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Abstract. Recombination reactions of adsorbed particles on fractal and multifractal media 
are discussed within the framework of the random walk arguments. Theoretical results, 
which predict anomalous reaction order X >2 in the low coverage regime, are Checked by 

'~ means of Monte Carlo simulations on two-dimensional structures and good agreement is 
found. Thermal desorption experiments on rough surfaces are simulated by studying 
temperature programmed reactions on fractal percolating clusters. For this case the 
simulations give X ~ 2.5, i. e. the fractal reaction order is greater than the classical one (X = 2). 
The influence of chemisorbed impurities (poison) on the recombination reaction is also 
studied and the reaction order is found to increase beyondX=2.5 when increasing the 
concentration of poison. Isothermal (recombination) desorption from energetically hetero- 
geneous surfaces is simulated on two-dimensional substrata with multifractal distributions 
of activation energy of diffusion. For this case X (with X > 2) depends on the energetic 
heterogeneity of the substrata (X= 2 for an homogeneous substratum). The obtained results 
point out that the fractal chemical kinetic behaviour is not only restricted to the low 
concentration regime, but it also covers the medium coverage regime, i.e. it holds for a 
monolayer surface coverage 0 < 0.4 in fractal percolating clusters. 

PACS" 82.65J, 66.30 

The concept of fractal is a useful tool to describe many 
physical systems [1]. Most fractal structures known to 
date have become familiar to us through theoretical 
Works and computer simulations images, in spite of the 
fact that the nature offers a rich source of macroscopic 
fractal objects. Within the last group, the following 
examples could be mentioned: landscapes, turbulence, 
electrical discharges, clouds, biological structures 
[1-3], etc. On the other hand, examples from the 
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theory are: infinite percolation clusters [6, 7], diffusion 
limited aggregates, polymer models, clustering of clus- 
ters, etc. (see for example the reviews [3-6]). Recently, 
Pfeifer, Avnir, and Farin [7-12 and references cited 
therein] have extensively demonstrated that the sur- 
face of most solids at the molecular scale may also be 
regarded as microscopic fractal structures which can be 
treated with the same conceptual simplicity as for 
macroscopic examples [-9]. The fractal dimension is a 
quantitative measurement of the surface irregularity 
and it is useful for the comparison of surface physical 
properties, for example the fractal dimension of Pd 
clusters changes from D=2A5 to D=2.33 due to a 
methanation reaction [13]. Recently, the methods 



400 E.V. Albano and H. O. M~trtin 

employed in order to determine the fractal dimension 
of surfaces, both theoretically and experimentally, 
have been extensively discussed [12, 14, 15]. Examples 
of fractal structures also relevant in the field of surface 
science are coke particles [16], discontinuous thin 
metal films [17, 18], gold colloids [19], and electro- 
chemical aggregates [-20]. 

There is another aspect of fractal structures, deal- 
ing with the diffusion of random walkers, which is of 
great importance in surface science, that is the so- 
called fractat chemical kinetics [21 24 and references 
cited therein]. In fact, random walkers on fractals 
structures exhibit anomalous long time diffusion [25, 
26] which indicates that the low concentration regime 
of chemical reactions occurring on such media is also 
anomalous. The understanding of this effect, which 
causes the reaction rate to decrease with respect to the 
expected one for homogeneous surfaces, would be of 
great importance, for instance, in certain reactions 
occurring in fractal catalysists. In fact, a typical 
catalyst is composed by fractal clusters of metal (Pt, 
Rh, Pd or their alloys forming particles with diameters 
between 10 and 100/k [13]) supported on fractal 
substrates (?/AlzO3, zeolites, etc. [9, 11]). 

The aim of this work is to investigate a recombi- 
nation reaction on fractal structures. Explicitly by using 
the Monte  Carlo simulation, the following cases have 
been studied: (a) a temperature programmed recom- 
bination reaction on two-dimensional percolation 
clusters, as an example of thermal desorption from 
geometrically heterogeneous (fractal) surfaces; (b) the 
influence, on the above reaction process, of impurities 
blocking active sites of the percolating clusters; and 
(c) a recombination reaction at constant temperature 
on two-dimensional multifractal substrata as an 
example of isothermal reaction on energetically het- 
erogeneous surface. 

