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A method is discussed for solving the RPA equations without discarding any term in 
the case of separable interactions. It is specialized to the SDI for both spherical and 
deformed nuclei and applied in two simple examples. 

1. Introduction 

During the last years a great amount  of work has been devoted to 
the task of understanding nuclear properties f rom a microscopic point 
of view. In particular, many  details of the low-lying nuclear spectra 
have been successfully explained, within the framework of the quasi- 
particle random phase approximation (RPA), utilizing rather simple 
effective interactions. Among these, the pairing plus quadrupole (or 
octupole) force (PQF) employed in the pioneer paper of KISSLINGER and 
SORENSEN t has played an outstanding rol in subsequent developments 
of the theory. Because of its simplicity, it has been applied in a large 
number  of nuclear structure calculations, being for a long time the only 
interaction used in cases involving a great number of single-particle 
levels (i. e., in studying core excitation in medium weight spherical 
nuclei or in RPA calculations in the deformed heavy region). 

More recently an even simpler, and at the same time more realistic 
force, the Surface Delta Interaction (SDI)2 has been applied to different 
nuclear structure problems 3- t2  and in particular to the strongly 
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deformed rare-earth and transuranic nuclei where only the PQF had 
been previously employed (for example SOL0VlEV aa and BES14). The 
results reported in those calculations show that the SDI is as good an 
effective interaction as any other utilized before, with the advantage of 
being a one parameter force, while all other interactions contain a 
greater number of parameters (the PQF, for example, is a three para- 
meter force). 

It is worthwhile to recall that the SDI is able to reproduce at the 
same time both the strong seniority zero coupling of the pairing force 
and the field producing effects of the quadrupole or octupole force. In 
addition, it simulates the 1S and 3S phase shifts of the two nucleon 
scattering for the nuclear many body problem 15. However, from the 
practical point of view of numerical calculations there remains a fact 
which makes the PQF preferable to the SDI in some special instances. 
For  example, in order to calculate excited states in deformed heavy 
nuclei 6 or in studying core excitation 16, the RPA formalism leads to 
the diagonalization of huge matrices. This is not always an easy task, 
becoming sometimes an unmanageable numerical problem 7. However, 
if the interaction is separable, one can avoid diagonalization because it 
is then possible to obtain the eigenvalues and eigenvectors from a 
secular equation of a rather simple form 17. In order to enforce se- 
parability one has to discard particle-particle and exchange particle- 
hole terms, keeping only direct particle-hole ones 7. This procedure 
constitutes a valid approximation in the PQF case, but not a very good 
one for the SDI although it still yields reasonable results in some cases 
(i.e., in the deformed heavy region 7' s, 10). In others, however, this 
approximation does not provide good results with the SDI. If one wants 
to compute core excitation effects along the lines of LOMBARD and 
CAMPI-BENET 16, the SDI fails when the above-referred terms of the 
interaction are neglected is. 

The purpose of the present work is to formulate a method which 
allows one to utilize the SDI within the framework of the RPA without 
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discarding terms, and at the same time, avoiding the diagonalization of 
the RPA matrices. This formalism is described in Section 2, but for a 
more general kind of interaction. It is specialized for the SDI, both in 
the spherical and deformed case in Section 3 and illustrated by two 
simple examples in Section 4. Finally, the conclusions are stated in 
Section 5. 

2. Theory 
The starting point is given by the characteristic RPA relations for 

the eigenvector (~) 17 

, ~P(abcdR)~cdR+Q(abcdR)(gcaR=tO~abR 
cd 

~Q(abcdR)~cdR+P(abcdR)c~caR=_Og~ab R (1) 
cd 

where tn is the excitation energy of a state characterized by a set of 
quantum numbers R; P, and Q, being the usual RPA submatrices a 

We now introduce two functions, fQb and gab related to ~O.b and 
~bab by 

~ l a b R = f a b R + g a b R ;  (PabR-- ' fabR--gabR (2) 

and two new matrices U and V which in terms of P and Q are 

U ( a b c d R ) = P ( a b c d R ) + Q ( a b c d R )  

