
Vol.:(0123456789)1 3

https://doi.org/10.1007/s13538-021-00882-y

PARTICLES AND FIELDS

Useful model to understand Schwartz’ distributions’ approach 
to non‑renormalizable QFTs

M. C. Rocca1,2,3   · A. Plastino1,3,4

Received: 22 July 2020 / Accepted: 25 February 2021 
© Sociedade Brasileira de Física 2021

Abstract
Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the exist-
ence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a 
rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution 
theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the pres-
ence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple 
QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible 
to successfully deal with the issue of non-renormalizability via SDT.

Keywords  Schwartz’ distributions approach to QFT · Dimensional regularization · Lorentz invariant distributions · 
Convolution of Schwartz’ distributions · Non-renormalizable quantum field theories

1  Introduction

Quantum Field Theory (QFT) is regarded as very difficult 
subject, plagued by puzzling infinities [1]. Its most formida-
ble challenge is the existence of many non-renormalizable 
QFT theories, for which the number of infinities is itself 
infinite. In the present study, we will carefully discuss a sim-
ple QFT-model devised by Bollini and Giambiagi. Because 
of its simplicity, it makes it easy to appreciate, via suitable 
discussion, how it is possible to successfully deal with the 
issue of non-renormalizability.

In this work, we deal with the non-conventional QFT 
approach developed in [2]. Such approach appeals to  

Schwartz’ distribution theory (SDT) and is able to entirely  
avoid the need for counterterms. In the SDT approach to  
QFT, infinities arise due to the presence of products of dis-
tributions with coincident point singularities. Our basic idea 
consists in appealing to a particular kind of Schwartz’s dis-
tributions called STDELI, which belong to a ring with divi- 
sors of zero.  Convolutions between them allow one to  
deal with both renormalizable and non-renormalizable  
QFTs on an equal footing.

Bollini and Giambiagi made a great advance for facing 
these infinities by appealing to Schwartz’ Distributions (SD) 
Theory, a powerful mathematical machinery developed in 
the midst of the XX-century [3–5]. Regretfully enough, this 
machinery is not being taken advantage of by many current 
QFT-researchers. The Schwartz’ Distributions’ approach to 
QFT remains rather unconventional today, but it is the one 
we will be involved with here. There exists a variety of dif-
ferent SD, as we will see below. Among them, we will here 
highlight the so-called Schwartz Tempered Distributions 
Explicitly Lorentz Invariant (STDELI) S

′

L
.

A great advance in facing QFT infinities was made by 
Bollini and Giambiagi who proposed the so-called Dimen-
sional Regularization [3–5]. However, it cannot be defined 
for all Schwartz Tempered Distributions Explicitly Lorentz 
Invariant (STDELI) S

′

L
 . How to overcome this difficulty will 

also concern us here.
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We remind the reader that a ring is a fundamental alge-
braic structure. It is used in abstract algebra and consists of 
a set equipped with two binary operations. These operations 
generalize the arithmetic addition and multiplication ones. 
Via such generalization, theorems from arithmetic can be 
applied to non-numerical entities like as polynomials, series, 
matrices, etc. An element a of a ring is named a right zero 
divisor if there exists a nonzero y such that ya = 0 . Similarly 
for left zero divisors. We have here a partial case of divisibil-
ity in rings. An element that is a left and a right zero divisor 
is simply called a zero divisor. If there are no nontrivial zero 
divisors in the ring, then it is called a domain. In the ring 
ℤ∕4ℤ , the residue class 2 is a zero divisor. The ring of n × n 
matrices over a field has zero divisors if n ≥ 2.

The main problem of the Schwartz’ Distributions’ 
approach to QFT is that of defining the product of two 
Schwartz’ distributions (SD). It is a fundamental fact for us 
that the product of these distributions happens to be [2] a 
product in a ring with divisors of zero. Another fundamental 
fact is that, in quantum field theory, the problem of evaluat-
ing the product of SD with coincident point singularities is 
related to the asymptotic behavior of Feynman’s loop inte-
grals of propagators. We need to assume here that the reader 
is familiar with Feynman diagrams. If this is not the case, we 
strongly recommend consulting reference [1].

