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Compatible operations on commutative
weak residuated lattices

Hernán Javier San Mart́ın

Abstract. Compatibility of functions is a classical topic in Universal Algebra related
to the notion of affine completeness. In algebraic logic, it is concerned with the
possibility of implicitly defining new connectives.

In this paper, we give characterizations of compatible operations in a variety of
algebras that properly includes commutative residuated lattices and some general-
izations of Heyting algebras. The wider variety considered is obtained by weakening
the main characters of residuated lattices (A,∧,∨, ·,→, e) but retaining most of their
algebraic consequences, and their algebras have a commutative monoidal structure.
The order-extension principle a ≤ b if and only if a → b ≥ e is replaced by the con-
dition: if a ≤ b, then a → b ≥ e. The residuation property c ≤ a → b if and only if
a · c ≤ b is replaced by the conditions: if c ≤ a → b, then a · c ≤ b, and if a · c ≤ b,
then e → c ≤ a → b. Some further algebraic conditions of commutative residuated
lattices are required.

1. Introduction

The problem of adding connectives to extend a logic in a “natural” way has

been broadly studied. For intuitionistic calculus, the paper [4] of X. Caicedo

and R. Cignoli emphasizes the algebraic aspect of the problem through the

notion of compatible function, which translates to the notion of compatible

connective in intuitionistic logic. Results in [4] are extended to algebraizable

logics by X. Caicedo in [2] (see also [3]).

In [5], compatible functions were studied in commutative residuated lattices,

following basically the characterization of compatible functions by means of the

relationship between congruences and convex subalgebras ([12]). In [16], com-

patible functions were studied in the weak Heyting algebra (A,∧,∨,→, 0, 1),

which satisfy the inequality a ∧ (a → b) ≤ b, using essentially the description

of compatible functions by means of the relationship between congruences and

open filters [7]. In the present work, we study compatible functions in a new

variety that includes the previous ones, providing a common framework to the

results given in [5, 16].
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Let us explain the original motivation for the construction of the new alge-

bras. In a weak Heyting algebra (A,∧,∨,→, 0, 1), the inequality a∧(a → b) ≤ b

is equivalent to saying that for every a, b, c ∈ A, if b ≤ a → c, then a ∧ b ≤ c

[7, Proposition 4.22]. We generalize commutative residuated lattices, intro-

ducing algebras (A,∧,∨, ·,→, e) that satisfy the inequality a · (a → b) ≤ b and

some additional conditions, which in particular provide that the inequality

a · (a → b) ≤ b is equivalent to the following condition: for every a, b, c ∈ A, if

b ≤ a → c, then a · b ≤ c.

Definition 1.1. A generalized commutative residuated lattice, GCRL for short,

is an algebra (A,∧,∨, ·,→, e) that satisfies the following conditions for every

a, b, c ∈ A:

1. (A, ·, e) is a commutative monoid,

2. (A,∨,∧) is a lattice,

3. (a → b) ∧ (a → c) = a → (b ∧ c),

4. (a → c) ∧ (b → c) = (a ∨ b) → c,

5. (a → b) · (b → c) ≤ a → c,

6. e ≤ a → a.

For a ∈ A and n ≥ 1, we define inductively a0 = e and an = a · an−1. We

also define �0(a) = a, �(a) = e → a and the iterated operator �n in the usual

way. The map � preserve finite meets, so in particular � is monotonic.

Definition 1.2. A commutative weak residuated lattice, CWRL for short, is

a GCRL that satisfies the following conditions for every a, b, c ∈ A:

(R1) a · (a → b) ≤ b,

(R2) (a · b) ∨ (a · c) = a · (b ∨ c),

(R3) �(a) ≤ b → (b · a),
(R4) a ≤ (a → e) → e,

(R5) �(a2) ≤ �(a) ·�(a),

(R6) �(a) → (�(a) → e) ≤ �2(a) → e,

(R7) (�(a) → e) · (�(a) → e) ≤ �(a2) → e.