1. The Substrata 

1.1. Percolating Clusters in Two-Dimensions 

The percolation problem is a well established field of 
physics. Its detailed description lies beyond the aim of 
the present work, therefore the reader is directed to the 
reviews of [4-6]  for further details. Let us briefly 
discuss the percolation model in the two-dimensional 
square lattice. It is assumed that each site of the lattice 
of size LxL, can be either occupied by only one particle 
with probability (p) or empty with probability (1 - p). A 
cluster is defined as a group of particles connected by 
nearest neighbour distances. On an L x L  square 
lattice a percolating cluster is a cluster which has either 
its length or its Width (or both) equal to L. It is well 
known that in the thermodynamic limit ( L ~  ~ )  there 
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Fig. l. An example of a percolating cluster on a square lattice of 
size L=201 at p=0.593. The cluster has ~ 15,000 particles and 
periodic boundary conditions are imposed. The enlargement of 
the vertical axis is due to the computer printer 

is a critical probability (p~) such that for p~ < p there is 
no percolating cluster and for P=Pc one infinite 
percolating cluster abruptly appears for the first time. 
The best available value of po for site percolation in the 
square lattice is p~ = 0.5927 + 0.0001 [27]. 

Figure 1 shows a typic percolating cluster on a 
square lattice of size L=201  at Pc. Note  the hetero- 
geneous structure due to the presence of dangling ends 
and holes on all scales. 

Recently, a renewed interest in percolation models 
has arisen due to the fractal properties of the perco- 
lation cluster at Pc. In fact, theoretical results, obtained 
from both scaling arguments and Monte Carlo simu- 
lation, show that the fractal dimension of the perco- 
lation cluster is D = 91/48, in agreement with measure- 
ments on very thin films [17, 28, 29]. Due to the 
geometrical heterogeneities characteristic of perco- 
lation clusters (see Fig. 1), these structures can be 
regarded as suitable substrata for the simulation of 
temperature programmed reactions on rough surfaces 
of isoenergetic sites. 

1.2. Multifractal Lattice in Two Dimensions 

Multifractality [1 ] is related to the decomposition of a 
fractal object into many fractal sets, each of them with 
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Fig. 2A, B. Scheme showing the construction sequence of a 
multifractal lattice. (A) First generation; (B) second generation 

its own fractal dimension [30]. Let us direct our 
attention to the square lattice with a multifractal 
distribution of site probability for random walkers, as 
Tecently proposed by Meakin [31]. This kind of 
multifractal lattice, which will be employed in the 
present work, is constructed as follows (see Fig. 2). 
Four  normalized probabilities P,, (m = 1,..., 4), which 
characterize the multifractal, are selected. In the first 
step, these probabilities are randomly assigned to the 
four quadrants of the square lattice (Fig. 2a). In the 
second step, each quadrant is divided into four smaller 
quadrants and the probabilities previously associated 
with these quadrants are multiplied by P1, Pz, P3, and 
P 4  in random order (Fig. 2b). By starting with a lattice 
of size 2" x 2" the process is continued for n generations. 
Therefore, a certain probability or measure #(i,j) of the 
form: 

#( i , j ) -  Pltplzol3Dl4 
- - t  ~ 2 - 3  ~'4 (1)  

with 11 + 12 q- 13 + 14 = n is associated to each lattice site 
of coordinates (i,j). The number of sites n s with a 
measure given by (1) is ns = n !/11 !12 !13 !14!. Additional 
degeneracy could appear depending on each particular 
choice of the probabilities P,~. In the limit n--* ~ the 
above procedure defines a multifractal measure on the 
two-dimensional space E32, 33]. Multifractals have 
also been used to describe turbulence [34]. 

Recently, Meakin [31] has studied the properties of 
random walkers on these lattices by assuming that the 
jumping probability PAB from an A site with coordi- 
nates (i,j) into a nearest neighbour site B with coordi- 
nates (i',j') is given by: 

i' " i "  i' "',) ~#( ,J )/p(,J) if # ( ) < # ( i , j )  
PAB = ~ 1 ,  otherwise. (2) 

We recall that the measures may be written as 

#(i,j) = exp [--  E(i , j) /kT],  (3) 

where E(i,j) can be thought as the effective activation 
energy of diffusion of the random walker at the site 
with coordinates (i,j), which differs from the true one 
by an additive constant, T is the temperature and k is 
the Boltzmann constant. In this sense the surface has 

energetic heterogeneities characterized by a multi- 
fractal distribution of site probabilities. Therefore, (2) 
corresponds to the standard method of Metropolis et 
al. [35]. In the following we will work with multi- 
fractals characterized by a single parameter R 
(0 < R < 1) such that the probabilities Pr, are given by: 

