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Abstract
A k-tree is either a complete graph on k vertices or a graph that contains a vertex whose
neighborhood induces a complete graph on k vertices and whose removal results in a k-
tree. If the comparability graph of a poset P is a k-tree, we say that P is a k-tree poset.
In the present work, we study and characterize by forbidden subposets the k-tree posets
that admit a containment model mapping vertices into paths of a tree (CPT k-tree posets).
Furthermore, we characterize the dually-CPT and strong-CPT k-tree posets and their
comparability graphs. The characterizations lead to efficient recognition algorithms for the
respective classes.

Keywords Containment models · Comparability graphs · k-trees · CPT posets

1 Introduction and Definitions

Different classes of posets have been defined by imposing geometric restrictions to the sets
used in their containment models [2, 4, 5, 8, 16]. Posets admitting a containment model
using intervals of a line, which are called CI posets and are known to be the posets with
dimension at most 2, are exactly the posets whose comparability graphs belong to the well
understood class of permutation graphs [3]. In [1, 2], we have initiated the study of those
posets that admit a containment model mapping vertices into paths of a tree, which are called
CPT posets and clearly constitute a superclass of CI posets. We have found remarkable
differences between CI and CPT posets. First, the dimension of CI posets is bounded
above by 2, but the dimension of CPT posets is unbounded, this means that for every
positive integer d there exists some CPT poset with dimension greater than d . Second, any
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CI poset admits a CI model using non trivial paths, however, there exist CPT posets that
require the use of trivial paths in any CPT model. And third, the fact of being a CI poset is
a comparability invariant, but the fact of being CPT is not. Figure 1 illustrates the previous
observations, the poset Nd is CPT . In any CPT representation of Nd the vertex labelled
b has to be represented by a trivial path. The dual poset N is non CPT [2]. Determining
classes of posets in which being CPT is an invariant of comparability and understanding
the structure behind it is a challenging problem. In Section 4, we solve this problem within
a subclass of CPT posets.

As opposed to the previous differences, both classes are hereditary, meaning that any
subposet of a CI (resp. CPT ) poset is also CI (resp. CPT ). Consequently, they admit a
characterization by a family of minimal forbidden subposets. It is well known that the for-
bidden structures for being CI are the 3-irreducible posets, i.e. the minimal posets with
dimension 3 [9, 14]. Do the 3-irreducible posets admit a CPT representation? In other
words, can the obstacle that does not allow a 3-irreducible poset to have a containment
model using paths of line be overcome by relaxing the host structure of the model? In
Section 2, answering this question, we determine which of the 3-irreducible posets are
CPT . In addition, using them, we describe an infinite family of posets which are minimal
forbidden subposets for being CPT . The complete family of minimal forbidden subposets
needed to characterize the class of CPT posets is unknown.

Finally, focusing in the algorithmic aspects of the recognition problems, CI poset can
be recognized in linear time [15]. Determining the time complexity of recognizing CPT

posets is an open problem.
Accordingly, it is natural to ask whether there are interesting classes of posets where

these problems can be solved efficiently. In [2], we consider successfully two classes: the
posets whose comparability graphs are split (the vertices can be partitioned into a clique
and a stable set), and the posets whose comparability graphs are trees. Continuing with that
work, in Section 3 of the present paper, we investigate (and solve) the characterization and
the recognition problem in the class of posets whose comparability graphs are k-trees. In
opposition to the small diameter, unbounded treewidth case of split graphs, we turn here to
k-trees that are also chordal graphs, but with unbounded diameter and bounded treewidth
[3]. In Section 5, we pose several open problems.

1.1 Definitions

A partially ordered set or poset is a pair P = (X, P ) where X is a finite non-empty set
and P is a reflexive, antisymmetric, and transitive binary relation on X. As usual, we write

Fig. 1 Poset N is non CPT . Its dual Nd is CPT . In any CPT representation of Nd , the vertex labelled b

has to be represented by a trivial path. Thus, the poset M obtained from Nd by adding b� is non CPT
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x ≤ y in P for (x, y) ∈ P , and x < y in P when (x, y) ∈ P and x �= y. If x < y or y < x,
we say that x and y are comparable in P and write x ⊥ y. An element x is covered by y in
P, denoted by x <: y in P, when x < y and there is no element z ∈ X for which x < z and
z < y. The down-set {x ∈ X : x < z} and the up-set {x ∈ X : z < x} of an element z are
denoted by D(z) and U(z), respectively. We let D[z] = D(z) ∪ {z} and U [z] = U(z) ∪ {z}.
When D(z) = ∅, we say that z is a minimal element of P, and that z is maximal when
U(z) = ∅.