We write CWRL for the variety of CWRLs. A commutative residuated

lattice (CRL for short) is an ordered algebraic structure (A,∧,∨, ·,→, e), where

(A,∧,∨) is a lattice, (A, ·, e) is a commutative monoid, and → is a binary

operation such that for every a, b, c ∈ A, the condition a · b ≤ c if and only

if b ≤ a → c is satisfied. The CRLs form a variety; we write CRL for this

variety. It follows from properties of CRLs [12, 13] that CRL is a subvariety

of CWRL; in particular, the inequalities (R5), (R6) and (R7) are equalities

in CRL. Moreover, if A ∈ CWRL, then A ∈ CRL if and only if �(a) = a for

every a ∈ A (Remark 2.5).

A weak Heyting algebra, or WH-algebra [1, 7], is an ordered algebraic struc-

ture (A,∧,∨,→, 0, 1), where (A,∧,∨, 0, 1) is a bounded distributive lattice and

→ : A× A → A is a map such that for all a, b, c ∈ A, the following conditions

are satisfied:
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1. (a → b) ∧ (a → c) = a → (b ∧ c),

2. (a → c) ∧ (b → c) = (a ∨ b) → c,

3. (a → b) ∧ (b → c) ≤ a → c,

4. a → a = 1.

A RWH-algebra [7] is a WH-algebra that in addition satisfies the following

inequality:

(R) a ∧ (a → b) ≤ b.

These algebras are a generalization of Heyting algebras. The variety of RWH -

algebras will be denoted by RWH. This is a subvariety of CWRL in the

following sense: if (A,∧,∨,→, 0, 1) ∈ RWH, then (A,∧,∨,∧,→, 1) ∈ CWRL;

in particular, the inequalities (R5), (R6) and (R7) are equalities in RWH.

A subresiduated lattice is a RWH -algebra that in addition satisfies the fol-

lowing inequality:

(T) a → b ≤ c → (a → b).

Subresiduated lattices were introduced by G. Epstein and A. Horn in [9], and

they were also studied in [7]. The variety of subresiduated lattices will be

denoted by SRL. We write H to indicate the variety of Heyting algebras.

We obtain the following diagram:

CWRL

RWH

CRL SRL

H

The aims of this work are the following:

(i) to study compatible functions in CWRL;

(ii) to extend results about compatible functions in CRL [5];

(iii) to extend results about compatible functions in RWH and in SRL [16].

Note that CWRL generalizes CRL as RWH generalizes H: the conceptual

step is the same. The choice of the conditions (R2)–(R7) is needed to char-

acterize the compatible functions as a natural generalization of the case of the

variety CRL. This will become more clear in the development of this work.

In Section 2, we give some basic results about the variety CWRL. In Section

3, we study the structure of the congruence lattice of any algebra of CWRL,

which we shall need later. Then in Section 4, we give characterizations for

compatible functions, and we prove that the variety CWRL is locally affine

complete. Finally, in Section 5, we give a method to build up unary compatible

functions.
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2. Basic results

The next elemental lemmas will be important for this work.

Lemma 2.1. Let A be a GCRL that satisfies (R2), and let a, b, c ∈ A.

(a) If a ≤ b, then a · c ≤ b · c.
(b) If b ≤ e, then a · b ≤ b.

Proof. (a): This is a direct consequence of the condition (R2).

(b): This follows from the item (a). �

Lemma 2.2. Let A be a GCRL. For every a, b, c ∈ A, if a ≤ b, then we have

c → a ≤ c → b, b → c ≤ a → c, and e ≤ a → b. Moreover, if A satisfies (R1),

then e → e = e.

Proof. Let a, b, c ∈ A and a ≤ b. Then from the proof of [7, Proposition 3.22],

b → c ≤ a → c and c → a ≤ c → b. Finally, a → b ≥ b → b ≥ e. �

Remark 2.3. Let A be a GCRL with top 1 and e = 1. Then, a → a = 1 and

a → 1 = 1 for every a ∈ A. Moreover, A satisfies the inequalities (R4), (R6),

and (R7).

Lemma 2.4. Let A be a GCRL.

(a) Suppose that A satisfies the equation (R2). Then A satisfies the in-

equality (R1) if and only if for every a, b, c ∈ A, if a ≤ b → c, then

b · a ≤ c.