P,, = C R " -  1, m = 1, ..., 4, (4) 

where 

is the normalization constant. 
Let us denote by f~ the fraction of lattice sites with a 

given effective activation energy for diffusion after n 
generations. That is fE = N E 2 " x  2", where N~ is the 
number of sites with dimensionless energy E/kT. In 
Fig. 3, the distribution of energetic heterogeneities f~ is 
plotted as a function of E/kT. These curves are 
symmetric with respect to their maximum value. Also 
the curve width and the position of the maximum in the 
energy axis depend on both the number generations 
and the parameter R (the former dependence is not 
shown in Fig. 3). Let us note that selecting P I = P 2  
=1/2(1 +R)  and P 3 = P g = R / 2 ( I  +R),  after n gener- 
ations one has a binomial distribution of/~ which, in 
the limit n ~  o% becomes well-known Gaussian distri- 
bution frequently assumed for the description of 
energetically heterogeneous surfaces. Nevertheless, it 
should be mentioned that in the usual Gaussian 
distribution, the sites of different energy are randomly 
distributed on the surface (i. e. this kind of distribution 
does not define a multifractal measure). On the other 
hand, the spatial distribution of measures plays a 
fundamental role in the physical properties of the 
multifractal, determining that such structures are 
characterized by an uncountable set of generalized 
dimensions (for more details see for example references 
E32, 33]). 

0]5 , i  i I 
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Fig. 3. Plot of the fraction f~ of lattice sites with a dimensionless 
activation energy of diffusion E/kT for multifractals character- 
ized by R = 0.5. �9 n = 5 and �9 n = 8 generations, respectively. The 
lines have been drawn as a guide to the eye 
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We consider that the lattices just described, with a 
strong heterogeneous probability distribution are ap- 
propriated for the simulation of recombination reac- 
tions on energetically heterogeneous surfaces at con- 
stant temperature, which implies the conservation of 
the measure (3) throughout the reaction. The energetic 
heterogeneities could be due, for example, to the 
presence of surface defects at an atomic level, the 
chemisorption of impurities acting either as promotors 
or inhibitors, etc. 

2. Theory of Diffusion-Limited Recombination 
Reactions on Fractal and Multifractal Media 

2.1. Reaction on Fractal and Multifractal Substrata 
at Constant Temperature 

In order to obtain the reaction rate equation which 
holds for fractal media, let us discuss the relevant 
behaviour of a random walker. For the long time 
regime, the mean number of distinct sites (SN) visited 
for a random walker after N jumps, (i.e. the so called 
exploration space) is given by [26]: 

SN "~ N I , N--* oe, (6) 

where f is the random walk exponent, f =  1 for 
euclidean d-dimensional substrata with d > 2 (classical 
diffusion) while f <  I gives anomalous diffusion. For 
fractals, f = ~ / 2 ,  for ~<2, where ~ is the spectral 
dimension related to the density of states for scalar 
harmonic excitations of the fractal [25, 26J. 

For fractal media one has that N is strictly 
proportional to the time t. On the other hand, for 
multifractal media, one can assume that this propor- 
tionality is valid in the average. Nevertheless, this 
assumption is not trivial at all, since the jumping 
probability depends strongly on the spatial region of 
substrata. 

Considering the diffusion limited recombination of 
A particles 

As + As--+ productsg, (7) 

where the subscripts s and g refer to the surface and gas 
phase, respectively, the macroscopic reaction constant 
K can be related to the microscopic quantity SN 
through the site visitation efficiency [23] 

K ~ e - dSN/dt. (8) 

Therefore, the rate equation which describes the 
recombination of A particles (7) becomes [23, 26, 36] 

- dO/dt = C'o Ox , 0--.0, (9) 

where C; is a constant and the reaction order X is now 
given by 

X = ~ l + l / f  if f < l  (10) 
[2 if f = l .  

Therefore, (10) gives a relationship between the reac- 
tion order and the random walk exponent of the media 
where the reaction takes place. Note that for f = 1, one 
has X = 2  and (9) becomes the classical text book 
second-order reaction. 

