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Operator Domains and SUSY Breaking in
a Model of SUSYQM with a Singular Potential

H. Falomir and P.A.G. Pisani

Abstract. The self-adjoint extension of the symmetric supercharges and Ha-
miltonian of a model of Supersymmetric Quantum Mechanics on the half-line,
for the case of a singular superpotential, is analyzed. The compatibility of the
domains of definition of the different operators and the possibility of effectively
implement the graded superalgebra in a dense subspace of the Hilbert space
is considered. As a consequence, conditions for SUSY breaking in this model
are established.
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1. Introduction

Supersymmetry (SUSY) [1, 2, 3, 4, 5, 6, 8, 9, 10, 11] gives desirable features to
quantum field theories, like an improved ultraviolet behavior, but also predicts
superpartner states with degenerate mass which are not observed experimentally.
Therefore, this symmetry is expected to be spontaneously broken.

Let us mention that a symmetry of the Hamiltonian is said to be sponta-
neously broken if the ground state does not exhibit this symmetry. For a con-
tinuous symmetry, this occurs when the ground state is not annihilated by the
generators of these transformations.

Several schemes have been developed to try to solve the SUSY breaking prob-
lem, including the idea of non-perturbative breaking by instantons. In this context,
the simplest model is the Supersymmetric Quantum Mechanics (SUSYQM), in-
troduced by Witten [8] and Cooper and Freedman [10]. This is a toy model of
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a one-dimensional quantum-mechanical system whose formal Hamiltonian can be
written as

𝐻 = {𝒬, �̃�}+ = 𝒬�̃�+ �̃�𝒬 , (1.1)

where the supercharges

𝒬 =

(
0 0
𝐴 0

)
and �̃� =

(
0 𝐴
0 0

)
(1.2)

are nilpotent operators,

𝒬2 = �̃�2 = 0 , (1.3)

which commute with the Hamiltonian,

[𝐻,𝒬] = 0 =
[
𝐻, �̃�

]
. (1.4)

These conserved supercharges are the generators of the SUSY transformations.

Here, 𝐴 and 𝐴 are differential operators defined on a suitable dense subspace
of functions where the necessary operator compositions in these equations are well
defined,

𝐴 =
1√
2

(
− 𝑑

𝑑𝑥
+ 𝑊 (𝑥)

)
, 𝐴 =

1√
2

(
𝑑

𝑑𝑥
+ 𝑊 (𝑥)

)
, (1.5)

where 𝑊 (𝑥) is called the superpotential.

Notice that, for 𝐴 closed and 𝐴 = 𝐴† (the adjoint of 𝐴), the Hamiltonian is
non-negative,

⟨𝜙∣𝐻 ∣𝜙⟩ = ∥𝒬 ∣𝜙⟩∥2 +
∥∥∥�̃� ∣𝜙⟩∥∥∥2

≥ 0 , (1.6)

and then the ground state ∣𝜙0⟩ is invariant under SUSY transformations if and
only if it has a vanishing energy eigenvalue

𝒬 ∣𝜙0⟩ = 0 = �̃� ∣𝜙0⟩ ⇔ ⟨𝜙0∣𝐻 ∣𝜙0⟩ = 0 . (1.7)

When considering these models, several authors have suggested that singular
potentials could break SUSY through nonstandard mechanisms, leading to non-
degenerate energy levels and even to negative energy eigenstates [12, 13, 14, 15,
16, 17].

In particular, Jevicki and Rodrigues [12] have considered the singular super-
potential 𝑊 (𝑥) = 𝑔/𝑥 − 𝑥, with real 𝑔. Based on the square integrable solutions
of the differential operator related to the Hamiltonian of this system, previously
obtained by Lathouwers [18], they concluded that, for a certain range of the param-
eter 𝑔, SUSY is broken with a negative energy ground state. However, they have
not established that all the functions they considered correspond to eigenvectors
of the same self-adjoint Hamiltonian.

Later, Das and Pernice [19] have reconsidered this problem in the frame-
work of a SUSY preserving regularization of the singular superpotential, finding
that SUSY is recovered exactly at the end, when the regularization is removed.
They conclude that SUSY is robust at short distances (high energies), and the
singularities that occur in quantum mechanical models are unlike to break SUSY.
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We addressed this subject [20] by studying the self-adjoint extensions (SAE)
[21] of the Hamiltonian defined by the superpotential 𝑊 (𝑥) = 𝑔/𝑥 − 𝑥 in the
half-line R+. In so doing, we have considered the SAE of the symmetric super-
charges and the possibility of effectively implement the algebra of SUSY in a dense
subspace of the Hilbert space.