(b) A satisfies the inequality (R3) if and only if for every a, b, c ∈ A, if

b · a ≤ c, then �(a) ≤ b → c.

Proof. (a): Suppose that A satisfies the equation (R1) and let a, b, c ∈ A be

such that a ≤ b → c. It follows from Lemma 2.1 that b · a ≤ b · (b → c) ≤ c,

so b · a ≤ c. Conversely, suppose that for every a, b, c ∈ A, if a ≤ b → c, then

b · a ≤ c. For a, b ∈ A, we have that a → b ≤ a → b. Hence, a · (a → b) ≤ b.

(b): Suppose that A satisfies the inequality (R3). Let a, b, c ∈ A be such

that b · a ≤ c. Then �(a) ≤ b → (b · a) ≤ b → c. Hence, �(a) ≤ b → c.

Conversely, suppose that for every a, b, c ∈ A, if b · a ≤ c, then �(a) ≤ b → c.

Let a, b ∈ A. Taking into account that b · a ≤ b · a, we conclude that �(a) ≤
b → (b · a). �

The following remark comes from the previous lemma.

Remark 2.5. Let A ∈ CWRL.

(i) �(a) ≤ a for every a ∈ A. Moreover, �n(a) ≤ �m(a) when n ≥ m.

(ii) A ∈ CRL if and only if �(a) = a for every a ∈ A.

Finally, we consider two examples of CWRLs.

Example 2.6. Let R be the real numbers and let (0, 1] = {a ∈ R : 0 < a ≤ 1}.
For every k ≥ 1, we define the structure A = ((0, 1],∧,∨, ·,→, 1), where · is
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the usual product of real numbers and a → b = ( b
k

ak ) ∧ 1. Straightforward

computations show that A ∈ CWRL. For k > 1, we have that A /∈ CRL

because for a �= 1, we obtain �(a) = ak < a. For k = 1, A ∈ CRL.

Example 2.7. Let H be the following poset:

•1

•a •e

•0
Consider the following binary operations:

· 0 a e 1

0 0 0 0 0

a 0 a a a

e 0 a e 1

1 0 a 1 1

→ 0 a e 1

0 1 1 1 1

a 0 1 0 1

e 0 0 e 1

1 0 0 0 1

We have that A = (H,∧,∨, ·,→, e) ∈ CWRL. Moreover, �(a) = 0. There-

fore A /∈ CRL.

Remark 2.8. The varieties CRL and RWH are proper subvarieties of CWRL.

3. Convex subalgebras

In this section, we study the structure of the congruence lattice of any

CWRL, which we shall need later in order to give characterizations for compat-

ible functions. Since we are building on ideas of the paper [12], we recommend

the reader to have that paper at hand while reading this section.

We will refer to a subset H of a commutative weak residuated lattice A as

being a subalgebra of A provided H is closed with respect to the operations

defined on A. Let A ∈ CWRL and let H be a convex subalgebra of A, that

is, a subalgebra such that if a, b ∈ H and a ≤ c ≤ b, then c ∈ H. We write

SubC(A) for the set of convex subalgebras of A. We write Con(A) for the set of

congruences of A. If θ ∈ Con(A) and a ∈ A, we write a/θ for the equivalence

class of A. We will see that there is an order isomorphism between Con(A)

and SubC(A).

Lemma 3.1. Let A ∈ CWRL. If θ ∈ Con(A), then e/θ ∈ SubC(A).

Proof. The proof is similar to that of the case of commutative residuated

lattices (see [12, Lemma 2.1]). �
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Let A ∈ CWRL and H ∈ SubC(A). We define the following sets:

θH = {(a, b) ∈ A×A : a · h ≤ b and b · h ≤ a for some h ∈ H},
K1 = {(a, b) ∈ A×A : (a → b) ∧ e ∈ H and (b → a) ∧ e ∈ H},
K2 = {(a, b) ∈ A×A : h ≤ a → b and h ≤ b → a for some h ∈ H}.

Lemma 3.2. Let A ∈ CWRL and H ∈ SubC(A). Then θH = K1 = K2.