Let us recall the main approximations used, appart 
from both the two body relative diffusion concept [23] 
and the proportionality between N and t for multi- 
fractals, in order to derive the rate equations for fractal 
and multifractal media. Equation (6) is valid for a 
single random walker after a very large number of 
jumps. During the reaction, A particles diffuse as 
isolated random walkers that collide between them 
after a large number of jumps only for small values of 
the concentration. But if one starts with a certain initial 
coverage 0o, then (even if 0o were small) the early stage 
of the reaction corresponds to collisions after small 
number of jumps, i.e. out of the range of validity of (6). 
Summing up, one expects that (9), which is based (6), 
would hold in the limit 0--,0 and for 040o. 

For the sake of clarity in the presentation of the 
simulation results it is convenient to integrate (9); then 
for 0 ~ 0  and 0400, one has 

1/01 - x ~ t (11) 

or equivalently: 

ln0~  [1/(1 - X ) ]  lnt. (12) 

Therefore, if the discussed arguments are valid a plot of 
ln0 vs lnt would give a straight line and from its slope 
one should obtain the reaction order. 

2.2. Temperature Programmed Reaction 
on Fractal Media 

Turning our attention to temperature programmed 
desorption experiments, we note that the relationship 
between N and t can be written as 

t 

N ~  ~ exp ( -E /kT)d t ' ,  (13) 
to 

where the temperature could be an arbitrary function 
of the time. Defining a new time scale t"(t) proportional 
to N in (12), and then replacing t by t", all of (6, 8-10) 
hold. Therefore, in the time scale t the reaction rate (9) 
may be written as 

-dO/d t=C'OXexp( -E /kT) ,  0 4 0  and 0 4 0  o, 
(14) 

where C' is a constant and X is given by (10). In order to 
compare (14) with the results of the simulations it is 
convenient to define 

Y = - exp (Elk Y)dO/dt. (15) 
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Therefore, one sees that a plot ofln Y vs ln0 would give 
a straight line from whose slope the reaction order may 
be obtained. 

3. The Monte Carlo Procedure 

Due to the crude assumptions involved in obtaining 
(14) for temperature programmed reactions on fractal 
media and (9) for isothermal reactions on multifractal 
media with X > 2  in both cases, the Monte Carlo 
simulation appears to be a suitable tool to check for the 
first time their validity. In fact, to our knowledge, (9) 
holds for one-dimensional chains and percolating 
clusters as demonstrated by means of computer simu- 
lations [22, 23] and also, for the last case, experimental 
results [23, 37]. Furthermore, the simulations allow us 
to investigate, for the first time to our knowledge, the 
recombination reaction within the whole coverage 
regime, in order to check the range of validity of the 
theoretical description. 

These aims are also justified by the fact that 
thermal desorption spectroscopy is the most employed 
technique for the study of the absorbent-adsorbate 
interaction, see for example the reviews [-38, 39]. It 
should also be mentioned that a recently developed 
measurement technique would provide useful infor- 
mation on thermal desorption data from large area 
fractal samples [40]. 

On the other hand, our aim is also to study the 
effect of chemisorbed impurities blocking active sites 
on the recombination reaction of A particles on 
percolating clusters, as a simple model for the poison- 
ing of real fractal catalysts. In this case the Monte 
Carlo sinmlation is also useful since the theoretical 
arguments of Sect. 2 are not strictly valid, as will be 
discussed later. 

For  percolating clusters, the simulations have been 
carried out on square lattices of size L =  201, randomly 
filled in at p = 0.593. With these parameters the largest 
(percolating) cluster has _---14,850 particles in average. 
For the simulation of the reactions, only percolating 
clusters which have both their width and length equal 
to L are selected. After that, the cluster is covered with 
A particles at random with probability 0 o (0o is the 
initial coverage on the cluster). Double occupancy of 
cluster sites with A particles is forbidden. 

Taking into account that most thermal desorption 
experiments are performed by uniformly raising the 
temperature of the sample, we have assumed a linear 
heating rate 

T= To+fit , (16) 

where T o is the initial temperature, fl is the heating rate, 
and in the simulation t is the Monte Carlo time step 
which is defined as proportional to the number of 

jumping attempts (i.e. the number of successful jump- 
ing events plus the failed ones) per particle (the 
proportionality constant used is 0.05). 