We have shown that there is a range of values of 𝑔 for which the supercharges
admit a one-parameter family of SAE, corresponding to a one-parameter family
of SAE of the Hamiltonian.

We found that only for two particular SAE, whose domains are scale invari-
ant, the algebra of 𝑁 = 2 SUSY can be realized, one with exact SUSY and the
other with spontaneously broken SUSY. For other values of this continuous pa-
rameter, only the 𝑁 = 1 SUSY algebra is obtained, with spontaneously broken
SUSY and non degenerate energy spectrum.

We should mention that SAE of supercharges and Hamiltonian for the
SUSYQM of the free particle with a point singularity in the line and the circle
have been considered in [22, 23, 24, 25], where 𝑁 = 1, 2 realization of SUSY are
described. They have also been considered in the framework of the Landau Hamil-
tonian for two-dimensional particles in nontrivial topologies in [26] (see also [27]).

Moreover, a hidden supersymmetric structure similar to that described in
the following also appears when considering the quantum-mechanical behavior of
particles in a plane in the presence of a singular Aharonov-Bohm magnetic flux
[28, 29].

2. The model and its supercharges

We consider a quantum mechanical system living in the half-line R+ and subject
to a superpotential given by

𝑊 (𝑥) =
𝑔

𝑥
− 𝑥 (2.1)

for 𝑥 > 0 and real 𝑔. Then, the two differential operators in the expression of the
supercharges take the form

𝐴 =
1√
2

(
− 𝑑

𝑑𝑥
+

𝑔

𝑥
− 𝑥

)
,

𝐴 =
1√
2

(
𝑑

𝑑𝑥
+

𝑔

𝑥
− 𝑥

)
.

(2.2)

Let us now introduce an operator 𝑄+ = �̃�+𝒬, defined on the dense subspace
𝒟(𝑄+) = 𝒞∞0 (R+∖{0}), over which its action is given by

𝑄+Ψ =

(
0 𝐴
𝐴 0

)(
𝜓1

𝜓2

)
. (2.3)
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Its square, which is well defined within this domain, satisfies

𝑄+
2 = {𝒬, �̃�}+ = 𝐻 =

(
𝐻+ 0
0 𝐻−

)
, (2.4)

where 𝐻 is the Hamiltonian of the system, and 𝐻+ = 𝐴𝐴 and 𝐻− = 𝐴𝐴 are the
partner Hamiltonians. It can be easily verified that 𝑄+ is a symmetric operator,
but it is neither self-adjoint nor even closed.

Remark. Given a SAE of 𝑄+, its square gives a SAE of the Hamiltonian 𝐻 , by
virtue of a theorem due to von Neumann [30].

The first step in getting the SAE of 𝑄+ consists in the construction of its

adjoint, 𝑄†+, and the determination of the deficiency subspaces

𝒦± := Ker(𝑄†+ ∓ 𝑖).

Notice that, within the same domain 𝒞∞0 (R+∖{0}), a linearly independent
combination of supercharges leads to the operator

𝑄− = 𝑖(�̃� − 𝒬) = 𝚤𝑄+𝜎3 , (2.5)

which is also symmetric, anticommutes with 𝑄+, {𝑄+, 𝑄−}+ = 0, and satisfies

𝑄−2 = 𝐻 . Here, the Pauli matrix 𝜎3 = diag (1,−1) is the grading operator, which
distinguishes fermionic from bosonic states.

Since 𝑄− can also be obtained from 𝑄+ through a unitary transformation
given by

𝑄− = 𝑒𝑖𝜎3𝜋/4𝑄+𝑒−𝑖𝜎3𝜋/4 , (2.6)

the following analysis will be carried out only for 𝑄+, and it will extend immedi-
ately to 𝑄−.