Proof. Straightforward computations based on Lemma 2.4 show θH = K2. It

is immediate that K1 ⊆ K2. To see that K2 ⊆ K1, let (a, b) ∈ K2. Thus, there

exists h ∈ H such that h ≤ a → b and h ≤ b → a. Hence, h∧e ≤ (a → b)∧e ≤ e

and h ∧ e ≤ (b → a) ∧ e ≤ e. As h ∧ e ∈ H, by the convexity of H we have

that (a → b) ∧ e ∈ H and (b → a) ∧ e ∈ H. Therefore, K2 ⊆ K1. �

Lemma 3.3. Let A ∈ CWRL. If H ∈ SubC(A), then θH ∈ Con(A).

Proof. It is routine to prove that θH is an equivalence relation.

Let (a, b), (c, d) ∈ θH . Easy computations prove (a∨c, b∨d), (a ·c, b ·d) ∈ θH
(see the proof of [12, Lemma 2.2]). Using Lemma 3.2, we will prove that

(a ∧ c, b ∧ d) ∈ θH and (a → c, b → d) ∈ θH . By definition of θH , there exist

h, j ∈ H such that h ≤ a → b, h ≤ b → a, j ≤ c → d, and j ≤ d → c. Clearly,

we can replace h and j by k = h ∧ j. Thus, we have that

(a ∧ c) → (b ∧ d) = ((a ∧ c) → b) ∧ ((a ∧ c) → d) ≥ (a → b) ∧ (c → d) ≥ k.

Similarly, we can prove that (b ∧ d) → (a ∧ c) ≥ k. Thus, (a ∧ c, b ∧ d) ∈ θH .

On the other hand, k · (a → c) · k ≤ (b → a) · (a → c) · (c → d) ≤ b → d.

Hence, (a → c) · k2 ≤ b → d. The inequality (b → d) · k2 ≤ a → c follows in a

like manner. Therefore, we obtain (a → c, b → d) ∈ θH . �

Lemma 3.4. Let A ∈ CWRL and a, h ∈ A such that a · h ≤ e. Then

a ≤ �(h) → e.

Proof. Let a · h ≤ e. By Lemma 2.4, we have that �(h) ≤ a → e, so by (R4)

and Lemma 2.2, we obtain that a ≤ (a → e) → e ≤ �(h) → e. �

Theorem 3.5. If A is a member of CWRL, then Con(A) is order isomorphic

to SubC(A). The isomorphism is established via the assignments θ �→ e/θ and

H �→ θH .

Proof. The stated correspondences follow by lemmas 3.1 and 3.3. Let θ ∈
Con(A) and H ∈ SubC(A). The fact that θ = θe/θ and H ⊆ e/θH is proved

as in the proof of [12, Theorem 2.3]. In order to prove that e/θH ⊆ H, let

a ∈ e/θH , that is, (a, e) ∈ θH . Thus, there exists h ∈ H such that a · h ≤ e

and h ≤ a. It follows from Lemma 3.4 that h ≤ a ≤ �(h) → e. Hence, a ∈ H

by convexity. Straightforward computations prove that the stated bijections

are order-preserving. �
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Remark 3.6. (1) Let A ∈ CRL. Theorem 3.5 generalizes [12, Theorem 2.3],

which establishes an order isomorphism between the lattice of congruences of

A and the lattice of convex subalgebras of A.

(2) Let A ∈ RWH. A filter H of A is said to be an open filter if for every

a ∈ H, �(a) ∈ H. If A is seen as an algebra of CWRL, then the open

filters are exactly the convex subalgebras. Theorem 3.5 also generalizes [7,

Theorem 6.12], which establishes an order isomorphism between the lattice of

open filters of A and the lattice of congruences of A.

Lemma 3.7. Let A ∈ CWRL. Then for every n ≥ 1, the following inequalities

hold:

(a) �n(a2) ≤ �n(a) ·�n(a),

(b) �n(a) → (�n(a) → e) ≤ �n+1(a) → e,

(c) (�n(a) → e) · (�n(a) → e) ≤ (�n(a2) → e).