After covering the cluster, the simulation of the 
reaction starts with the simultaneous heating of the 
sample. The jumping of an A particle to a nearest 
neighbour cluster site is determined at random by 
comparing the Boltzmann term exp [ -  Elk T], where E 
is the activation energy of diffusion (the same for all 
cluster sites), with a random number uniformly dis- 
tributed between 0 and 1. Periodic boundary con- 
ditions for particle movement are assumed in order to 
avoid edge effects. The reaction described by (7) is 
considered successful when two A particles are at the 
same cluster site as a consequence of the jumps, then 
both particles are removed from the sample. 

For  the case  of multifractal substrates, the simu- 
lations have been carried out on square lattices of size 
L =  256, which corresponds to n = 8 generations. The 
reaction between A particles is simulated as for 
percolating clusters, but the temperature remains 
constant through all the reaction and the jumping 
probabilities between adjacent sites are now given by 
(2). 

4. Results 

4.1. Temperature Programmed Reactions 
on Percolating Clusters 

Figure 4 shows plots of lnY vs ln0 for temperature 
programmed reactions on percolation clusters at 
p = 0.593 assuming E = 4 kcal/mol, fl = 1 K/unit of 
Monte Carlo time: From the slopes of the straight lines 
[see (14, 15)] one obtains the reaction order X=2 .53  

3 7 ~ ]  ' , I , ~ J , 
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Fig. 4. Plot of In Y vs ln0, with Y= - exp(E/kT), dO/tiT [see (14, 
15)] for temperature programmed recombination reactions on 
percolating clusters. Lattice size L = 201, fl = 1 K/unit of Monte 
Carlo time, E=4kcal/mol. +, 0o=0.10 and o, 0o =0.20, results 
averaged over 80 reactions. The slopes correspond to the 
asymptotic behaviour and have been evaluated by least-squares 
fits of the respective points for In 0__< -3.6. Tile ordinate axis of 
the full circles has been shifted down by 2 units for the sake of 
clarity 
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for 0 o = 0.10 and X = 2.51 for 0o = 0.20 within 0.01 < 0 
_<0.05. Similar plots have also been obtained for 
00 < 0.20 and 0.1 < fi __< 10 K/unit  of Monte Carlo time, 
with slopes close to X=2 .5  for 0.01<0_<0.05. This 
result is in agreement with both the fact that replacing 
f = 2/3 for percolating clusters in two dimensions [25, 
26] in (10) gives X=2.50,  and with previous Monte 
Carlo results for reactions at constant temperature 
[22,23]. 

According to the theory of Sect. 2, and the results 
just discussed, (14) with X > 2  is valid for 0<0o and 
0--+0. Since the temperature programmed method 
allow us to investigate the behaviour of the reaction 
within the whole coverage regime, it is convenient to 
determine more precisely the range of validity of the 
theoretical predictions. From the results shown in 
Fig. 5 it follows that there are two wall-defined regimes'. 
the high coverage one (0.4 _ 0 < 1.0), with the standard 
second order reaction behaviour (X=2) and the 
medium-low coverage regime (0<0<0.4)  with an 
anomalous X=2 .5  reaction order. Let us stress the 
importance of this result because it suggests that the 
range of validity of the anomalous reaction rate 
equations is much wider than the expected one based 
on theoretical arguments. It is interesting to discuss 
whether the above statement could be influenced by 
the finite lattice size. With the parameters used in the 
simulation and the aid of (13) one can estimate the 
average number of jumps performed by a single 
random walker from the beginning of the reaction up 
to the low coverage regime where the reaction rate is 
negligible. For the example shown in Fig. 5 we obtain 
N ~ 300, so the average distance from the origin of the 

walker which is given by R N,,~ N ~  ~ (v = 0.352 for the 
percolation cluster) is of the order of ~-, 10, i.e. much 

- - 8  
1.00 0.55 Q20 

I 
34 %% , / /X=  2.04 

in[y] " " . \ / ~  
.% 

"%%. 
31 ~ 

~ \ \  e\ 
~176 

28 X = 2.45 ~/""x',,. 

0.0 

OD5 

I I 
-I.0 -2.0 -3.0 

tn[8] 

Fig. 5. Plot of lnY vs ln0, with Y=-exp(E/kT)dO/dt for the 
temperature programmed recombination reaction of particles on 
percolating clusters. Lattice size L= 201, fi = 10 K/unit of Monte 
Carlo time, E=4kcal/mol and 0 o = 1.0. Results averaged over 
120 reactions. The dashed line shows the slope of the high 
coverage regime (0.4< 0=< 1, the coverage is indicated in the 
upper part of the figure). The full line corresponds to the slope 
obtained within the fractal (anomalous) regime 

lower than the linear size of the lattice (L=201). 
Therefore, we expect that the results are not influenced 
by artificial visitation due to finite size effects. The same 
statement holds for the results obtained working with 
multifractals (see Sect. 4.3). 

