end{aligned}$	Bromus catharticus Vahl. (wild)	Panicum urvilleanum Kunth. (wild)	Sporobolus rigens (Trin.) E. Desv. (wild)
Source	Medina et al. 2018	Lema et al. 2012	Conforti and Lupano 2007	Giovannetti et al 2008	Reichert 1913, Cortella and Pochettino 1994, Babot 2003	Reichert 1913	$\begin{gathered} \text { Carlquist } \\ 1989 \end{gathered}$	$\begin{gathered} \text { Cortella and } \\ \text { Pochettino } \\ \text { 1994, Babot } \\ 2003 \end{gathered}$	Musaubach et al. 2013	Musaubach et al. 2013	Musaubach et al. 2013
Shape	Asymmetrical shapes, Elliptical, conical and elongated	Spherical	Spherical to slightly oval	Regular (spherical, ovoid, polyhedral) and irregular (multifaceted with protuberances)	Oval, polyhedral with sharp edges	Spherical, rarely oval, triangular,	Spherical to slightly ovoid, rarely irregular outline	$\begin{gathered} \hline \text { Oval compound } \\ \text { grains, } \\ \text { polyhedral units } \end{gathered}$	Spherical, ellipsoid, irregular, ovoid flattened	Spherical	Every component granule is irregular
Mode (X) ($\mu \mathrm{m}$)	s/d	6.7	8.4	s/d	s/d	s/d	s/d	s/d	6 (4.9)	3.2 (4.3)	s/d
Range ($\mu \mathrm{m}$)	10-50	1.9-10.8	4.4-12.4	2.5-28	12-30	$\begin{array}{c\|} \hline 17 \text { (simple) }-40 \\ \text { (compound grains) } \end{array}$	2-4	$\begin{aligned} & 1 \text { (unit)- } 50 \\ & \text { (whole } \\ & \text { compound } \\ & \text { grains) } \end{aligned}$	1-10	1.2-7	2-10
Aggregation	s/d	Simple	Simple grains	Simple	$\begin{aligned} & \text { Simple and } \\ & \text { compound of } 2 \\ & \text { to } 6 \end{aligned}$	Simple and compound of 2 to 10 equal components	Simple	Compound of indefinite number	Simple	Simple	Compound
Hilum	Eccentric	s/d	Central	Central, eccentric, spherical, elongated	Central, radial fissures	Central, eccentric	s/d	Not visible	Centric, elongated	Centric; deep depression	s/d
Cracks/fissures	absent	s/d	Absent	Radial	s/d						
Extinction cross	High birefringence, broken arms crossing at more than one point	Fair birefringence	High birefringence, straight arms	High birefringence, straight arms	s/d	s/d	s/d	Not visible	s/d	s/d	s/d
Lamellae	Not visible	s/d	s/d	Not visible	Delicate lamellae	s/d	s/d	s/d	Visible	Not visible	s/d

ESM Table 2 Comparative features of the starch grains from Monte Loayza Site 3 potsherd and from Alstroemeria aurea, Tropaeolum porifolium and Diposis patagonica tubers

Taxa	Monte Loayza Site 3 potsherd	Alstroemeria aurea	Tropaeolum porifolium	Diposis patagonica
Length ($\mu \mathrm{m}$) 1st Mode	$\begin{gathered} \text { Cat. } 2 / 3 \\ (2.50 \text { to } 6.49) \\ \hline \end{gathered}$	$\begin{gathered} \text { Cat. } 9 \text { to } 12 \\ (16.50 \text { to } 24.49) \end{gathered}$	$\begin{gathered} \text { Cat. } 9 \\ (16.50 \text { to } 18.49) \\ \hline \end{gathered}$	$\begin{gathered} \text { Cat. } 2 \\ (2.50 \text { to } 4.49) \\ \hline \end{gathered}$
Length ($\mu \mathrm{m}$) 2nd, 3rd Mode	$\begin{gathered} \text { Cat. } 7 / 8 \\ (12.50 \text { to } 16.49) \end{gathered}$	-	Cat. $1 / 2$ and $6 / 7$ $(0.50$ to 4.9$)(10.50$ to 14.49$)$	$\begin{gathered} \text { Cat. } 7 \\ (12.50 \text { to } 14.49) \end{gathered}$
X	11.28	21.11	15.62	12.51
range	3.50-33.75	3.65-43.90	2.50-38.75	2.50-50.00
STD	9.07	7.96	8.25	8.70
n	44	300	300	200
Aggregation	Simple and much less frequently compounds of two	Simple and compound, usually of two or three	Simple and much less frequently compounds of two	Simple and frequently compounds of two, three, four and five
Shape	Spherical, hemispherical, ovoid, pyriform, ellipsoid, conical	Spherical, ovoid (some dome shaped or truncate)	Spherical, hemispherical, ovoid (some dome shaped or truncate), pyriform, ellipsoid, conical	Spherical, hemispherical, ovoid, ellipsoid, conical, polyhedral, quadrangular
Hilum	Distinct, indistinct; spherical, elongated (bifurcated at one end)	Distinct, indistinct; spherical (commonly with fissures); central, eccentric	Distinct; spherical (commonly with radial fissures); elongated (fissured at one or both ends); central, eccentric	Distinct; spherical (commonly with radial fissures); central
Cracks/Fissures	Branching, radial/stellate in the hilum	Longitudinal or transverse fissures, or two fissures crossing one another, usually in the hilum	Longitudinal; branching; transverse; radial/stellate in the hilum	Radial/stellate in the hilum
Extinction cross	Distinct; centric and eccentric; lines straight/curved; high birefringence in some grains and fair or no birefringence in others	Distinct but not clear-cut; centric and eccentric; symmetric and asymmetric; lines straight/curved; high birefringence	Distinct; centric and eccentric; fairly well defined; lines; straight and/or irregular and jagged; high birefringence	Distinct; central; symmetric; sharply defined; lines straight/curved; high birefringence
Lamellae	Indistinct	Lamellae fairly well seen; Concentric	Indistinct	Indistinct