Distributions have formidable sounding names, but the 
reader should not be intimidated by them. In applications, 
things will turn out to be of a rather transparent nature, as we 
will see. From a mathematical point of view, practically all 
definitions of that distributions’ product lead to limitations 
on the set of Schwartz’ distributions that can be multiplied 
by each other to yield another SD of the same type. Note 
that Schwartz himself was not able to define a product of 
distributions regarded as an algebra, instead of as a ring with 
divisors of zero. In references [7–10], it was demonstrated 
that it is indeed possible to advance a general convolution 
between the a special kind of SDs, of impressive names. 
These are called ultradistributions (UDs) and were invented 
by Sebastiao e Silva [11], who named them Ultrahyperfunc-
tions (UHF). Among the UDs, we have distributions called 
Tempered UDs (defined in a very restricted range), and 
Ultradistributions of Exponential Type.

The excellent news is that the convolution of two UHFs 
yields another Ultrahyperfunction. This entails that we do 
have now a product in a ring with zero divisors. Such a ring 
is called, precisely, the space of Distributions of Exponen-
tial Type, or also of Ultradistributions of Exponential Type. 
They are obtained by applying the anti-Fourier transform to 
the space of Tempered Ultradistributions or of Ultradistribu-
tions of Exponential Type.

We must clarify at this point that the Ultrahyperfunctions 
are the generalization and extension to the complex plane of 
the above-mentioned Schwartz Tempered Distributions and 

of those of Exponential kind. This entails that the Temperate 
Distributions and those of Exponential Type are a subset of 
the Ultrahyperfunctions of da Silva.

For treating non-renormalizable QFT theories, the prob-
lem we face is that of formulating the convolution between 
Ultradistributions. This is a complex issue, difficult to man-
age, even if it has the advantage of allowing one to attempt 
non-renormalizable QFT’s [2].

Fortunately, the present authors have found [2] that a 
method similar to that employed to obtain the convolution 
of Ultradistributions can also be used to define the convolu-
tion of still another formidable sounding SDs. These are 
called Lorentz Invariant distributions. For them, the required 
convolution-definition utilizes the Dimensional Regulariza-
tion (DR) technique of Bollini–Giambiagi, but effected in 
momentum space [2]. As a consequence, Ultradistributions 
can be avoided (great news!) in the calculations of this 
paper, which considerably simplifies it [2]. With our theory, 
we have been able to perform the Non-relativistic QFT of 
the emergent gravity of Verlinde [67]. This QFT is clearly 
non-renormalizable.

Taking advantage of the BG-regularization technique, 
one can also work in configuration space [5]. Thus, one can 
obtain a convolution of Lorentz Invariant Tempered Distri-
butions in momentum space and the corresponding product 
in configuration space. To repeat, the reader should not be 
intimidated by this complexity and multiplicity of distri-
butions’ names. Things will become transparent when we 
use math-formulas. To end these introductory remarks, we 
remind that DR is one of the most important advances in 
theoretical physics and is used in several disciplines of it 
[12-65].

2 � Preliminary Materials

2.1 � The concept of Schwartz’ distribution

Schwartz-distributions are defined as continuous linear 
functionals over a space of infinitely differentiable functions 
such that all continuous functions have derivatives which 
are themselves generalized functions. The most commonly 
encountered generalized function is the delta function. These 
mathematical objects are the main mathematical tools of this 
work. Distributions (generalized functions) are thus math-
ematical objects devised with the intent of generalizing the 
traditional concept of function. They allow one to differen-
tiate functions for whom derivatives may not exist in the 
conventional sense.

Specifically, any locally integrable function possesses 
a ”distributional” derivative. The distribution-notion is 
widely employed in the theory of partial differential equa-
tions. It may be easier sometimes to ensure the existence of 
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distributional solutions than that of conventional solutions. 
It might also be the case that classical solutions do not exist. 
Distribution-theory is very important in physics and engi-
neering. Many problems there lead to differential equations 
whose solutions or initial conditions are distributions. The 
Dirac’s delta function is a prominent example. There are, of 
course, distributions of various types, that we will use below. 
One important example is that of Schwartz Tempered Distri-
butions [11, 66], which permit integration in case where it is 
not feasible to do so with conventional techniques.