Summing up, our results suggest that the reaction 
order of diffusion limited recombination reactions on 
fractal surfaces with f < 1 should be greater than the 
classical value X = 2. This .conclusion, valid in the 
medium- and low-coverage regime, should affect inter- 
mediate steps of some complex reactions which take 
place in fractal (highly porous) catalysts. 

4.2. The Influence of Chemisorbed Impurities 
Blocking Active Sites 

The purpose of this subsection is to discuss the effect of 
chemisorbed impurities on the rate equation of the 
diffusion limited recombination of particles. It is 
assumed that each impurity atom blocks the site where 
it is chemisorbed i.e. the poison is represented by 
means of a hard-sphere exclusion model. Therefore, we 
are dealing with the purely geometric short range 
poisoning effect and the so-called electronic factor in 
heterogeneous catalysis, which arises due to the chemi- 
sorption of electronegative and/or electropositive 
atoms [41], is not considered. 

The reaction is now simulated as follows: a per- 
xzolating cluster is selected as indicated in Sect. 3. Then 
the poison is distributed at random on the cluster with 
probability 6p (6p is the coverage of poison on the 
percolating cluster which remains constant through- 
out the produce). Also poisoned sites are not allow to 
diffuse. After that, the non-contaminated sites of the 
cluster are covered at random with A particles with 
probability 0o. Then, the reaction is simulated as in 
Sect.4.1, but now particle jumps into contaminated 
sites are forbidden. 

Figure 6 shows a plot ofln Yvs ln0 [see (14, 15)] for 
L = 201, E = 4 kcal/mol, fi = 1 K/unit  of Monte Carlo 
time and different values of 5p. From the slopes of the 
obtained curves it follows that the reaction order 
increases with increasing @ Since X > 2 and 0 < 1, (14) 
predicts that the rate of the reaction for the same values 
of E and T should decrease when increasing 5p. This 
behaviour is evidenced in Fig. 7 where the coverage 0 is 
plotted against the temperature. For the sake of 
comparison the evolution of 0 vs T for a reaction on a 
homogeneous two-dimensional surface has also been 
included in Fig. 7. These results clearly show that the 
presence of geometrical heterogeneities causes the 
reaction to become slower compared to homogeneous 
surfaces, in the sense that, for the same temperature 
and initial conditions, 0 is greater for percolating 
clusters than for the two-dimensional surface. Roughly 
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Fig- 6. Plot of In Y vs lnO, with Y=-exp(E/IcT)dO/dt for 
temperature programmed recombination reactions on percolat- 
ing clusters. Lattice size L=201, f l= 1 K/unit of Monte Carlo 
time, E=4kcal/mol, and 0o=0.20 , results averaged over 80 
reactions. �9 5p=0, results for poison-free percolating cluster 
shown for the sake of comparison. �9 6v=0.05 and A, 6v=0.10. 
The corresponding slopes have been evaluated by the least- 
squares fit of all the points shown in the figure. +, 5 v = 0.20, in 
this case the point does not define the straight line and the 
reaction order increases when decreasing the coverage. A straight 
line with slope X = 7 has been drawn for the sake of comparison 
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Fig. 7. The surface coverage 0 vs T for temperature programmed 
recombination reactions. Lattice size L=20t ,  f l= 1 K/unit of 
Monte Carlo time, 0 o =0.20, E=4kcal/mol. Results averaged 
over 80 reactions. + ,  homogeneous two-dimensional lattice with 
0p=0. o, poison-free percolating cluster (0p= l -pc=0 .407 ,  
5p=0). A, �9 contamined percolating clusters with 5p = 0.10 and 
6p = 0.20, respectively 

speaking, starting with the same initial coverage, one 
can also say that geometric poisoning of the percolat- 
ing cluster at p~ causes a further decrease of the 
reaction rate. This is a delicate point which merits a 
further discussion. 