A chain in P is a subposet whose vertices are pairwise comparable. The height of P is
the number of vertices in its maximum chain. The restriction of the relation P to a subset Y

of X is denoted by P(Y ). We use P(Y ) to refer to the subposet (Y, P (Y )) of P. The dual of
a poset P = (X, P ) is the poset Pd = (X, P d) where x < y in Pd if and only if y < x in P.

A containment model MP of a poset P = (X, P ) maps each element x of X into a set
Mx in such a way that x < y in P if and only if Mx is a proper subset of My . We identify
the containment model MP with the set family (Mx)x∈X.

A poset P = (X, P ) is a containment order of paths in a tree, or CPT poset for brevity,
if it admits a containment model where every Wx is a path of a tree T , which is called the
host tree of the model. When T is a path, P is said to be a containment order of intervals or
CI poset for short.

The comparability graph GP of a poset P = (X, P ) is the simple graph with vertex set
V (GP) = X and edge set E(GP) = {xy : x ⊥ y}. A graph G is a comparability graph if
there exists some poset P such that G = GP. An undirected graph G = (V ,E) admits a

transitive orientation
−→
E if −→

xy ∈ −→
E and −→

yz ∈ −→
E , then −→

xz ∈ −→
E . The graphs whose edges

can be transitively oriented are exactly the comparability graphs [7].
A set M ⊆ V is a module of a graph G = (V ,E), (homogeneous set [6]) if and only

if N(x) − M = N(y) − M for all x, y ∈ M . The whole set V and the singleton sets {x},
for any x ∈ V , are modules of G. These modules are called trivial modules. A graph G is
prime if all its modules are trivial. Otherwise G is decomposable or degenerate.

A set M ⊆ X is a module of a poset P = (X, P ) if M is a module of GP. So, for all x,
y ∈ M and v ∈ X − M , it is true that x ⊥ v in P if and only if y ⊥ v in P. The trivial
modules of GP, X and {x} with x ∈ X, are also the trivial modules of P. If all modules of a
poset are trivial, we say that it is a prime poset. Otherwise, we say that it is decomposable.

If two posets are isomorphic, then their comparability graphs are also isomorphic. In
general, the converse does not hold. We say that two posets are associated if their compara-
bility graphs are isomorphic. In this paper, we do not distinguish between isomorphic posets
(or graphs).

Theorem 1 ([6]) Let P and P� be associated posets. Then the following statements hold.

1. If P is prime, then P� = P or P� = Pd .
2. If S is a subposet of P and P is prime, then S or Sd is a subposet of P�.
3. If S is a subposet of P and S is prime, then S or Sd is a subposet of P�.

2 Forbidden Structures for CPT Posets

The following necessary condition for being a CPT poset was stated in [2].

Lemma 2 If z is a vertex of a CPT poset P, then the subposet P(D(z)) induced by the
down-set of z is CI .
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The posets in Figs. 2 and 3 and their dual posets are said to be 3-irreducible. They form
the family of forbidden induced subposets for being CI . This family was independently
determined by Kelly [9], and Trotter and Moore [14]. A consequence of the previous lemma
is that every 3-irreducible poset plus a least upper bound is a non CPT poset. This motivates
the following definition.

Definition 3 Given a poset P, we let �P be the poset obtained by adding a maximum element
to P. We name T op3−irred the set {�P | with P any 3-irreducible poset }.

Therefore, the T op3−irred posets are forbidden subposets for being CPT . A question
that naturally arises is whether the T op3−irred posets are minimal forbidden subposets.
Furthermore, are the 3-irreducible posets CPT ? In a first inspection, we found without
much difficulty that almost all 3-irreducible posets are CPT .

Lemma 4 Every 3-irreducible poset except In with n ≥ 0 is CPT .

Proof Let P = (X, P ) be a 3-irreducible poset, see Figs. 2 and 3. First we consider the case
when P has a maximal element x covering a unique element x�. Observe that in such case P
is one of the following posets: Bd , C, Cd , CX1, CXd

1 , CX2, EX1, EXd
1 , EX2 = EXd

2 , FXd
1 ,

En, Ed
n, Fn = Fd

n or Hn = Hd
n, with n ≥ 0.

Since P is a minimal non CI poset, P − x admits a CI model M on a host path T . Let
q ∈ V (T ) be an end vertex of Wx� . Let T � be the tree obtained from T by adding a pendant
vertex q � adjacent to q. Also, let Wx be the path of T � obtained by adding the vertex q � to
the path Wx� . Clearly, M plus the path Wx is a CPT model of P on the host tree T �.