Proof. This follows from an induction based on the inequalities (R5), (R6),

and (R7). �

For any A ∈ CWRL, we will write A− for the negative cone of A, that is,

A− = {x ∈ A : x ≤ e}. For any S ⊆ A, we will let C[S] denote the smallest

convex subalgebra containing S and will let C[a] = C[{a}]. In what follows,

we will let 〈S〉 denote the submonoid of (A, ·, e) generated by S. We will write

N for the set of natural numbers.

The following result is analogous to [12, Lemma 2.7].

Lemma 3.8. Let A ∈ CWRL and S ⊆ A−. Then

C[S] = {x ∈ A : �n(h) ≤ x ≤ �n(h) → e, for some h ∈ 〈S〉 and n ∈ N}.
Proof. If a ∈ A−, then �(a) ∈ A−. Let S ⊆ A−. Then, 〈S〉 ⊆ A−. Put

K = {x ∈ A : �n(h) ≤ x ≤ �n(h) → e, for some h ∈ 〈S〉 and n ∈ N}.
It is clear that S ⊆ K ⊆ C[S]. It will suffice to show that K is a convex

subalgebra of A. Let a, b ∈ K. Thus, there are ha, hb ∈ 〈S〉 and n,m ∈ N

such that �n(ha) ≤ a ≤ �n(ha) → e and �m(hb) ≤ b ≤ �m(hb) → e. We

may replace ha and hb by h = ha · hb, and n,m by k = max {n,m}. The set

K is convex because if �k(h) ≤ a ≤ x ≤ b ≤ �k(h) → e, then x ∈ K. On the

other hand, �k(h) ≤ a ∧ b ≤ a ∨ b ≤ �k(h) → e, so K is closed under meets

and joins. Now, by Lemma 3.7, we obtain

�k(h2) ≤ �k(h) ·�k(h) ≤ a · b ≤ (�k(h) → e) · (�k(h) → e) ≤ �k(h2) → e.

Thus, K is also closed under product.

Finally, we show that K is closed under arrow (for it, we use Lemma 3.7

again). First, observe that a · �k(h) ≤ e and �k(h) ≤ b. Then we obtain

a ·�k(h2) ≤ a ·�k(h) ·�k(h) ≤ e · b = b. Thus, by Lemma 2.4, we have that

�k+1(h2) ≤ a → b. (3.1)
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Taking into account that �k(h) ≤ a and b ≤ �k(h) → e, we obtain that

a → b ≤ �k(h) → b ≤ �k(h) → (�k(h) → e), so

a → b ≤ �k(h) → (�k(h) → e) ≤ �k+1(h) → e ≤ �k+1(h2) → e. (3.2)

Therefore, by inequalities (3.1) and (3.2), we conclude that a → b ∈ K. �

The good description of C[S] given in the previous lemma justifies the choice

of the inequalities (R5), (R6), and (R7).

Corollary 3.9. Let A ∈ CWRL and a ∈ A−. Then

C[a] = {x ∈ A : �n(am) ≤ x ≤ �n(am) → e, for some n,m ∈ N}.
Moreover, if x ∈ A−, then x ∈ C[a] if and only if there are n,m such that

�n(am) ≤ x.

4. Compatible functions

In this section, we characterize the compatible functions in the variety of

commutative weak residuated lattices, and we use this result to prove that the

variety CWRL is locally affine complete. We start with the following.

Definition 4.1. Let A be an algebra and let f : Ak → A be a function.

1. We say that f is compatible with a congruence θ of A if (ai, bi) ∈ θ for

i = 1, . . . , k implies (f(a1, . . . , ak), f(b1, . . . , bk)) ∈ θ.

2. We say that f is a compatible function of A provided it is compatible with

all the congruences of A.

If A ∈ CWRL and a, b ∈ A, denote by θ(a, b) the smallest congruence that

contains the element (a, b). We also define a ↔ b = (a → b) ∧ (b → a),

d(a, b) = (a ↔ b) ∧ e, and p(a, b) = ((a → b) ∧ e) · ((b → a) ∧ e).

The following lemma is useful in order to give a description of compatible

functions.

Lemma 4.2. Let A ∈ CWRL and a, b ∈ A.

(a) If θ ∈ Con(A), then (a, b) ∈ θ if and only if d(a, b) ∈ e/θ.