The Domain of 𝑸†
+

It can be seen that the domain of 𝑄†+ is

𝒟(𝑄†+) = {Φ ∈ 𝐴𝐶(R+∖{0}) ∩ L2(R+) : 𝐴𝜙1, 𝐴𝜙2 ∈ L2(R+)} , (2.7)

where the action of 𝑄†+ on Φ ∈ 𝒟(𝑄†+) reduces also to the application of the
differential operator

𝑄†+Φ =

(
0 𝐴
𝐴 0

)(
𝜙1

𝜙2

)
. (2.8)

The Spectrum of 𝑸†
+

The eigenvalue problem for the adjoint, 𝑄†+Φ𝜆 = 𝜆Φ𝜆, reduces to the system of
ordinary differential equations

𝐴𝜙𝜆,1 = 𝜆𝜙𝜆,2, 𝐴𝜙𝜆,2 = 𝜆𝜙𝜆,1 , (2.9)

with Φ𝜆 ∈ 𝒟(𝑄†+) and 𝜆 ∈ C.
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The substitution 𝜙𝜆,1(𝑥) = 𝑥𝑔 𝑒−𝑥
2/2 𝐹 (𝑥2) leads to the Kummer’s (Conflu-

ent Hypergeometric) equation [31] for 𝐹 (𝑧),

𝑧 𝐹 ′′(𝑧) + (𝑏− 𝑧)𝐹 ′(𝑧)− 𝑎𝐹 (𝑧) = 0 , (2.10)

with 𝑎 = −𝜆2

2 and 𝑏 = 𝑔 + 1
2 .

This equation has two linearly independent solutions given by the Kummer’s
function

𝑦1(𝑧) = 𝑈(𝑎, 𝑏, 𝑧) =
𝜋

sin𝜋𝑏

{
𝑀(𝑎, 𝑏, 𝑧)

Γ(1 + 𝑎− 𝑏)Γ(𝑏)
− 𝑧1−𝑏 𝑀(1 + 𝑎− 𝑏, 2− 𝑏, 𝑧)

Γ(𝑎)Γ(2 − 𝑏)

}
,

(2.11)
and

𝑦2(𝑧) = 𝑒𝑧 𝑈(𝑏− 𝑎, 𝑏,−𝑧) , (2.12)

where 𝑀(𝑎, 𝑏, 𝑧) = 1𝐹1(𝑎; 𝑏; 𝑧).
Since, for large values of the argument,

𝑈(𝑎, 𝑏, 𝑧) = 𝑧−𝑎
{

1 +𝒪(∣𝑧∣−1)
}
, (2.13)

only 𝑦1(𝑥2) leads to a function 𝜙𝜆,1(𝑥) ∈ L2(1,∞), while 𝑦2(𝑥2) should be dis-
carded.

Therefore, for any 𝜆 ∈ C we get

𝜙𝜆,1(𝑥) = 𝑥𝑔 𝑒−𝑥
2/2 𝑈

(
−𝜆2

2
, 𝑔 +

1

2
, 𝑥2

)
(2.14)

and

𝜙𝜆,2(𝑥) = − 𝜆√
2
𝑥𝑔+1 𝑒−𝑥

2/2 𝑈

(
1− 𝜆2

2
, 𝑔 +

3

2
, 𝑥2

)
, (2.15)

which is also in L2(1,∞).

In order to determine the spectrum of 𝑄†+, we must now consider the behavior
of Φ𝜆(𝑥) near the origin. From the small argument expansion of Kummer’s func-
tions [31] one can straightforwardly show that three cases should be distinguished,
according to the values of the coupling 𝑔.

∙ If 𝑔 ≥ 1/2, it can be seen that Φ𝜆(𝑥) /∈ L2(0, 1) unless 𝜆2 = 2𝑛, with
𝑛 = 0, 1, 2, . . . . In this case, the Kummer’s function reduces to a Laguerre

polynomial, 𝑈(−𝑛, 𝑏, 𝑧) = (−1)𝑛 𝑛!𝐿
(𝑏−1)
𝑛 (𝑧) (of degree 𝑛 in 𝑧), and we have

𝜙𝜆,1(𝑥) ∼ 𝑥𝑔 and 𝜙𝜆,2(𝑥) ∼ 𝑥𝑔+1 for 0 < 𝑥≪ 1. Therefore, in this region 𝑄†+
has a discrete real spectrum, symmetric with respect to the origin, given by
the (degeneracy one) eigenvalues

𝜆0 = 0 , 𝜆±,𝑛 = ±
√

2𝑛 , 𝑛 = 1, 2, 3, . . . , (2.16)

corresponding to the eigenfunctions Φ0 = 𝑥𝑔 𝑒−𝑥
2/2
(

1 0
)𝑡

and

Φ±,𝑛 = (−1)𝑛 𝑛!𝑥𝑔 𝑒−𝑥
2/2

⎛⎜⎝ 𝐿
(𝑔− 1

2 )
𝑛 (𝑥2)

∓ 𝑥√
𝑛
𝐿

(𝑔+ 1
2 )

𝑛−1 (𝑥2)