When P is one of the posets B or CXd
2 , a similar argument can be applied using a minimal

vertex x covered by a unique vertex x�. Otherwise, if P is none of the posets cited above nor

Fig. 2 These posets, the ones in Fig. 3, and their dual posets constitute the 3-irreducible family
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Fig. 3 These posets, the ones in Fig. 2, and their dual posets constitute the 3-irreducible family

In for n ≥ 0, then P is one of the following posets: D, Dd , CX3, CXd
3 , FX1, FX2 = FXd

2 ,
An = Ad

n, Idn, Gn = Gd
n or Jn = Jd

n, with n ≥ 0. A CPT model of each one of these posets
is shown in Figs. 4 and 5.

Fig. 4 CPT models of 3-irreducible posets D, Dd , CX3, CXd
3 , FX1, FX2 = FXd

2
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Fig. 5 CPT models of 3-irreducible posets An = Ad
n , Idn , Gn = Gd

n and Jn = Jd
n , with n ≥ 0

Remark 5 Let P be a poset whose comparability graph is the chordless path [v1, v2, . . . , vn],
n ≥ 4. Consider any CI model (Wvi

)1≤i≤n of P, and let Wvi
be the interval [li , ri] for

1 ≤ i ≤ n. Then

• l1 < l3 < l5 < . . . , r1 < r3 < r5 . . ., l2 < l4 < l6 < . . ., and r2 < r4 < r6 < . . .; or

Fig. 6 Construction used in Lemma 6 to prove that the posets In are non CPT
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• l1 > l3 > l5 . . ., r1 > r3 > r5 > . . ., l2 > l4 > l6 > . . ., and r2 > r4 > r6 > . . ..

In addition, when n is odd and v1 < v2, in the first case (second case,resp.), if I is any
interval contained in [l2, rn−1] ([ln−1, r2], resp.), then I properly contains or is properly
contained in some of the intervals Wvi

of the model.

Lemma 6 For every n ≥ 0, the 3-irreducible poset In in Fig. 3 is not CPT .

Proof In order to derive a contradiction, suppose there exists a CPT model (Wv)v∈V (In)
of In. Label the vertices of In as in Fig. 6, and let A be the vertex set D(d1) ∩ D(d2). The
subposet In(A) has a CI model contained in the path U = Wd1 ∩ Wd2 . Let rv and lv be the
right and left extremes, respectively, of the path Wv with v ∈ A. Without loss of generality,
we assume that lt2 is nearer to lU than ltn+2 (see Fig. 6).

By Remark 5 and the fact that none of the paths Wv with v ∈ A − {c} can either contain
or be contained in Wc, we have that lc is between lU and lt2 , or rc is between rtn+2 and rU .
By symmetry, we can assume without loss of generality that lc is between lU and lt2 . This
implies that rc is between lc and rs1 .

Moreover, the path Wt1 must be contained in Wd1 , contain Ws1 and not be contained in
U , so lU is an interior point of the path Wt1 . Thus, Wc turns out to be contained in Wt1 ,
contradicting the fact that c and t1 are incomparable.

Lemma 7 The T op3−irred posets are forbidden subposets for being CPT . All of them
except �In with n ≥ 0 are minimal.

Proof The first statement is a direct consequence of Lemma 2. Let P = (X, P ) be a 3-
irreducible poset other than �In and let u be the maximum of �P. By Lemma 4, �P − u = P
is CPT . Now, let x ∈ X. Since P is 3-irreducible, then P − x is CI . Thus, P − x plus any
maximum element is CI , which implies that �P − x is CPT .

In addition to the examples in the previous lemma, we have proved that the posets In
for n ≥ 0 and the posets Nd and M in Fig. 1 are forbidden subposets for the class CPT .
While describing the complete list of forbidden subposets remains as an open problem,
the next theorem shows that the family T op3−irred provides a complete characterization
by forbidden subposets of CPT posets within any class in which the given necessary con-
dition to be CPT is also sufficient. Later, we will use it in the particular case of k-tree
posets.

Theorem 8 LetA be any class of posets in which the necessary condition to be CPT given
by Lemma 2 is also sufficient. A poset P ∈ A is CPT if and only if P is T op3−irred -free.

Proof By Lemma 7, any CPT poset is T op3−irred -free. Conversely, if P is T op3−irred -
free, then the down-set of each vertex is CI , i.e. P satisfies the necessary condition to be
CPT . Since the necessary condition is also sufficient in A, we have that P is CPT .