(b) If θ ∈ Con(A), then (a, b) ∈ θ if and only if p(a, b) ∈ e/θ.

(c) e/θ(a, b) = C[d(a, b)] = C[p(a, b)].

Proof. (a): The proof is similar to the proof of [13, Lemma 3.1].

(b): The proof is similar to the proof of [5, Lemma 5].

(c): This follows from the previous items and Theorem 3.5:

e/θ(a, b) =
⋂

(a,b)∈θ
e/θ =

⋂

d(a,b)∈e/θ
e/θ = C[d(a, b)].

In a similar way, we can prove that e/θ(a, b) = C[p(a, b)]. �
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Let H be an algebra and let f : A → A be a function. Recall the following

convenient remark:

f is a compatible function if and only if (f(a), f(b)) ∈ θ(a, b) for every a, b.

Proposition 4.3. Let A be a CWRL and let f : A → A be a function. The

following conditions are equivalent:

1. f is compatible.

2. For every a, b ∈ A there exist n,m ∈ N with �n(d(a, b)m) ≤ d(f(a), f(b)).

3. For every a, b ∈ A there exist n,m ∈ N with �n(p(a, b)m) ≤ p(f(a), f(b)).

Proof. This follows from Lemma 4.2 and Corollary 3.9. �

Let A be an algebra and f : Ak → A a function. For every bi ∈ A (where

i = 1, . . . , k), we define b = (b1, . . . , bk) and b(i) = (b1, . . . , bi−1, bi+1 . . . , bk).

Then we define the functions fb(i) : A → A by

fb(i)(a) = f(b1, . . . , bi−1, a, bi+1, . . . , bk).

The following remark is a consequence of the definition of k-ary compatible

function on an algebra.

Remark 4.4. Let A be an algebra and let f : Ak → A be a function. The

function f is compatible if and only if for every b ∈ Ak, the functions fb(i) are

compatible.

Corollary 4.5. Let A ∈ CWRL and let f : Ak → A be a function. The

following conditions are equivalent:

1. f is compatible.

2. For every a = (a1, . . . , ak) ∈ Ak and b = (b1, . . . , bk) ∈ Ak there are

n,m ∈ N such that

�n(d(a1, b1)
m) ·�n(d(a2, b2)

m) · · · · ·�n(d(ak, bk)
m) ≤ d(f(a), f(b)). (4.1)

3. For every a = (a1, . . . , ak) ∈ Ak and b = (b1, . . . , bk) ∈ Ak there are

n,m ∈ N such that

�n(p(a1, b1)
m) ·�n(p(a2, b2)

m) · · · · ·�n(p(ak, bk)
m) ≤ p(f(a), f(b)). (4.2)

Proof. Suppose that f is a compatible function, and let a, b ∈ Ak. By Propo-

sition 4.3 there are n1, . . . , nk,m1, . . . ,mk ∈ N such that

�n1(d(a1, b1)
m1) ≤ d(f(a), f(b1, a2, a3, . . . , ak)),

�n2(d(a2, b2)
m2) ≤ d(f(b1, a2, a3, . . . , ak), f(b1, b2, a3, . . . , ak)),

...

�nk(d(ak, bk)
mk) ≤ d(f(b1, b2, . . . , bk−1, ak), f(b)).

Easy computations show that if x, y, z ∈ A, then d(x, y) · d(y, z) ≤ d(x, z).

So, it is easily seen that

�n(d(a1, b1)
m) ·�n(d(a2, b2)

m) · · · · ·�n(d(ak, bk)
m) ≤ d(f(a), f(b)),
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where n = max {ni : i = 1, . . . , k} and m = max {mi : i = 1, . . . , k}. There-

fore, we deduce the inequality (4.1).

Conversely, suppose that the inequality (4.1) holds. Let θ ∈ Con(A) and

aiθbi for i = 1, . . . , k. By Lemma 4.2, we obtain d(ai, bi)θe, so

�n(d(a1, b1)
m) ·�n(d(a2, b2)

m) · · · · ·�n(d(ak, bk)
m) ∈ e/θ.