In the thermodynamic limit ( L ~  oo) and for arbi- 
trary values of the probability in the percolation model 
(0<p__<l) the number of different sites visited by the 
random walker on the largest cluster (6) may be written 
as" 

SN ~ t2"~ (17) 

where feff is an "effective" random walk exponent (for 
fractals foef = 2~ff/2, where 2eff is the effective spectral 

dimension 0 < 2el f < 2 [42]). It is expected that 

i for p > p ~  
feff= f =  /3 for p=po.  (18) 

for p < po 

How can this behaviour of foff be related to our 
poisoning simulation experiments ? Let us start with a 
poison-free infinite two-dimensional lattice. If we begin 
to deposite the poison randomly with probability 0v, 
for 0p < 1 - po ~_ 0.41, the largest poison-free site cluster 
is an infinite homogeneous percolation cluster and the 
reaction order with feff-----I becomes X = 2 ,  i.e. the 
classical result. (Note that 0p is the poison con- 
centration of the homogeneous two-dimensional sub- 
stratum, while 5p is the poison coverage of the percolat- 
ing clusters.) At 0p = 1 -p~, one has the infinite fractal 
percolation cluster of poison free lattice sites and 
X=2 .5  [ f e f f = f = 2 / 3 ;  see also (23)]. Finally, for 
0p > 1 - p~ there are only finite clusters of poison-free 
substratum particles. Then, the number of distinct sites 
visited by the walker becomes saturated at finite times, 
i.e. feff--0 for t ~  oo. Note that substituting f e f f  = 0 in 
(10) one has X = oo, which would reflect the trivial case 
of many A particles, each of them on a different finite 
cluster, which cannot react , that is dO/dt ~ 0 x = 0 and as 
0 < 0 < 1 this means that X = ~ .  

Considering the real simulations on finite lattices 
one expects that, starting from a poison-free sub- 
stratum, the effect of the poison within the range 0 < 0p 
< 1 -p~ would be to cause a smooth change (instead of 
the abrupt one at 0p= 1 -p~  in the L =  co limit) of the 
reaction order for the recombination of A particles 
from X = 2  to X=2 .5  for t~oo  (0--*0). A further 
increase of 0p causes the disaggregation of the poison- 
free percolating cluster into a certain number of non- 
percolating clusters, depending on 6p. For this case and 
for t ~  oo the same final result as for an infinite lattice, 
i.e. X = oo is expected. Nevertheless, this result has no 
practical interest and, additionally, the analytical tools 
discussed in Sect.2 are only useful to predict the 
behaviour of the reaction for sufficiently small values of 
the concentration. On the other hand, the Monte Carlo 
method for finite reaction times on the disaggregated 
clusters remains as a practical alternative, which really 
shows that X increases for 6p > 0. Note also that for 
6p = 0.20, the reaction order is not well defined in the 
sense that it depends on the surface coverage, as it is 
shown in Fig. 6. 

Nevertheless, one should also mention that any 
relationship between 6v and X for 0 ~ 0  is only valid 
for the lattice size used in the respective simulation. In 
other words, one expects strong lattice-size effects in 
the dependence of X on 6p and consequently experi- 
mental results with different sample sizes would give 
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different reaction orders (with X > 2 . 5  for 5p>0 or 
X > 2 for 0p > 0). On the other hand, for large values of 
5p, it is also expected that the structure of the finite 
clusters (branched or compact) would be irrelevant for 
the reaction order, provided that the clusters are small 
enough. 

4.3. I so thermal  Reac t ions  on Mul t i f rac ta l  Subs t ra ta  

Figure 8 shows plots of In 0 vs In t for the isothermal 
recombination of .A particles on multifractal substrate. 
The long t ime behaviour of the simulation results 
shown in Fig. 8 gives straight lines in agreement with 
the theoretical predictions Esee (12)]. The data ob- 
tained for f from the slopes of these lines and by using 
(12) and (10) are summarized and compared with the 
results previously published by Meakin [31 ] for simple 
random walkers on the same type of substrate, in 
Table1. Note that the results obtained with the 
simulated reaction between walkers are in remarkably 
good agreement with those previously obtained [31] 
for isolated walkers. In this sense, we conclude that the 
simulation of the recombination reaction is a suitable 
alternative method for the determination of the ran- 
dom walk exponent, which has the advantage that the 
result of a single reaction simulation involves an 
average of many random walkers placed at different 
sites which cover all the substratum. Furthermore,  the 
reaction order can easily be determined experimen- 
tally, unlike the random walk exponent which, how- 
ever, plays an important  role in many theoretical 
studies. 