Notice that if A is a hereditary class, then in Theorem 8, T op3−irred can be replaced by
T op3−irred ∩ A.
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2.1 CPT Representations with no Trivial Paths

As we noted in the introduction, there exist posets that do not admit a CPT model unless
some vertex is represented by a trivial path. Actually, the only minimal example of such a
poset that we have found is the poset N in Fig. 1. Sometimes, in the process of modifying
a CPT representation to justify the existence of some other particular representation, the
possible existence of such vertices demands a special treatment. The following technical
lemma will be used in the proof of Theorem 17.

Lemma 9 Let P be a CPT poset. If P admits a CPT model in which no path is reduced
to a vertex, then P admits a CPT model in which no path is reduced to a vertex and no two
paths of the model have a common end vertex.

Proof Let M = (Wx)x∈X be a CPT model of P, and assume that each Wx contains at least
two vertices of the host tree T . We will proceed by induction on the number of coincident
ends. If there are no common ends, there is nothing to be proved.

Let Wv be a shortest path between those sharing at least one of its end vertices with other
path of the model. Let q ∈ V (T ) be one shared end vertex of Wv . Let q1, q2, . . . , qk denote
the neighbors of q in T . Since no path is reduced to a single vertex, we have that Wv must
contain some other vertex qi , say q1. To obtain a new CPT model of P, we will consider
two cases.

First assume no other path of the model is equal to Wx . Then, we proceed by subdividing
the edge qq1 of T with a vertex q �

1 and doing the same subdivision in all the paths of M

containing that edge. After that, replacing the path Wv with the path W �
v which is obtained

by removing from Wv the extreme vertex q (in this case the new end of W �
v turns out to be

q �
1; W �

v is not reduced into a vertex). The other paths of M are not modified.
Since in the new model, the only path that contains the vertex q �

1 is W �
v , it is clear that the

number of paths with coincident ends has decreased. We claim that the proper containment
relation between the paths has not been modified. Indeed, the only changes that could occur
are that either W �

v is properly contained in a path in which Wv was not, which clearly is not
possible; or that W �

v does not contain properly a path Wx that Wv did contain. This can not
happen because in that case q has to be end vertex of Wx and Wx has to be shorter than Wv ,
contradicting its choice.

Now suppose that some paths of the model are exactly like Wv . By identifying all them,
we can assume that Wu is the only such path. Let p ∈ V (T ) be the other end vertex of Wv .
By subdividing edges if necessary we can assume that Wv contains at least two edges qq1
and p1p. Then, we proceed by subdividing the edges qq1 and p1p of T with new vertex
q �

1 and a nex vertex p�
1, respectively, and doing the same subdivision in all the paths of M

containing that edges. Thereafter, replacing the path Wv with the path W �
v which is obtained

by removing from Wv the extreme vertex q (in this case the new end of W �
v turns out to be

q �
1 and W �

v it is not reduced into a vertex), and also replacing the path Wu with the path W �
u

which is obtained by removing from Wu the extreme vertex p (in this case the new end of
W �

u turns out to be p�
1 and W �

u it is not reduced into a vertex). The other paths of M are not
modified.

Clearly, the number of common end vertices between the paths of this new model is less
than in the model M . Let us show that the proper containment relation did not change. This
is clear between Wv and Wu. Then, by symmetry and because the paths Wv and Wu are
the only ones that were modified, it is enough to see what happen between W �

v and W �
x for

x �= v, u. Since Wv and Wu were shortened to W �
v and W �

u respectively, we have that any
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path of the model that properly contains Wv (resp., Wu) also contains W �
v (resp., W �

u). On
the other hand, if Wv properly contains a path Wx , by election of v, Wx and Wv do not share
an end vertex, so W �

v contains W �
x , and the proof is complete.

3 The Class of k-tree Posets

A graph G is a k-tree if it can be built recursively from a complete graph on k vertices by
adding in each step a new vertex adjacent to exactly k neighbors which in turn induce a
complete subgraph [12]. The 1-tree graphs are the trees, i.e. the connected graphs without
cycles. The class of k-tree graphs has been widely studied [3]. In this paper, we introduce
the naturally related notion of k-tree poset.

Definition 10 A poset P is a k-tree if its comparability graph GP is a k-tree graph.

Just like k-tree graphs, k-tree posets can be defined recursively.

Construction process 11 Given a poset P� = (X�, P �), a new poset P is obtained by adding
a vertex z to X� through one of the following procedures.

(u) Chose a ∈ X� such that D[a] induces a chain of size k and do a <: z; or
(d) chose a ∈ X� such that U [a] induces a chain of size k and do z <: a; or
(m) chose a, c ∈ X� such that D[c] ∪ U [a] induces a chain of size k and do c <: z <: a.