By inequality (4.1), we have that

�n(d(a1, b1)
m) ·�n(d(a2, b2)

m) · · · · ·�n(d(ak, bk)
m) ≤ d(f(a), f(b)) ≤ e.

By the convexity of θ(e), we obtain d(f(a), f(b)) ∈ e/θ. Taking into account

Lemma 4.2, we deduce that (f(a), f(b)) ∈ θ, i.e., f is compatible.

The equivalence between 1 and 3 can be proved in a similar manner. �

The question of whether there are compatible functions different from poly-

nomials naturally arises. In the variety of boolean algebras, the answer is no

[14], i.e., that variety is affine complete. On the other hand, the variety H

of Heyting algebras is not affine complete [4]. However, H is locally affine

complete in the sense that any restriction of a compatible function to a finite

subset is a polynomial. Moreover, the variety CRL is locally affine complete

[5, Corollary 9], and also the variety RWH [16, Corollary 7].

Remark 4.6. Let A ∈ CWRL, let f : Ak → A be a compatible function, and

let B be a finite subset of Ak. Let n and m, respectively, be the maximum of

the natural numbers associated in item 2. of Corollary 4.5 to all pairs (b, x),

where x and b range over all points of B. The monotonicity of � and properties

of d imply that

�n(d(b1, x1)
m) ·�n(d(b2, x2)

m) · · · · ·�n(d(bk, xk)
m) ≤ d(f(b), f(x)). (4.3)

In the following, we prove the locally affine completeness of the variety

CWRL.

Theorem 4.7. Let A ∈ CWRL, let f : Ak → A be a compatible function, let

B be a finite subset of Ak, and let x ∈ B. Let

Tx = {�n(d(b1, x1)
m) ·�n(d(b2, x2)

m) · · · · ·�n(d(bk, xk)
m) · f(b) : b ∈ B},

where n and m are the natural numbers associated to the pair (b, x) in Remark

4.6. Then, f(x) =
∨
Tx.

Proof. Let x ∈ B. For every b ∈ B, by (4.3) we have that

�n(d(b1, x1)
m) ·�n(d(b2, x2)

m) · · · · ·�n(d(bk, xk)
m) ≤ f(b) → f(x).

Hence,

�n(d(b1, x1)
m) ·�n(d(b2, x2)

m) · · · · ·�n(d(bk, xk)
m).f(b) ≤ f(x).

This proves that f(x) is an upper bound of Tx.

On the other hand, since �n(d(xi, xi)
m) = e for every i = 1, . . . , k, we

have that �n(d(x1, x1)
m) · · · · · �n(d(xk, xk)

m) · f(x) = f(x). Therefore,

f(x) =
∨
Tx. �
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Corollary 4.8. The variety CWRL is locally affine complete.

It follows from the previous corollary that every finite algebra in CWRL is

affine complete.

5. The minimum operator

In the following, we use similar ideas to those in [5, 6, 10] in order to study

compatible functions in the variety CWRL in terms of the minimum operator.

Definition 5.1. Let A be a poset and let g : A × A → A be a function. We

say that g satisfies the condition (M) if the following condition holds:

For all a, b, c ∈ A, c ≥ b implies g(a, c) ≤ g(a, b). (M)

The proof of the following lemma [5, Lemma 10] follows from the fact that

if A is a ∨-semilattice and g is a function that satisfies the condition (M), then

g(a, g(a, b) ∨ b) ≤ g(a, b) ∨ b for every a, b ∈ A.

Lemma 5.2. Let A be a ∨-semilattice, and let g : A × A → A be a function

that satisfies the condition (M). The following conditions are equivalent:

(a) There exists a map f : A → A given by f(a) = min {b ∈ A : g(a, b) ≤ b}.
(b) There exists a map h : A → A that satisfies the following conditions for

every a, b ∈ A:

(i) g(a, h(a)) ≤ h(a),

(ii) h(a) ≤ g(a, b) ∨ b.

Moreover, in this case we have that f = h.

Then we have the following characterization for unary compatible functions.

Proposition 5.3. Let A ∈ CWRL and let f : A → A be a function. The

following conditions are equivalent:

1. f is compatible.