V(a b c dR)=P(a  b c d R ) - Q ( a  b c dR).  (3) 

Using (2) and (3) we rewrite (1) as 

COgabR=ZU(abcdR)fcaR; ~ f abR=ZV(abcdR)gcdR .  (4) 
cd cd 

Let us assume now that our interaction is of such a type that we can 
write both P and Q as a sum of separable terms. Then 

N 

U(a b c dR)=EQbr .c fba-x  ~ ap(a bR) ap(cdR) 
p = l  

(5) 
V(a b c d R) = E,, t, 6a ~ fit, a -  x ~ bq (a b R) bq (c d R) 

q = l  

where E~b are the so-called two quasi-particle energies and x is a cou- 
pling constant. Both ap(ab) and bl,(ab ) must satisfy suitable symmetry 
relations. Straightforward substitution of (5) into (4) yields 

N 

COgo~R--E~bfabR= --'~ ~, a,,(abR)A,,= --o:obR 
p = 1 (6) 

M 

co f,,bR--E, bg,,bR = --X Z bq(abR)Bq= --fl,,bg 
q = l  
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where 
Ap=~ap(cdR)f~aR; Bq=~bq(cdR)gca R . (7) 

cd  cd  

It is now possible to express the eigenvectors ~ and q~ in terms of the 
vectors ~ and/3 

1 1 
0. b~=Eob_0) (~.b~+/Lb~); ~"b~--Eo~+~(~a~--/L~")" (8) 

In order to obtain a secular equation for the eigenvalue co we elimi- 
na te f  and g from the system (6), 

with 

fab ll=Dab(Eab ~ab R-l-0) flab ll), 

gab R= D.b(Eab flab R + 0) O~.b R) 

(9a) 

(9b) 

O a  b = ( E 2 b  - -  0 ) 2 ) -  1 (10 )  

Multiplying Eq. (9a) by ai(abR ) and summing over all different 
configurations ab one can write the following expressions 

N M 

A,= Z Fi(J)Ap + 2 F/~ ( i = l  . . .N) (11) 
p = l  q = l  

where 
~(o)= tr ~ D. b ai(a b R) b~(a b R) (12) 

a b  

and 
(I3) 

(14) 

(15) 

(16) 

(17) 

Fi(~)=~ ~ E.b Dab ai(a b R)ap(a b R). 
a b  

Analogously, from Eq. (9 b) one obtains 
N M 

Bj= E r~O'A, + E r)~)B, (j=I...M) 
p = l  q = l  

with 
F)~ )= ~ ~. EabD.b bj(a b R) bq(a b R). 

a b  

Introducing now the vector 

and the symmetric (N+ M)-matrix 

,F(1) 
F =  (r(o)+ r(~ r (2)] 

we can write Eqs. (11) and (15) in matrix form 

x=r(0))z. (18) 
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Since the secular Eq. (18) will have a non-trivial solution only if 

det I F (co) - 11 = 0. (19) 

co could be determined with the help of this relation. With co known, 
Eq. (18) would yield the vector X up to a normalization factor by solving 
a related (N+M-1)-inhomogeneous subsystem, and this factor would 

afterwards be used to properly normalize the eigenvectors ( ~ ) .  

However, Eq. (19) might possess several solutions in the physically 
interesting region 0<co<(E,b)~n and not too much can a priori be 
said about them. In addition, in the neighborhood of the two-quasi- 
particle energies the matrix elements of F diverge and the calculation 
of the determinant becomes numerically unstable. 

In the case where the two quasi-particle states are not degenerate, 
however, we can prove that the eigenvalue 2 of the equation 

r (co) x =  ~(co) x (20) 

is a monotonous function of co for 2mi~_<_2(co)<~ in the interval 
0<co<  (E~b)mi,, with 2,,i,>0. Physical values of co must satisfy the con- 
dition 

2(co) = 1. (21) 

Then, if 2mln ~ 1 there will always be a solution. 