Clearly the given poset P� is a subposet of the new poset P.

Lemma 12 A poset P is a k-tree if and only if P can be obtained from a chain of k elements
by repeatedly applying the construction process 11.

Proof Clearly any poset built from a k-chain using the described procedure is a k-tree.
Thus, let P = (X, P ) be any k-tree poset and let us show by induction on |X| that P can be
obtained using the construction process 11.

If |X| = k, then P itself is a chain on k vertices; and if |X| = k + 1, then P is obtain
using procedure (i). So let |X| > k + 1.

Since GP is a k-tree, there is a vertex z ∈ X such that G� = GP − z is a k-tree, and
N(z) = {z1, z2, . . . , zk} is a clique. Therefore the k-tree poset P� = (X − {z}, P (X − {z})),
can be obtained using the construction process 11; in what follows we will show that P can
be obtained from P� in one more step. Since every maximal clique of a k-tree on at least
k + 1 vertices has size k + 1, then there exists u ∈ X − N [z] such that N(z) ∪ {u} =
{z1, z2, . . . , zk, u} induces a maximal chain in P�. We will consider three cases.

Vertex u is maximal in P�: in such a case we can assume z1 < z2 < . . . < zk < u.
Since z 
 u and zk ⊥ z, we have zk < z; which implies that D[zk] is exactly the k-chain
z1 < z2 < . . . < zk . We conclude that z can be added by procedure (u) doing zk <: z.

Vertex u is minimal in P�: in such a case we can assume u < z1 < z2 < . . . < zk . Since
z 
 u and z ⊥ z1, we have that z < z1; which implies that U [z1] is exactly the k-chain
z1 < z2 < . . . < zk . Hence, z can be added by procedure (d) doing z <: z1.

Otherwise, we can assume z1 < z2 < . . . < z� < u < z�+1 < . . . < zk for some
1 ≤ � ≤ k. Since z 
 u, z ⊥ z� and z ⊥ z�+1, we have that z� < z < z�+1, which implies
that D[z�] ∪ U [z�+1] is exactly the k-chain z1 < z2 < . . . < z� < z�+1 < . . . < zk .
Therefore, z can be added by procedure (m) doing z� <: z <: z�+1.
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Definition 13 The elements of a k-tree poset P can be totally ordered as z1, z2, . . . , zn in
accordance with the order in which they appear in a given construction process. The first k

elements are the ones in the initial chain, so z1 < z2 < . . . < zk in P. Such a total order
of the vertices is called a construction sequence of P. The construction sequence is called
good when zj < zr in P for all j with r < j ≤ n, where zr is the last element in the
sequence that is a maximal element of P.

The following remark is a direct consequence of the construction process itself and the
fact that every maximal clique of a k-tree graph on at least k + 1 vertices has size k + 1.

Remark 14 Let z1, z2, . . . , zk, . . . , zn be a construction sequence of P. Then,
(1) Since the first vertex zk+1 can always be added using procedure (u), we will assume

zk < zk+1.
(2) An element zj is maximal in P if and only if it was added by procedure (u).
(3) An element zj �= z1 is minimal in P if and only if it was added by procedure (d).
(4) If zj was added by procedure (d), then there is a unique i < j such that zi is maximal

and zj < zi in P.
(5) If zj was added by procedure (m), then there is a unique i < j such that zi is maximal

and zj < zi in P.

Next, we will show that every k-tree poset admits a good construction sequence. An
example is shown in Fig. 7.

Lemma 15 Let P be a k-tree poset. There exists a construction sequence z1, z2, . . . , zn of
P such that if r = max {i : zi is maximal in P}, then zi ∈ D[zr ] for all i ≥ r .

Proof We will proceed by induction on n, the number of elements of P. Let z1, z2, . . . , zn

be any construction sequence of P. If zn is maximal, then the result is trivial. Hence, we
can assume that n ≥ k + 3 and that zn was added using procedure (m) or (d). In any case,
zn is comparable with exactly k elements which together with an element u
zn induce a
maximal k + 1-chain C of P. Let w be the maximum of C, we have u < w and zn < w. Let
z�

1, z
�
2, . . . , z

�
n−1 be a construction sequence of P� = P − {zn} such that z�

i ∈ D(z�
t ) for all

i > t where z�
t is the last maximal element in this construction sequence. Keep in mind that

the down and the up-set of every vertex is totally independent of the construction sequence.
Clearly, if zn < z�

t , then zn can be added at the end of the construction process of P� and the
proof follows.