2.2 � Main definitions

In this subsection, we give the definitions that we will use in 
this paper. We consider first the case on the �-dimensional 
Minkowskian space M� . Let S

′

 be the space of Schwartz 
Tempered Distributions [11, 66]. Let be g ∈ S

�

 . We say that 
g ∈ S

�

L
 if and only if,

where the derivative is in the sense of distributions, l is 
a natural number, � = k2 = k2

0
− k2

1
− k2

2
− ⋅ ⋅ ⋅ − k2

�−1
 , f 

satisfies,

and is continuous in M� . The exponent n is a natural num-
ber. We say then that f ∈ T1L.

In the case of Euclidean space R� , let g ∈ S
�

 . We say that 
g ∈ S

�

R
 if and only if

where k2 = k2
0
+ k2

1
+ k2

2
− ⋅ ⋅ ⋅ + k2

�−1
, with f(k) satisfying,

and f(k) is continuous in R� . We say then that f ∈ T1R . We 
call S

′

LA
 and S

′

RA
 the Fourier Anti-transformed Spaces of S

′

L
 

and S
′

R
 , respectively.

2.3 � Brief description of our theoretical scheme

We will here appeal to a rather non-conventional QFT 
approach developed in [2] that uses Schwartz’ distribu-
tion theory (SDT) [6]. The technique of [2] avoids the need 
for counterterms. In our SDT approach to QFT, infinities 
arise due to the presence of products of distributions with 

(1)g(�) =
dl

d�l
f (�)

(2)

∞

∫
−∞

|f (𝜌)|
(1 + 𝜌2)n

d𝜌 < ∞,

(3)g(k) =
dl

dkl
f (k),

(4)

∞

∫
0

| f (k)|
(1 + k2)n

dk < ∞,

coincident point singularities. In [2], the problem is tack-
led using special Schwartz distributions called STDELI 
(Schwartz Tempered Distributions Explicitly Lorentz Invari-
ant), discussed at length in [2, 7–10]. We do not need the 
specific details here. It suffices to stipulate that, in [2], we 
were able to introduce an adequate process of convolution 
between two STDELIs. This convolution becomes, as a con-
sequence, a product in a ring with divisors of zero in a very 
convenient space, that of the anti-Fourier transformed one 
[2, 7–10]. Again, mathematical precisions are not necessary 
for understanding what we do here. We only need to know 
the following fact. Consider two arbitrary STEDELIs f and 
g. Then, according to [2, 7–10], in a space of � dimensions 
the convolution f ∗ g between them can be cast as a Laurent 
expansion with coefficients am [2],

It is of the essence to point out that [2] the term in that 
expansion that does not depend on the Laurent exponent, 
namely a0 , yields the value of the convolution in four dimen-
sions. This nice mathematical fact provides the root of our 
developments.

The overarching fact, whose importance cannot be exag-
gerated, is the following one [2]: the convolution of propa-
gators in QFT, the main ingredient in dealing with QFTs 
from the Schwartz-distributions perspective, is just a  
special case of the relation (5).

In more detail, the essential ingredient of our treat-
ment is the following fact. If f and g are now QFT propa-
gators, then [2]

and

an identification result that removes most QFT-obstacles 
from our path.

As stated in the Introduction, a great advance in facing 
QFT infinities was made by Bollini and Giambiagi (BG) 
who proposed the so-called Dimensional Regularization 
(DR) technique [3–5]. We remark at this point now that (7) 
is precisely the prescription of the BG DR to calculate the 
finite part of the convolution of two propagators. However, 
this prescription is not suitable for the convolution of two 
general STDELIs, since for them it is n ≥ 1 in ( ref ep2.5). 
This fact explains to us why BG DR is not suitable for quan-
tifying non-renormalizable QFT theories. The reason lies in 
the fact that, with the BG DR, we cannot define a product 
in a ring with zero divisors when considering STDELI. It 

(5)f ∗ g =

∞∑

m=−n

am(� − 4)m,

(6)f ∗ g =

∞∑

m=−1

am(� − 4)m,

(7)lim
�→4

{
�

��

[
(� − 4)(f ∗ g)

]}
= a0,
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is then necessary to resort to Laurent serial expansions for 
such products, and as a consequence, to products in a ring 
with zero divisors.