These results arise as a consequence of the following properties of 
the matrix F a 9. 

i) F is a positive definite matrix for 0 < co < (Ea b)mln" Indeed, we have 
for the quadratic form XtFX 

XtFX=~Da 2 2 b [/Lb(~abR+/L~R)+2CO ~abR/Lb~]---->0" 
ab 

The eigenvalues of Eq. (20) are then positive in this range. 

ii) The eigenvalues of F are monotonous increasing functions of co. 
For any physical solution (co > 0) the leading terms in the wave function 
satisfy the relation 

fabRgabR>=O (22) 
for all ab. 

19. A similar analysis has been made for the scattering problem by WEI~R~, S.: 
Phys. Rev. 131, 440 (1963). 
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On the other hand, due to the fact that an eigenvector is orthogonal 
to its derivative, we can write 

- x *  X=EED b[ Eob(  b 2 R+/~abR) 
dco ab 

+(Ea~ + ~2) ~a b R fla ~ R] = 2 y~f~ b gab=>0. 
a b  

iii) If all two-quasi-particle energies E~b are different, then for each 
of them there is only one eigenvalue which diverges when r Let 
us consider the expression 

~lim_o(E"b-~189 ... b~(abR)'bj(abR) " 

This is a separable matrix, and as such has only one non-zero eigen- 
value, whose value is equal to the trace 

N M 

4=�89 ~ [ai(a bR)]2+�89 ~ [bj(a bR)] 2 > 0. 
i = 1  j = l  

The obvious procedure to find the solutions of Eq. (18) is by means of 
an iterative process in which Eq. (20) is diagonalized until the desired 
eigenvalue 2 = 1 is obtained. 

3. Application to the SDI 

a) Spherical Case. In this case the quantum number a of Eq. (1) 
denotes the set n, l , j  and the quantum number R represents the total 
angular momentum J and the parity/7. 

Taking the expressions for P and Q given in Ref. 3 one sees that 
N =  M = 2. In addition 

a 1 (a b J) = cos(a - b) h'(a b J) 

az(a b J) =2(--) j~+ta-{ sin(a - b) h'(a b J) r~(a b J) (23) 

bl(abJ)=cos(a+b)h'(abJ); b2(abJ)=sin(a+b)h'(abJ) 
with 

h' (a b J) = ( 1 + 6 a b)- ~ h (a b J). (24) 

The quantities h(abJ) and $(abJ) are defined in Ref. a (Eqs. (3b) 
and (3 c) respectively). 

We denote the coefficients of the Bogoliubov-Valatin transformation 
by 

cos a = ua, sin a = va. (25) 
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The RPA problem is thus reduced to the repeated diagonalization 
of a (4 x4)-matrix. This procedure will be illustrated by two simple 
examples in Section 4. 

b) Deformed Case. From the expressions for the matrices P and Q 
given in Ref. 6 one obtains: 

u~p~ =E~p ~ ~p~+~ cos(~+/~) cos(7+~) v ~  

+5- sin(~+ fl) sin(7 + 3) [VA~ - V~a~], (26) 

V~p~=E~ ~ ~+�89 cos(~-/~) cos(7-,~) V~a~ ~ ~ 

+�89 sin(a-fl)  sin(7- 6) [ V ~ r  + V~a~0]. (27) 

Here V~aa r ~ denotes the antisymmetrized matrix element 

V~ro=(a(1) fl(2)l V~217(1) 3(2))-(c~(1) fl(2)l 1/12 Ib(1) 7(2)). 