Thus assume zn /∈ D(z�
t ) and let I � ⊆ {1, 2, . . . , n − 1} such that the vertices z�

i with
i ∈ I � are the ones in the maximal chain C. We claim that i < t for every i ∈ I �, what
allows to add in the process of P� the vertex zn immediately before z�

t , finishing the proof.
Indeed, let s ∈ I � such that w = z�

s . Since zn < w and zn ≮ z�
t , then w �= z�

t and so s < t .
In addition, any vertex z�

i with i ∈ I � − {s} was added using procedure (m) or (d). Thus, if
i > t , then s < t < i and the two maximal elements (w = z�

s and z�
t ) are greater than z�

i in
contradiction with either (4) or (5) of Remark 14. We concluded that i < t and the proof
follows.

The following lemma supplies the key to the proof of the main Theorem 17.

Lemma 16 Let zr be the last maximal element in a good construction sequence
z1, z2, . . . , zn of P; n ≥ k + 1. Then,
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(i) {z1, z2, . . . , zr−1} ∩ D(zr) is a chain C of size k; and
(ii) if s < r ≤ j and zs⊥zj , then zs < zj and zs ∈ C.

Proof Since zr is maximal, then it has label (u). Therefore, (i) and (ii) for j = r hold
trivially.

To prove (ii) for r < j , first recall that in a good order, r < j implies zj < zr . Let t ≤ s

be such that zt is maximal and zs ≤ zt . If zj < zs , then zj < zt , which implies that zt and zr

are maximal elements greater than zj in contradiction with either (4) or (5) of Remark 14.
Thus zs < zj , and so zs ∈ D(zr). By item (i), zs ∈ C.

Theorem 17 A k-tree poset P is CPT if and only if P(D[z]) is CI for each maximal
element z of P. Moreover, in such a case, P admits a CPT model with no path reduced to a
single vertex and no two paths with a common end vertex.

Proof The necessary condition follows from Lemma 2. So let P = (X, P ) be a k-tree such
that D[z] induces a CI poset for any maximal element z. We will prove by induction on |X|
that P admits a CPT model such that no path is reduced to a vertex and no two paths have
a common end vertex.

If |X| = k or k + 1, then P is a chain and the proof is trivial. Accordingly, we assume
|X| ≥ k + 2.

By Lemma 15, there is a good construction sequence z1, z2, . . . , zn of P. Let zr be the
last maximal element in this order and let X� be the vertex set {z1, z2, . . . , zr−1}. The k-tree
poset P� = P(X�) admits a CPT model M � = (W �

x)x∈X� such that no path is reduced to a
single vertex and no two paths have a common end vertex. On the other hand, by hypothesis,
P�� = P(D[zr ]) is CI . Thus P�� admits a CI model M �� = (W ��

x )x∈D[zr ] such that no path is
reduced to a vertex and no two paths have coincident ends [4].

Next, we will obtain a CPT model of P using M � and M ��. By Lemma 16 (i), X� ∩D[zr ]
is a chain C of size k. Therefore, the vertices of C are represented in M � and in M ��. Notice
that in both models the paths do not have coincident ends and no path is reduced to a vertex.
Consequently, by subdividing edges where necessary, we can make sure that for each vertex
x of the chain C, the paths W �

x and W ��
x in M � and M ��, respectively, are equal.

Let T � be the host tree of the model M �. Let T denote the tree obtained from T � by adding
two new branches, one in each end vertex of W �

w , where w is the top element of the chain C.
Let M be the model on the host tree T obtained from M � by adding (along the path defined
by the two new branches) the model M �� in such a way that, for each vertex x in the chain
C, the paths W �

x and W ��
x are coincident and become a single path which will be denoted by

Wx . See an example in Fig. 7.
Thus we have the path family M = (Wx)x∈X on the host tree T with

Wx =
⎧

⎨

⎩

W �
x, if x ∈ X� − C;

W ��
x , if x ∈ D[zr ] − C;

W �
x = W ��

x , if x ∈ C.

Now we will prove that M is a CPT model of P. Let x and y be any two vertices of P.
Clearly if one of the vertices belong to C, or both vertices belong to X� −C, or both vertices
belong to D[zr ] − C, then x < y in P if and only if Wx ⊂ Wy . So we just need to see
what happens when one vertex is in X� − C and the other is in D[zr ] − C, say x = X� − C

and y ∈ D[zr ] − C. Therefore, x = zs for some s < r and y = zt for some t ≥ r . By
Lemma 16, zs
zr in P .