If the dimension is �0 instead of four, we have, more 
generally,

3 � The two fields (   and � ) model we use 
to illustrate our theory

This model was advanced by Bollini–Giambiagi (BG) en [3]. 
They proposed a Lagrangian in which two fields enter ( � and �)

whose free part reads

with the interaction

The solution for the equations of motion (EOM) for the field 
� is [3]

with � =
√
k2 + m2.

For the field � , the EOM solution reads [3]

with k0 = |k|.
Creation-destruction operators verify [3]

while the pertinent Feynman propagators are [3]

so that the �-field propagator turns out to be [3]

(8)f ∗ g =

∞∑

m=−n

am(� − �0)
m.

(9)L = −
1

2

[
������ + m2�2 + ����

�� − g��2
]
,

(10)LF = −
1

2

[
������ + m2�2 + ����

��
]
,

(11)LI = −g��2.

(12)� =
1

(2�)
3

2
∫

�
a(k)
√
2�

eik�x
�

+
a+(k)
√
2�

e−ik�x
�

�
d3k,

(13)� =
1

(2�)
3

2
∫

�
b(k)
√
2k0

eik�x
�

+
b+(k)
√
2k0

e−ik�x
�

�
d3k,

(14)[a(k), a+(k
�

)] = �(k − k
�

).

(15)[b(k), b+(k
�

)] = �(k − k
�

),

(16)Δ𝜓 (x − y) =< 0|T[𝜓(x)𝜓(y)]|0 >,

(17)Δ� (x − y) =
i

(2�)4 ∫
eik�(x

�−y�)

k2 + m2 − i0
d4k.

Instead, for the field � we have [3]

so that the �-field propagator becomes [3]

4 � The �‑dimensional self‑energy

The amount of energy that a particle Q acquires as a result of 
modifications that Q itself generates in its surrounding medium 
is called its self-energy Σ . It can be thought of as an effective 
mass caused by interactions between Q and its environment.

4.1 � Computing 6 using Feynman’s parametrization

This is a well-known methodology [1]. The Feynman param-
eters are very well known [1]. One calls Feynman’s parametri-
zation to a technique devised for the evaluation of loop inte-
grals emerging from Feynman diagrams with one or several 
loops.

Feynman remarked that, for any complex numbers A and 
B, as long as 0 is not contained in the line segment connecting 
A and B, one has [1]

The result can suitably be extended to cases in which A and 
B are functions of a variable x [1].

4.2 � 6 in Minkowski’s space

As it is well known, in Minkowski’s � dimensional space, Σ 
gets defined as [3]

where � = k2
1
+ k2

2
+ k2

3
+ .... + k2

�−1
− k2

0
.

In Euclidean space, instead, we have

where � = k2
0
+ k2

1
+ k2

2
+ .... + k2

�−1
 . One has

and in � dimensions we have

(18)Δ𝜙(x − y) =< 0|T[𝜙(x)𝜙(y)]|0 >,

(19)Δ�(x − y) =
i

(2�)4 ∫
eik�(x

�−y�)

k2 − i0
d4k.

(20)1

AB
=

1

∫
0

dx

[Ax + B(1 − x)]2

(21)Σ� (�) = (� + m2 − i0)−1 ∗ (� − i0)−1.

(22)Σ� (�) = (� + m2)−1 ∗ �−1.