2. There exists a function g : A × A → A that satisfies (M), compatible in

the first variable and such that f(a) = min {b ∈ A : g(a, b) ≤ b} for every

a ∈ A.

3. There exists a function ĝ : A×A → A that satisfies (M), compatible in the

first variable and such that it satisfies the following conditions for every

a, b ∈ A:

(i) ĝ(a, f(a)) ≤ f(a),

(ii) f(a) ≤ ĝ(a, b) ∨ b.

Moreover, in this case we have that g = ĝ.

Proof. Let f be compatible. We define g : A × A → A by g(a, b) = f(a).

Hence, condition 2 is satisfied.

The equivalence between 2 and 3 follows from Lemma 5.2.
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In order to prove that condition 3 implies condition 1, let a, b ∈ A. By

Proposition 4.3 (and taking into account that g is compatible in the first

variable), we have that there exist n,m ∈ N such that

�n(d(a, b)m) ≤ d(g(a, f(b)), g(b, f(b))) ≤ (g(a, f(b)) → g(b, f(b))) ∧ e. (5.1)

Using that g(b, f(b)) ≤ f(b), we obtain that

(g(a, f(b)) → g(b, f(b))) ∧ e ≤ (g(a, f(b)) → f(b)) ∧ e. (5.2)

It follows from f(a) ≤ g(a, f(b)) ∨ f(b) that

(f(a) → f(b)) ∧ e ≥ ((g(a, f(b)) ∨ f(b)) → f(b)) ∧ e = (g(a, f(b)) → f(b)) ∧ e.

By inequalities (5.1) and (5.2), we have that �n(d(a, b)m) ≤ (f(a) → f(b))∧e.

In a similar way, we can prove that �n(d(a, b)m) ≤ (f(b) → f(a)) ∧ e. Thus,

�n(d(a, b)m) ≤ d(f(a), f(b)). Therefore, it follows from Proposition 4.3 that

f is compatible. �

We end this work with some examples of compatible functions.

Let A ∈ CWRL. It follows from Proposition 5.3 that for any n ≥ 1, the

binary term gn(a, b) = bn → a induces the compatible function Sn : A → A

defined by Sn(a) = min {b ∈ A : gn(a, b) ≤ b}. This function is a generalization

of the successor function defined on Heyting algebras [4, 15]. See also [5].

Example 5.4. Let n ≥ 1. If A is the algebra given in Example 2.6, then the

function Sn takes the form Sn(a) = a
k

nk+1 .

Remark 5.5. Let n ≥ 1. If A is the algebra given in Example 2.7, then Sn

does not exist.

In what follows, we will write A to indicate algebras in RWH, and ¬a to

indicate a → 0.

Let n ∈ N. In [16], the compatible function sn : A → A was defined through

the conditions a ≤ sn(a), sn(a) ≤ b ∨ (�n(b) → a), and �n(sn(a)) → a ≤ a,

and it was proved that the existence of this map implies that sn(a) = min

{b ∈ A : �n(b) → a ≤ b}. The function s0 is the successor function in the

sense of [8]. It follows from Proposition 5.3 that if there exists s0, then there

exists Sn, and Sn = s0. The existence of S1 is equivalent to the existence of

Sn for every n ≥ 1. Moreover, S1 = Sn.

Now we define the function G : A → A through the following conditions:

(G(a) → a) ∧ ¬¬a ≤ G(a) and G(a) ≤ b ∨ ((b → a) ∧ ¬¬a). It follows from

Proposition 5.3 that G is a compatible function which can be also defined as

G(a) = min {b ∈ A : (b → a) ∧ ¬¬a ≤ b}. This function is a generalization of

Gabbay’s function defined on Heyting algebras (see [10, 11]).

Example 5.6. Let H be the poset given in the Example 2.7. Consider the

following binary operation given in [16]:
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→ 0 a e 1

0 1 1 1 1

a e 1 e 1

e 0 0 1 1

1 0 0 e 1

The algebra (H,→) is in SRL and it is not a Heyting algebra. We also have

that there is no function s0. Straightforward computations show that S1(0) =

S1(a) = e, S1(e) = a, S1(1) = 1, G(0) = G(a) = 0, G(e) = a, and G(1) = 1.
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