The basis functions I c~), [fl), [Y) and 16) are solutions of a deformed 
potential. Usually, one takes them to be Nilsson functions. The bar 
indicates the time reversed state 6 

I~) = T [a)  = ( - ) ~ - ~  I - ~ )  (28) 

with a negative projection f2 of the angular momentum along the 
intrinsic axes. The coefficients u, and v, are assumed to be independent 
of the sign f2,, but 

T I ~ ) =  T:lc~)= - I~> 

which is not the usual convention 6. 
For the SDI we have6 

V, aa t0 = - x Z ~zK ~zt~ (29) 
2K 

is the multipole order and K=Y2,___ f2a 

M,a=~ ~ [ (2 l'o + 1) (2 l~ + 1).] ~ 
(a"f~a) a~Aa~laC(lat~2lAaA~K) L -2-2+i 

J 

�9 C(I a l~ 21000) dido, _z~ (--)~-~" (30) 

--NZK6 -- ,a ~o , -r~( - - )  ~-~~ 

The symbols a~a represent the normalized Nilsson 20 coefficients, l is the 
orbital angular momentum, A its projection and Z the z component of 
the spin along the intrinsic axis�9 

20. NILSSON, S. G.: Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 29, No. 16 
(1955). 
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The antisymmetrized particle-particle matrix element (29) is already 
given as a sum of separable terms. This is not the case for the particle- 
hole matrix elements 6. However, both the sum and the difference of 
antisymmetrized particle-hole matrix elements which appear in Eqs. (26) 
and (27) can also be written as a sum of separable terms. 

Let us consider only one multipole order for the moment. Taking 
into account the property 6 ~,r~K_ ~ K  1,~# - - 1 , 1 # ~ ,  one has: 

V ~ r  + V ~ o  = - (V~sr ~ + V~+~), (31 a) 

V~as~,-V~,~= -(V,a~,~-V~,7,~)+ZV,~t~ ~, (31b) 

where V~,ar n denotes a non-antisymmetrized matrix element. The first 
term on the right side of Eq. (31b) is already separable, being pro- 
portional to the antisymmetrized particle-particle matrix element 6. 

Now, the spatial part of the expressions in brackets in Eqs. (31 a) 
and (31 b) are readily seen to be separable 6. Indeed one obtains 

The spin part is not separable as it is written above, but we can 
recast it in separable form, as it is done for the difference in 6. 

6~oZo 6~ ~. ~ 6~. z+ ~z~ z~ [ t  + ( - ) s ]  C(�89189 

�9 C ( � 8 9  

Defining now 

M(+)zr_l/~r,r~Kx . ~/t(-) z r _  ~a~x (32) 

one has 

a~r(mfl) = - ~  cos(m + fl)M:~; a~+(mfl)=~--~ sin(m + fl)M:~ 

1 . ( + ) ~  (33) 
_ sm(~-f l )M~a b~r(afl)= cos (a - f l )  M ~ ;  b~K(~fl)= 1/2 

1_ 
1/2 

Taking now into account all multipole orders one can finally write 

2 

i = 1  2K 

s (34) 
E E b  (rO. 

j = l  2K 
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4. Simple Examples 

In order to obtain some physical insight into the theory developed 
above we shall now consider two simple examples, namely, the degen- 
erate case and symmetric two-shell model. 

a) The Degenerate Case. In this case we find 

E~ = Gf2; (Ui) z = 1 A A 
2~; (~)~- 2a 

for all i, and 
2 f 2 = ~ ( 2 j +  1). 

J 

The matrix F is constructed straight forwardly and one finds 

xE[h(abJ)]2 ( 2E e)(u2-v z) 2uvo) \ 

F= "(b2E)2_eoz co(uZ--v 2) 2E(u2--v2) 2 2E(u2-v2)Zuv I .  (35) 

2uvo) 2E(uZ-vZ)2uv 2E(2uv) z / 

The eigenvalues of this matrix are: 

x Z ['h (a b J)] 2 
__ a b  " 2 3 : 0 .  21;2 2ETco ' 

Only the first attains the value 1, the corresponding co being 

o~ = 2E-  ~: ~ [h (a bJ)] z. (36) 
a b  

From the eigenvector belonging to 21, the eigenfunctions ~9, r can 
be found to be 

~h~b - h(aba) 
[ Z  h (a bj)2] ~ ; r = O. (37) 

ab  

Eqs. (36) and (37) are the well-known solutions of the TD equations 
for the degenerate case zl, which for an SDI become identical to the 
corresponding ones in the RPA treatment a. Of course, only the collec- 
tive state is present. 

b) The Symmetric Two Shell Model 2z. This consists of two levels of 
equal angular momentum j and opposite parity. Let e be the energy of 
the first level and l= j - �89  its orbital angular momentum. 