Suppose Wzs ⊂ Wzt , then W �
zs

⊂ W ��
zt

, which implies W �
zs

⊂ W �
w (see Fig. 7); and so

s < w in P, in contradiction with the fact that zs �∈ C.
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Fig. 7 A poset P with the vertices labelled in a good construction sequence (Definition 13). The CPT model
M � for P[1, 2, . . . , 11] and the CI model M �� for P[D[12]] are put together into the CPT model M for P,
illustrating the proof of Theorem17

Now we will show that Wzt �⊂ Wzs . If t = r , then the proof is clear since Wzr is contained
in no path of the model M .

If t > r and Wzt ⊂ Wzs , then W ��
zt

⊂ W �
zs

, which implies W ��
zt

⊂ W ��
w and so zt < w in P

in contradiction with Lemma 16.
Clearly, no path of the model M is reduced to a single vertex. Therefore by the Lemma 9,

P admits a CPT model such that no path is reduced to a vertex and no two paths have a
common end vertex; which concludes the inductive proof.

The following corollary, stated for emphasis, follows inmediately from Theorems 8 and
17.

Corollary 18 A k-tree poset is CPT if and only it is T op3−irred -free.

Another significant consequence of the previous theorem is the existence of an efficient
algorithm for recognizing CPT k-tree posets.

Corollary 19 Determining whether a given poset is CPT and k-tree can be done in
polynomial time.
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Proof First, determining whether the comparability graph of a given poset P is a k-tree can
be solved in polynomial time [13]. In case of a positive answer, to determine if P is CPT ,
by Theorem 17, it is enough to see whether the down-set of each maximal element of P
induces a dimension 2 poset. This can be done in linear time [15].

We finish this section with a theorem which improves Corollary 18 in the sense that
it gives a characterization of CPT k-tree posets using a minimal family of forbidden
subposets.

Theorem 20 Let B, C, En and Fn be the posets in Figs. 2 and 3.

i) A 2-tree poset P is CPT if and only if P does not have �B or �Bd as subposet.
ii) A 3-tree poset P is CPT if and only if P does not have �B, �Bd , �C, �Cd , �En or �Ed

n with
n ≥ 0 as subposet.

iii) A k-tree poset P with k ≥ 4 is CPT if and only if P does not have �B, �Bd , �C, �Cd , �En,
�Ed
n or �Fn with n ≥ 0 as subposet.

Proof Let �H be a T op3−irred subposet of a k-tree poset P. Since k-tree graphs are chordal,
we have that k-tree posets are acyclic. Therefore, H is none of the following posets nor their
respective dual posets: D, CX1, CX2, CX3, EX1, EX2, FX1, FX2, An, In, Gn, Jn, Hn, with
n ≥ 0.

If P is 2-tree, then h(P) = 3, thus h(H) < 3. It implies that H is either B or Bd .
Analogously, if P is 3-tree, then h(H) < 4 and the proof follows.

4 Dually and Strong-CPT Subclasses

A poset P is dually-CPT if it is CPT and Pd is also CPT . If P is CPT and every poset
associated with P is also CPT , then P is strong-CPT . The dually-CPT graphs and strong-
CPT graphs are the comparability graphs of dually-CPT posets and strong-CPT posets,
respectively. It is clear that strong-CPT class is contained in dually-CPT class. However,
it is not known whether the two classes are distinct [2].

Lemma 21 Let P and P� be associated posets. If H is a prime poset and �H is subposet of

P, then �H, �Hd , �Hd or �Hd
d
is subposet of P�.

Proof By item 3 of Theorem 1, either H or Hd is subposet of P�. In the former case, since
�H is subposet of P, we have that in P� there is a vertex comparable with every vertex of H,
say u. Since H is prime, then either u is greater than every vertex of H or u is smaller that

every vertex of H, which means that �H or �Hd
d

is subposet of P�. In the latter case, in an
analogous way, we have that �Hd or �Hd is subposet of P�.

Theorem 22 Let P = (X, P ) be a k-tree poset with k ≥ 2. The following statements are
equivalent.

i) P is strong-CPT .
ii) P is dually-CPT .
iii) P does not contain �B, �Bd , �C, �Cd , �En, �Ed

n, �Fn, with n ≥ 0, or their respective dual
posets as subposet.
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For k = 2, 3 the given family of forbidden subposets is not minimal. For k = 2, the list of
posets in iii) can be reduced to only �B and �Bd . For k = 3, �Fn, with n ≥ 0, can be removed
from the list.