⎞⎟⎠ . (2.17)
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∙ For 𝑔 ≤ −1/2, it can be seen that Φ𝜆(𝑥) /∈ L2(0, 1) unless 𝜆2 = 2(𝑛− 𝑔 + 1
2 ),

with 𝑛 = 0, 1, 2, . . . . In this case, we have 𝜙𝜆,1(𝑥) ∼ 𝑥1−𝑔 and 𝜙𝜆,2(𝑥) ∼ 𝑥−𝑔

for 0 < 𝑥 ≪ 1. Therefore, in this region 𝑄†+ has a discrete real spectrum,
symmetric with respect to the origin, given by the (degeneracy one) eigen-
values

𝜆±,𝑛 = ±√2𝑛 + 1− 2𝑔 , 𝑛 = 0, 1, 2, . . . (2.18)

corresponding to the eigenfunctions

Φ±,𝑛 = (−1)𝑛 𝑛!𝑥−𝑔 𝑒−𝑥
2/2

⎛⎝ 𝑥𝐿
( 1
2−𝑔)

𝑛 (𝑥2)

∓
√

𝑛 + 1
2 − 𝑔 𝐿

(−𝑔− 1
2 )

𝑛 (𝑥2)

⎞⎠ . (2.19)

Notice that no eigenvalue vanishes for these values of the coupling.
∙ For −1/2 < 𝑔 < 1/2, it can be seen that Φ𝜆(𝑥) ∈ L2(0, 1), ∀𝜆 ∈ C. This

means that, for these values of 𝑔, every complex number is an eigenvalue of

𝑄†+ with degeneracy one. In particular, the eigenfunction of 𝑄†+ corresponding
to 𝜆 = +𝑖 is given by

Φ+𝚤(𝑥) =

(
𝜙+𝚤,1

𝜙+𝚤,2

)
= 𝑥𝑔 𝑒−𝑥

2/2

(
𝑈
(

1
2 , 𝑔 + 1

2 , 𝑥
2
)

− 𝑖√
2
𝑥𝑈
(

3
2 , 𝑔 + 3

2 , 𝑥
2
) ) , (2.20)

while the eigenfunction corresponding to 𝜆 = −𝑖 is given by its complex
conjugate,

Φ−𝚤(𝑥) = Φ+𝚤(𝑥)∗ =

(
𝜙+𝚤,1

−𝜙+𝚤,2

)
. (2.21)

For ∣𝒈∣ ≥ 1/2 the operator 𝑸+ is essentially self-adjoint

As previously seen, the deficiency indices of 𝑄+, defined as the dimensions of the
deficiency subspaces

𝑛± := dim Ker(𝑄†+ ∓ 𝑖) , (2.22)

vanish for ∣𝑔∣ ≥ 1/2.

According to von Neumann’s theory, this means that 𝑄+ is essentially self-
adjoint for these values of the coupling, admitting then a unique self-adjoint ex-

tension given by 𝑄†+ (which, in this case, is itself a self-adjoint operator).

The corresponding self-adjoint extension of the Hamiltonian for ∣𝑔∣ ≥ 1/2 is
given by

�̄� = (𝑄†+)2, (2.23)

where the operator composition in the right-hand side is possible in the dense
domain

𝒟(�̄�) =
{
𝜓 ∈ 𝒟(𝑄†+) : 𝑄†+𝜓 ∈ 𝒟(𝑄†+)

}
. (2.24)

In particular, every eigenfunctions of 𝑄†+ belongs to 𝒟 (�̄�). Therefore, it is also

an eigenfunction of �̄� with eigenvalue 𝐸 = 𝜆2.
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Therefore, we have for the spectrum of �̄�

∙ For 𝑔 ≥ 1/2, there is a unique zero mode, while the positive eigenvalues of �̄� ,

𝐸𝑛 = 2𝑛 , 𝑛 = 1, 2, 3, . . . , have degeneracy two (since the eigenvalues of 𝑄†+
are 𝜆±,𝑛 = ±√2𝑛). One can combine Φ±,𝑛 to get energy eigenfunctions with
only the upper (bosonic) or the lower (fermionic) component non vanishing.
In this case the SUSY is exact.

∙ For 𝑔 ≤ −1/2, there is no zero mode, the eigenvalues of �̄� are positive,
𝐸𝑛 = 2𝑛 + 1 − 2 𝑔 ≥ 2 , 𝑛 = 0, 1, 2, . . . , and have degeneracy two (since

of 𝑄†+ are 𝜆±,𝑛 = ±√2𝑛 + 1− 2𝑔). Once again, the eigenfunctions Φ±,𝑛
can be combined to get energy eigenfunctions with only one non-vanishing
component, i.e., also eigenfunctions of the grading operator. In this case the
SUSY is spontaneously broken.