For the second level the corresponding quantities are-e and l=j+ �89 

21. ARVIEU, R., and S. A. MOSZKOWSKI: Phys. Rev. 145, 830 (1966). 
22. HOGAASEN-FELDMAN, J. : Nuclear Phys. 28, 258 (1961). 
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In this simple case we can solve everything in closed form. Let X 

denote the expression -~-- ,  where 2 f 2 = ( 2 j +  1). It is then easily seen 
that one obtains: 

vl = u 2 =  ' ul = v 2 =  (38) 

E=E x = E2 = tr f2; A = ~c f2(1 - X 2 )  ~r. 

Of course, E denotes the energy of a quasi-particle while A is half 
the energy gap. 

If we restrict ourselves to the 2 + states, the secular determinant (19) 
reduces to (h =h (ab 2)) 

2E h 2 tr h(1 - X 2 )  ~ tc 
(2E) z _ (D 2 -- 1 0 (2E)  2 _ (.02 

2 E X  2 h 2 lr 1 
0 (2E) 2 _ ~~ 2 - 0 (39) 

h E ( 1 - x E ) ~ x  2 E ( 1 -  X2)h2x 1 
(2E)2_co 2 0 (2E) 2 _~-~-- - - -  1 

and possesses only two roots for co, which are 

co~=2E(2E-tcXZ h2); co~=(2E-h2 x ) [2E- tch2(1 -X2)] .  (40) 

The eigenvalues of matrix F will now be: 

/r h z 
2,, 2 -  (2E)2_co2 [E(Z-X2)+-]/E 2 X4 +co2 (1 - X ~  

2E ~ h z X 2 (41) 
2 3 = ( 2 E ) 2  CO2" 

Now both the first and third eigenvalues diverge and property iii) is 
violated. This is because the two-quasi-particles energies are degenerate. 
The r and ~b eigenvectors can be calculated for both states now, and 
one finds 

r = - - r  - l - - -L---  { c o i + 2 g - � 8 9  ~ 

~111 = - ~ 2 2 1  - 1 ~  { - c o l . - l - 2 E - � 8 9  I- 

1 (42) 
r = - r - - -  {co2 + 2 E - � 8 9  tc hE ( 2 -  X2)} ~ 

1 
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It is instructive to study now the same problem along conventional 
lines, the RPA matrices will be now: 

[ 2E-~h2/2 -teh2(1-X2)/2'~ 
P=~_xhZ(I_X2)/2 2E_xh2/2 ], (43a) 

0 (43 b) Q = ( - t c h  2 X2/2 --~ch; X2/2) . 

The eigenvalues of the RPA matrix 

are again given by (40), as expected. The eigenvectors are also given by 
Eq. (42). 

It is interesting to compare the solution (40) with the Tamm-Damcoff 
approximations and with the solution obtained by taking only the 
particle-hole part of the interaction. We obtain respectively 

~2TD=2E-�89 ogZTD=2E--)xhZ(2--X2) (44) 

and 
[(DP- H] 2 = 2E [ 2 E - l c  h2(1 -X2)]. (45) 

We see that Eq. (45) does not tend to the correct value in the degenerate 
case (X~0) ,  and it misses the first solution (40). 

5. Conclusion 

A method has been developed to solve in a very simple way the 
RPA equations without diagonalizing a huge matrix. It can be applied 
only to separable interactions, like the SDI, but it takes into account all 
terms of the interaction and all multipole orders. 

The method has been illustrated by two simple examples. It is hoped 
it will provide a more convenient tool to investigate the nuclear structure 
of heavy deformed nuclei, where only approximations which discard a 
lot of terms of the interactions have been so far applied. 
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