Proof Clearly, any strong-CPT poset is dually-CPT . If P is dually-CPT , then, by defi-

nition of dually-CPT and Theorem 20, none of the posets �B, �Bd , �C, �Cd , �En, �Ed
n , �Fn, with

n ≥ 0, nor their respective dual posets can be subposets of P. So we have proved ii) implies
iii).

Let P be a k-tree poset satisfying iii). By Theorem 20, P is CPT . Assume, to derive a
contradiction, that P is non strong-CPT , thus there exist a poset P� associated with P which

is non CPT . Notice that P� is a k-tree, then, by Theorem 20, P� contains �B, �Bd , �C, �Cd , �En,
�Ed
n or �Fn, with n ≥ 0, as subposet. Since every 3-irreducible poset is prime [9], the proof

follows by Lemma 21.

Theorem 23 Let G be a comparability k-tree graph. The following conditions are
equivalents.

i) G is strong-CPT .
ii) G is dually-CPT .
iii) G does not contain neither G

�B, G�C, G�En
nor G

�Fn with n ≥ 0 as induced subgraph.
For k = 2, 3 the given family of forbidden subgraphs is not minimal. For k = 2, the
list of graphs in iii) can be reduced to G

�B and G
�Bd . For k = 3, G

�Fn , with n ≥ 0, can
be removed from the list.

Proof By Theorem 22, i) and ii) are equivalent, and iii) implies i).
Let G = GP with P strong-CPT . Assume, to derive a contradiction, that G

�H is an
induced subgraph of G, where H is any one of the posets B, C, En or Fn. Then P contain a
subposet associated with �H. Since H is prime the only posets associated with �H are �H, �Hd ,
�Hd and �Hd

d
. In any case, since P is strong-CPT , we have a contradiction with Theorem

22. We have proved that i) implies iii).

5 Open Problems

Several problems related to CPT representations of posets remain open. The time complex-
ity of the recognition problem of CPT posets is unknown.

Although a few minimal non CPT posets have been depicted, the whole family that
would allow a total characterization of CPT posets by forbidden subposets has not been
fully described. We have solved these issues restricted to the class of split posets and to
the class of k-tree posets. However, we have not obtained a characterization by forbidden
subgraphs of CPT split graphs or CPT k-tree graphs. An extra complexity in characteriz-
ing CPT graphs by forbidden structures is the fact that being CPT is not a comparability
invariant. This means that a same graph may be the comparability graph of a poset that is
CPT and of another poset which is non CPT .

In the process of reviewing the present paper, one of the anonymous referees provided a
simple proof of the following lemma.
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Lemma Let x and y be distinct maximal elements in a poset P with DP(x) � DP(y).
Suppose DP(x) � DP(z) for every element z �= x, y. Let P� be the poset obtained from P
by removing y and adding a new maximal element y� so that DP�(y�) = {x} ∪ DP(y). If P
is a CPT poset, then P� is also a CPT poset.

Let P be the poset obtained from the 3-irreducible poset An by adding a new maximal
element y whose down-set contains all the minimal elements of An and any arbitrary subset
of the maximal elements of An. By applying the previous lemma as many times as necessary,
the non CPT poset �An is obtained. Therefore, P is non CPT . Even more, P is minimal non
CPT . Notice that this implies that there are exponentially many different minimal forbidden
subposets for the class CPT that have the same structure as the poset N.

In addition, we have observed that new forbidden subposets can be obtained by applying
the previous reasoning to some other 3-irreducible posets. However, for instance, the mini-
mal non CPT poset M in Fig. 1 cannot be obtained from a 3-irreducible poset by applying
the previous lemma. We conjecture there are other forbidden subposet that are obtained by
adding an element below some other element which need to be represented by a trivial path.
For short, call singular the CPT posets that require the use of some trivial path in any of
its CPT representation. A challenging open problem is determining the minimal singular
CPT posets.

It is not known whether the classes of strong-CPT posets and dually-CPT posets are
distinct. We have shown they are equal when intersected with the split class or with the k-
tree class. Also, we have been able to demonstrate that a non singular CPT poset is strong
if and only if is dually (manuscript in preparation).

In [11] it is proved that any poset whose comparability graph is chordal has dimension
at most 4. The fact that the inequality is tight was proved by Kierstead and Trotter in [10].
It is not known whether there are 4-dimensional k-tree posets.

Finally, in [2], we proved that for every positive integer d, there exists a CPT poset with
dimension d. As opposed, we also showed that the dimension of a CPT poset is bounded
above by the number of leaves of the host tree used in any of its CPT representations. It is
not known whether dimension is bounded for either the class of dually-CPT posets or the
class of strong-CPT posets.
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