For ∣𝒈∣ < 1/2 the operator 𝑸+ is not essentially self-adjoint

As we have seen, for ∣𝑔∣ < 1/2 the deficiency indices are 𝑛± = 1. According to von
Neumann’s theory, in this region 𝑄+ admits a one parameter family of SAE, 𝑄𝛾

+,
which are in a one-to-one correspondence with the isometries from 𝒦+ onto 𝒦−,
characterized by

𝒰(𝛾)Φ+𝚤(𝑥) := 𝑒2𝑖𝛾Φ−𝚤 , 𝛾 ∈ [0, 𝜋) , (2.25)

with Φ+𝚤 and Φ−𝚤 eigenvectors of 𝑄†+ with eigenvalues +𝚤 and −𝚤 respectively.

Let us call �̄�+ the closure of 𝑄+, which is given by �̄�+ := 𝑄††+ . Its domain

contains those functions Φ for which
(

Φ, 𝑄†+Φ
)

is a continuous linear functional of

Φ ∈ 𝒟
(
𝑄†+
)

. In particular, since 𝑄+ is symmetric, 𝒟 (𝑄+) ⊂ 𝒟 (�̄�+

) ⊂ 𝒟
(
𝑄†+
)

.

The self-adjoint operator 𝑄𝛾
+ is defined as the restriction of 𝑄†+ to the dense

subspace 𝒟(𝑄𝛾
+) ⊂ 𝒟(𝑄†+) composed by those functions which can be written as

Φ = Φ + 𝑐
(
Φ+𝚤 + 𝑒2𝑖𝛾Φ−𝚤

)
, (2.26)

with Φ ∈ 𝒟(�̄�+), and 𝑐 ∈ C. The action of 𝑄𝛾
+ is given by

𝑄𝛾
+Φ = 𝑄†+Φ + 𝑖𝑐

(
Φ+𝚤 − 𝑒2𝑖𝛾Φ−𝚤

)
. (2.27)

This structure of the functions in 𝒟 (𝑄𝛾
+

)
completely characterizes its be-

havior near the origin and allows to determine the spectrum of 𝑄𝛾
+. Indeed, it

can be shown [20] that the functions in the domain of the closure of 𝑄+, 𝒟(�̄�+),
behave as

𝜙1(𝑥) = 𝑜(𝑥𝑔) , 𝜙2(𝑥) = 𝑜(𝑥−𝑔) , (2.28)

for 𝑥→ 0+.
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On the other side, from the expression of the eigenfunctions Φ𝜆 of 𝑄†+ in
terms of 𝑈(𝑎, 𝑏, 𝑧) one can easily see that its components behave as

𝜙𝜆,1(𝑥) =
Γ
(

1
2 − 𝑔

)
Γ
(

1−𝜆2

2 − 𝑔
) 𝑥𝑔 + 𝑂(𝑥1−𝑔) ,

𝜙𝜆,2(𝑥) =

√
2

𝜆

Γ
(

1
2 + 𝑔

)
Γ
(−𝜆2

2

) 𝑥−𝑔 + 𝑂(𝑥1+𝑔) ,

(2.29)

and then they are dominant near the origin.

Therefore, no eigenfunction of 𝑄†+ belongs to 𝒟(�̄�+), and it is the contribu-

tions of Φ± in Φ𝜆 = Φ + 𝑐
(
Φ+ + 𝑒2𝑖𝛾Φ−

)
which determine the spectrum of 𝑄𝛾

+.
Indeed, for a non vanishing 𝑐, the limit

lim
𝑥→0+

𝑥−𝑔 𝜙𝜆,1(𝑥)

𝑥𝑔 𝜙𝜆,2(𝑥)
=

𝜆√
2

Γ
(
−𝜆2

2

)
Γ
(

1−𝜆2

2 − 𝑔
) Γ
(

1
2 − 𝑔

)
Γ
(

1
2 + 𝑔

) (2.30)

must coincide with

lim
𝑥→0+

ℜ{𝑒−𝑖𝛾 𝑥−𝑔 𝜙+𝚤,1(𝑥)
}

ℜ{𝑒−𝑖𝛾 𝑥𝑔 𝜙+𝚤,2(𝑥)} = −
√

𝜋

2

cot(𝛾)

Γ (1− 𝑔)