ESM Table 3 Comparative morpho-anatomy of Alstroemeria aurea, Tropaeolum porifolium and Diposis patagonica tubers

Taxon	Alstroemeria aurea	Tropaeolum porifolium	Diposis patagonica
Type of organ	Root tuber	Stem tuber	Stem tuber
Diameter (cm)	0.9	2	1.5
Length (cm)	8.5	2	1.5
Rhizo/periderm	Rhizodermis of 2/3 layers, abundant starch grains	Periderm of multi-layered (5/6) compressed cells followed by very thick-walled sclerenchyma cells, abundant starch grains	Periderm of multi-layered (10/12) compressed cells, oleo resin cells, starch grains
Cortex (cortical parenchyma)	Several layers of thin-walled parenchyma cells, abundant starch grains	Few layers (4/5) of parenchyma cells, abundant starch grains	Several layers of thin-walled cells, abundant starch grains
Parenchyma rays	absent	Incipient secondary growth, parenchyma rays of thin- walled cells, abundant starch grains	absent
Endodermis	present	absent	absent
Pericycle	Visible (1 layer)	Not visible	Not visible
Vascular tissues	Primary, Polyarch central stele, Mx, Px, Phlo	Regularly distributed secondary xylem -with solitary vessels - alternating with the parenchyma rays	Irregularly distributed vascular bundles
Pit (medullar parenchyma)	Present, thin-walled parenchyma cells, abundant starch grains	Present, thin-walled parenchyma cells, abundant starch grains	Absent

ESM Table 4 Starch grain features described in the bibliography for other species of the studied genera. Abbreviations: dom. $=$ domesticated; $\mathrm{s} / \mathrm{d}=$ sine data

Taxa	Tropaeolum tuberosum ssp. sylvestre (wild)	T. tuberosum ssp. tuberosum (dom.)	Alstroemeria brasiliensis (wild)	A. ligtu (wild)	A. hookeri ssp. Hookeri (wild)
Source	Bulacio and Ponessa (2012)	Melchiorre (1985), Cortella and Pochettino (1995)	Reichert (1913)	Reichert (1913)	Correa et al. (2013)
Shape	Spherical to ovoid, and oval to elliptical.	Spherical to ovoid, and oval to elliptical, dome-shaped.	Spherical to ovoid, and oval to elliptical, no pressure facets in simple grains	Spherical to ovoid, some with pressure facets (the latter dome-shaped and hemispherical)	Elongated, round, irregular, all with irregularities on the surface
Mode ($\mu \mathrm{m}$)	s/d	23 8.9	30 Range	$10-15$	$0.5-50$, those less than 7 spherical and not diagnostic

References

Babot MP (2003) Starch damage as an indicator of food processing In: Hart DM, Wallis LA (ed), Phytolith and starch research in the Australian-Pacific-Asian regions: the state of the art Edition: Canberra Publisher: Pandanus Books for the Centre for Archaeological Research and the Department of Archaeological and Natural History, The Australian National University, pp 6981

Bulacio E, Ponessa G (2012) Morfología y anatomía de órganos vegetativos de Tropaeolum tuberosum spp. silvestre (Tropaeolaceae). Lilloa 49:3-16

Carlquist S (1989) Wood and bark anatomy of the New World species of Ephedra. Aliso 12:441-483
Conforti P, Lupano CE (2007) Starch characterization of Araucaria angustifolia and Araucaria araucana seeds. Starch/Stärke 59:284-289

Correa ZA, Zuñiga C, Garfias L, Bello-Pérez A (2013) Isolation and characterization of Alstroemeria hookeri ssp. hookeri starch in comparison with potato starch. Starch/Stärke 65:991-998
Cortella AR, Pochettino ML (1994) Starch grains analysis as a microscopic diagnostic feature in the identification of plant material. Econ Bot 48:171-181
Cortella AR, Pochettino ML (1995) Comparative morphology of starch of the three Andean tubers. Starch/Stärke 47:455-461
Giovannetti M, VS Lema, CG Bartoli, A Capparelli (2008) Starch grain characterization of Prosopis chilensis (Mol.) Stuntz and P. flexuosa DC, and the analysis of their archaeological remains in Andean South America. J Archaeol Sci 35:2,973-2,985
Lema V, Della Negra C, Bernal V (2012) Explotación de recursos vegetales silvestres y domesticados en Neuquén: implicancias del hallazgo de restos de maíz y algarrobo en artefactos de molienda del Holoceno tardío. Magallania 40:229-249

Medina M, López L, Buc N (2018) Bone tool and tuber processing; a multi-proxy approach in Boyo Paso 2 (Sierras of Córdoba, Argentina). Antiquity 92:1,040-1,055. https://doi.org/10.15184/aqy.2018.93
Melchiorre P (1985) Identificación de tubérculos andinos (Oxalis tuberosa, Ullucus tuberosus y Tropaeolum tuberosum) mediante caracteres anatómicos y exomorfológicos. Rev Fac Agron 6:141-153
Musaubach MG, Plos A, Babot MP (2013) Differentiation of archaeological maize (Zea mays L.) from native wild grasses based on starch grain morphology. Cases from the Central Pampas of Argentina. J Archaeol Sci 40:1,186-1,193
Reichert ET (1913) The differentiation and specificity of starches in relation to genera, species, etc. Carnegie Institution of Washington, Washington DC