The results of the simulations on substrate with 
multifractal distribution of site probabilities, also 

\ . \  
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Fig. 8. Plot of ln0 vs lnt [see (12)] for isothermal recombination 
reactions on multifractal substrata. L=256, 0o=0.20 and the 
probabilities of the multifractal are Pm= CRm - ~; m = 1,..., 4 [see 
(6, 5)], with L R = 3/4 and e, R = 1/2. The dashed straight lines 
show the long time behaviour and their slopes are employed to 
determine the reaction order listed in Table 1. For R= 1/2 the 
ordinate axis has been shifted for the sake of clarity. Results are 
averaged over 80 reactions 

Table 1~ Exponents obtained for walkers in multifractals with 
Pm = CR"-  1; m = 1,..., 4 [see (4, 5)]. X is the reaction order for 
the recombination of walkers obtained from the slopes of curves 
such as those shown in Fig. 8, with an error bar of about _+ 10%. 
The lattice size used is L= 256. f is the random walk exponent 
obtained inserting the respective value of X in (10). ~ and ~' are 
the random walk exponents obtained by Meakin [31] for single 
random walkers, assuming SN ~ N r and Su ~ [N/lnN] ~', respec- 
tively; and on square lattices of size L= 1024 

R X f ~ ~' 

3/4 2.04 0.96 0.885 0.985 
1/2 2.27 0.79 0.769 0.856 
1/4 2.79 0.56 0.541 0.603 

suggest that the reaction order of diffusion limited 
recombination reactions increases due to the presence 
of energetic heterogeneities on the surface. Therefore, 
the reaction rate at the low concentration regime of 
these reactions becomes slower than the rate classically 
expected on isoenergetic surfaces. 

5. Conclusions 

We have performed Monte Carlo simulations of the 
diffusion limited recombination reactions of particles 
on multifractal substrata and temperature pro- 
grammed reactions of the same type, on percolating 
clusters with and without poisoned sites. F rom the 
results obtained, valid in the low coverage regime, we 
conclude that: 

1) The reaction order for the thermal desorption of 
recombining particles on two-dimensional percolating 
clusters at p~ is X = 2.5. As f =  2/3, this result is in 
agreement with (10). 

2) The reaction orders for recombination reactions 
at constant temperature on two-dimensional multi- 
fractal lattices characterized by the parameter R (for 
R = 3/4, 1/2, and 1/4) are in agreement with (10) using 
the available values o f f  

3) From conclusions 1) and 2) we expect (10) to 
hold for both temperature programmed reactions on 
geometrically heterogeneous fractals with isoenergetic 
sites and for reactions at constant temperature on 
energetically heterogeneous multifractals, in general. 

4) On the light of conclusion 3), the experimental 
determination of the reaction order would allow us to 
calculate the random walk exponent of the corre- 
sponding fractal or multifractal media. 

5) The presence of impurities (poison) blocking 
active sites of the percolation clusters would cause an 
additional increase of the reaction order. Finite sample 
size effects make difficult the assignment of an un- 
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equivocal  re la t ionship between the react ion order  and  
the concen t ra t ion  of poison,  but  the above  men t ioned  
t rend is beyond  any doubt .  

Concern ing  the range  of val idi ty of  the fractal  
chemical  kinetic equat ions,  it should be men t ioned  
that,  f rom the theoret ical  po in t  of  view, it is expected 
tha t  (10) only  holds for 0 ~ 0  and 0 ~ 0o. Nevertheless ,  
our  s imulat ion results for the the rmal  desorp t ion  of 
r ecombin ing  particles on two-d imens iona l  percola t ing 
clusters at p = 0 . 5 9 3  show tha t  X = 2 . 5  [i.e. fractal  
behav iou r  in ag reement  with (10)] for the m e d i u m  and 
low coverage  regime (i. e. 0 =< 0.4). In  fact at 0 = 0.4 one 
has a c rossover  between the classical and  the fractal  
behaviour .  

We  hope  tha t  our  s imulat ion results will s t imulate  
careful exper iments  of r ecombina t ion  react ions on 
rough  samples  in order  to check the validi ty of  the 
theoret ical  conclusions.  
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