Γ
(

1
2 − 𝑔

)
Γ
(

1
2 + 𝑔

) . (2.31)

Consequently, the eigenvalues of 𝑄𝛾
+ (which are real) are the solutions of the

transcendental equation

𝑓(𝜆) :=
𝜆Γ
(
−𝜆2

2

)
Γ
(

1−𝜆2

2 − 𝑔
) = −

√
𝜋 cot(𝛾)

Γ (1− 𝑔)
=: 𝛽(𝛾) . (2.32)

Notice that 𝑓(𝜆) is an odd function of 𝜆, and −∞ ≤ 𝛽(𝛾) < ∞ for 0 ≤ 𝛾 < 𝜋.
These eigenvalues of 𝑄𝛾

+ are determined by the intersections of the graphic of 𝑓(𝜆)
with the horizontal line corresponding to the constant 𝛽(𝛾). The eigenvalues are
non degenerate, as shown in the figure 1.

Notice that these spectra are, in general, non symmetric with respect to
the origin. The exceptions are the self-adjoint extensions corresponding to 𝛾 = 0
(𝛽 = −∞) and 𝛾 = 𝜋/2 (𝛽 = 0). Indeed, the condition 𝑓(−𝜆) = 𝑓(𝜆) for a non
vanishing 𝜆 requires that

1

Γ
(−𝜆2

2

)
Γ
(

1−𝜆2

2 − 𝑔
) = 0 , (2.33)

whose solutions correspond to the intersections with the constant 𝛽 = −∞ (𝛾 = 0),

−𝜆2

2
= −𝑛⇒ 𝜆±,𝑛 = ±

√
2𝑛, 𝑛 = 1, 2, 3, . . . (2.34)

or the constant 𝛽 = 0 (𝛾 = 𝜋/2),

1− 𝜆2

2
− 𝑔 = −𝑛⇒𝜆±,𝑛 = ±

√
2𝑛 + 1− 2𝑔, 𝑛 = 0, 1, 2, . . . . (2.35)
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Figure 1. 𝑓(𝜆) :=
𝜆Γ
(
−𝜆2

2

)
Γ
(

1−𝜆2

2 − 𝑔
) for 𝑔 = 1/4, and 𝛽(𝛾) ≡ −1.

Notice also that 𝑄𝛾=0
+ is the only self-adjoint extension having a zero mode, and

for 0 < 𝛾 < 𝜋 the eigenvalues are contained between contiguous asymptotes of the

function Γ
(
−𝜆2

2

)
,

√
2𝑛 < ∣𝜆±,𝑛∣ <

√
2(𝑛 + 1) . (2.36)

3. The Hamiltonian

As previously stated, for each SAE 𝑄𝛾
+, with 𝛾 ∈ [0, 𝜋), we get a self-adjoint

extension of the Hamiltonian defined by

𝐻𝛾 = (𝑄𝛾
+)2 ≡ (𝑄†+)2

∣∣∣
𝒟(𝐻𝛾 )

, (3.1)

where the operator composition on the right-hand side is defined as the restriction

of (𝑄†+)2 to the dense subspace

𝒟 (𝐻𝛾) =
{
𝜓 ∈ 𝒟 (𝑄𝛾

+

)
: 𝑄†+𝜓 ∈ 𝒟 (𝑄𝛾

+

)}
. (3.2)

This domain includes, in particular, all the eigenfunctions of 𝑄𝛾
+, which are then

also eigenvectors of 𝐻𝛾 :

𝑄𝛾
+Φ𝜆 = 𝜆Φ𝜆 ⇒ 𝐻𝛾Φ𝜆 = 𝜆2Φ𝜆 . (3.3)

Notice that, except for the special values 𝛾 = 0, 𝜋/2, the spectrum of 𝐻𝛾 is non
degenerate.
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Three cases can be distinguished for ∣𝒈∣ < 1/2:

∙ For 𝛾 = 0 (𝛽 = −∞) we get the only self-adjoint extension of 𝐻 having a
non degenerate zero mode and doubly degenerate positive eigenvalues 𝐸±,𝑛 =

(𝜆±,𝑛)
2

= 2𝑛, 𝑛 = 1, 2, 3, . . . . The corresponding eigenvectors can be chosen
to have a definite character with respecto to the grading 𝜎3. This SAE of the
Hamiltonian corresponds to an exactly realized SUSY.

∙ For 𝛾 = 𝜋/2 (𝛽 = 0) we get a SAE of 𝐻 with no zero modes and a doubly

degenerate non-vanishing eigenvalues, 𝐸±,𝑛 = (𝜆±,𝑛)
2

= 2𝑛 + 1 − 2𝑔, with
𝑛 ≥ 0. They are all positive, since 1 − 2𝑔 > 0. The eigenvectors can also
be chosen with a definite 𝜎3 eigenvalue. In the present case, the condition

imposed on the functions in 𝒟(𝑄
𝛾=𝜋/2
+ ) breaks the SUSY preserving the

doubly degeneracy of the spectrum. This case corresponds to a SAE of 𝐻
with spontaneously broken SUSY.

∙ Finally, for 𝛾 ∕= 0, 𝜋/2 we get SAE of 𝐻 with no zero modes and non degen-
erate positive eigenvalues (the square of the solutions of 𝑓(𝜆) = 𝛽(𝛾)). The
eigenfunctions of 𝐻𝛾 (those of 𝑄𝛾

+) have both components non-vanishing
(they are not eigenvectors of the grading). Then, they have not bosonic or
fermionic character. In this case, the condition imposed on the functions be-
longing to 𝒟 (𝑄𝛾

+

)
breaks not only the SUSY, but also the degeneracy of the

spectrum.

4. On the existence of a second supercharge

As previously mentioned, the differential operators 𝑄+ and 𝑄− are related by a
unitary transformation, 𝑄− = 𝑒𝑖𝜎3𝜋/4𝑄+𝑒−𝑖𝜎3𝜋/4. Then, each SAE of the first,
𝑄𝛾

+, determines a SAE of the second, 𝑄𝛾
−, whose domain is obtained from 𝒟(𝑄𝛾

+)
through this unitary transformation,

𝒟(𝑄𝛾
−) =

{
Ψ : 𝑒−𝑖𝜋𝜎3/4Ψ ∈ 𝒟(𝑄𝛾

+)
}

= 𝑒𝑖𝜋𝜎3/4 (𝒟(𝑄𝛾
+)
)
. (4.1)

Consequently, 𝑄𝛾
− is an equivalent representation of the self-adjoint supercharge

𝑄𝛾
+, sharing both operators the same spectrum.

Similarly, its square (𝑄𝛾
−)2, defined on the dense subspace

𝒟 ((𝑄𝛾
−)2
)

=
{

Ψ ∈ 𝒟(𝑄𝛾
−) : 𝑄𝛾

−Ψ ∈ 𝒟(𝑄𝛾
−)
}

= 𝑒𝑖𝜋𝜎3/4 (𝒟(𝐻𝛾)) , (4.2)

is an equivalent representation of the SAE 𝐻𝛾 = (𝑄𝛾
+)2 of the Hamiltonian 𝐻 ,

initially defined on 𝒞∞0 (R+∖{0}).
These equivalent representations of the Hamiltonian coincide only if the do-

main 𝒟(𝑄𝛾
+) is left invariant by the grading operator 𝜎3 and, consequently, by the

unitary transformation 𝑒𝑖𝜋𝜎3/4. And this occurs only for the particular self-adjoint
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extensions corresponding to 𝛾 = 0 and 𝛾 = 𝜋/2 since

𝑒𝑖𝜋𝜎3/4
(
Φ+𝚤(𝑥) + 𝑒2𝑖𝛾Φ−𝚤(𝑥)

)
=

⎛⎝ 𝑒𝑖
𝜋
4

(
1 + 𝑒2𝑖𝛾

)
𝜙+𝚤,1(𝑥)

𝑒−𝑖
𝜋
4

(
1− 𝑒2𝑖𝛾

)
𝜙+𝚤,2(𝑥)

⎞⎠ . (4.3)

Consequently, the operator compositions

(𝑄𝛾
+)2, (𝑄𝛾

−)2, 𝑄𝛾
+𝑄𝛾
− and 𝑄𝛾

−𝑄
𝛾
+ (4.4)

make sense in the same (dense) domain 𝒟(𝐻𝛾) only for 𝛾 = 0, 𝜋/2, values of
the parameter characterizing self-adjoint extensions for which the 𝑁 = 2 SUSY
algebra is realized,

{𝑄𝛾
+, 𝑄𝛾

−} = 0 , 𝐻𝛾 = (𝑄𝛾
+)2 = (𝑄𝛾

−)2 . (4.5)

For other values of the parameter 𝛾, 𝒟(𝑄𝛾
+) is not left invariant by 𝑒𝑖𝜋𝜎3/4,

and there is no dense domain in the Hilbert space where the 𝑁 = 2 SUSY algebra
could be realized in terms of self-adjoint operator compositions.

Therefore, for 𝛾 ∕= 0, 𝜋/2 only one self-adjoint supercharge can be defined in
the domain of the Hamiltonian, and the SUSY algebra reduces to the 𝑁 = 1 case,

𝐻𝛾 = (𝑄𝛾
+)2 (4.6)

(or, equivalently, 𝐻𝛾 = (𝑄𝛾
−)2).

It is worthwhile to remark that the double degeneracy of the non vanishing
eigenvalues of 𝐻𝛾 with 𝛾 = 0, 𝜋/2 is a consequence of the existence of a second
supercharge. Indeed, if

𝑄𝛾
+Φ𝜆 = 𝜆Φ𝜆 , (4.7)

with Φ𝜆 ∈ 𝒟(𝐻𝛾) and 𝜆 ∕= 0, then {𝑄𝛾
+, 𝑄𝛾

−} = 0 imply that

𝑄𝛾
+(𝑄𝛾

−Φ𝜆) = −𝑄𝛾
−(𝑄𝛾

+Φ𝜆) = −𝜆(𝑄𝛾
−Φ𝜆) . (4.8)

Therefore, 𝑄𝛾
−Φ𝜆

(∈ 𝒟(𝑄𝛾
−) ≡ 𝒟(𝑄𝛾

+)
)

is a linearly independent eigenvector of
𝑄𝛾

+ corresponding to the eigenvalue −𝜆, since 𝑄𝛾
−Φ𝜆 ⊥ Φ𝜆 and

∥ 𝑄𝛾
−Φ𝜆 ∥2= (Φ𝜆, (𝑄

𝛾
−)2Φ𝜆) = (Φ𝜆, 𝐻𝛾Φ𝜆) = 𝜆2 ∥ Φ𝜆 ∥2 ∕= 0 . (4.9)

This explains why it is not possible to construct a second supercharge when the
spectrum of the first one is not symmetric with respect to the origin.

5. Conclusions

Then, we have the following situation:

∙ For a general SAE 𝑄𝛾
+, the conditions the functions in 𝒟(𝐻𝛾) satisfy near the

origin prevent the 𝑁 = 2 SUSY. Only the 𝑁 = 1 SUSY algebra is realized,
with a non symmetric spectrum for 𝑄𝛾

+ and a non degenerate spectrum for
𝐻𝛾 . This SUSY is spontaneously broken, since there are no zero modes.
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∙ The only exceptions are the 𝛾 = 0 and 𝛾 = 𝜋/2 SAE, for which the 𝑁 = 2
SUSY algebra can be realized. In these two cases the supercharges have a
common symmetric spectrum and the positive eigenvalues of the Hamiltonian
are doubly degenerate.

∙ For 𝛾 = 0, the (non degenerate) ground state of 𝐻0 has a vanishing energy
and the SUSY is exact, while for 𝛾 = 𝜋/2 the (doubly degenerate) ground
state of 𝐻𝜋/2 has positive energy and the SUSY is spontaneously broken.

It is interesting to remark that a similar supersymmetric structure is found in
the case of particles living in a plane and subject to the presence of an Aharonov-
Bohm singular magnetic flux [28, 29].

Finally, it is worthwhile to point out that the 𝑁 = 2 SUSY can be real-
ized only when the supercharge domain 𝒟(𝑄𝛾

+) is scale invariant. Indeed, given a
function Φ(𝑥) ∈ 𝒟(𝑄𝛾

+), under the scaling isometry

𝑇𝑎Φ(𝑥) := 𝑎1/2Φ(𝑎𝑥) (5.1)

with 𝑎 > 0, we get

lim
𝑥→0+

𝑥−𝑔 (𝑇𝑎Φ)1(𝑥)

𝑥𝑔 (𝑇𝑎Φ)2(𝑥)
= −

√
𝜋

2

𝑎2𝑔 cot(𝛾)

Γ (1− 𝑔)

Γ
(

1
2 − 𝑔

)
Γ
(

1
2 + 𝑔

) , (5.2)

which means that 𝑇𝑎Φ(𝑥) ∈ 𝒟(𝑄𝛾𝑎
+ ) with 𝛾𝑎 defined by

cot(𝛾𝑎) = 𝑎2𝑔 cot(𝛾) . (5.3)

Then, 𝛾𝑎 = 𝛾 only for 𝛾 = 0, 𝜋/2. For other values of 𝛾 the domain 𝒟(𝑄𝛾
+) is not

scale invariant.
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