(23)Σ� (k) = ∫
d4p

(p2 + m2 − i0)[(p − k)2 − i0]
,

(24)Σ� (k, �) = ∫
d�p

(p2 + m2 − i0)[(p − k)2 − i0]
.
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A Wick rotation is an approach for finding solutions to 
problems in Minkowski space from solutions to a related 
issue in Euclidean space. One appeals to a transformation 
that substitutes an imaginary variable for a real one. This 
transformation is employed also for problems in quantum 
mechanics [1]. Using (35), and after a Wick rotation [1], the 
self-energy becomes

where

Change now variables in the fashion u = p − kx . Then,

To integrate over u, we need the result of the celebrated book 
by Gel’fand and Shilov [66]

With it, we find for the self-energy,

Appealing again to the book [66], we have, in terms of 
hypergeometric functions F

and

Once more, we need to appeal to the book [66] to obtain, in 
terms of hypergeometric functions F

Thus,

(25)Σ� (k, �) = i

1

∫
0

∫
d�p dx

[(p − kx)2 + a]2

(26)a = (p2 + m2)x − p2x2.

(27)Σ� (k, �) = i

1

∫
0

∫
d�u dx

[u2 + a]2

(28)∫
(u2)n

(u2 + a)m
d�u =

�
�

2

Γ
(

�

2

)
Γ
(

�

2
+ n

)
Γ
(
m − n −

�

2

)

Γ(m)am−n−
�

2

.

(29)

Σ� (k, �) = i�
�

2Γ
(
2 −

�

2

)
(k2 + m2)

�

2
−2

1

∫
0

x
�

2
−2

(
1 −

k2x

k2 + m2

) �

2
−2

dx.

(30)

u

∫
0

x�(1 + �x)−vdx =
u�

�
F(v,�,� + 1; − �u),

(31)
2i�

�

2Γ
(
2 −

�

2

)

� − 2
F

(
2 −

�

2
,
�

2
− 1,

�

2
,

k2

k2 + m2

)
.

(32)F(�, �, �;z) = (1 − z)−�F

(
�, � − �, �;

z

z − 1

)
.

(33)
Σ� (k, �) =

2i�
�

2m
�−4

� − 2
Γ
(
2 −

�

2

)
F

(
1, 2 −

�

2
,
�

2
; −

k
2

m2

)
.

Appeal now to the hypergeometric functions equality

entailing

yielding thus our desired self-energy.

4.3 � Euclidean case

Here, things work in almost the same fashion as above. Thus, 
we give only the final result

Note that the two self-energies here discussed are related 
via a Wick rotation Rotating the Euclidean Σ yields the 
Minkowskian one.

5 � The four‑dimensional self‑energy, 
a crucial QFT observable

5.1 � Minkowskian case

To be able to evaluate self-energy in four dimensions, we must 
Laurent-expand it in powers of � − 4:

According to our theory [2], the self-energy in four dimen-
sions is given by the independent term (of � − 4 ) in Laurent’s 
expansion of it. In terms of the hypergeometric function F, 
we have

F

(
1, 2 −

�

2
,
�

2
; −

k2

m2

)
= Γ

(
2 −

�

2

)
−

(34)Γ
(
3 −

�

2

)
2k2

�m2
F

(
1, 3 −

�

2
, 1 +

�

2
; −

k2

m2

)
,

Σ� (k, �) =
2i�

�

2

� − 2
m�−4Γ

(
2 −

�

2

)
−

(35)4i�
�

2

�(� − 2)
m�−6k2Γ

(
3 −

�

2

)
F

(
1, 3 −

�

2
, 1 +

�

2
; −

k2

m2

)
,

Σ� (k, �) =
2�

�

2

� − 2
m�−4Γ

(
2 −

�

2

)
−

(36)4�
�

2

�(� − 2)
m�−6k2Γ

(
3 −

�

2

)
F

(
1, 3 −

�

2
, 1 +

�

2
; −

k2

m2

)

Σ� (k, �) =
2i�2

4 − �
+ i�2(1 − C − lnm2 − ln�)−

(37)
i�2k2

2m2
F

(
1, 1, 3; −

k2

m2

)
+

∞∑

m=1

am(� − 4)m.
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5.2 � Bollini and Giambiagi’s DR technique [3, 4, 5] 
and self‑energies

Let us now study the above issue by appeal to the DR of BG. 
According to it, the finite part of self-energy is given by

It is known then that Laurent’s expansion can then be cast 
in the form:

According to the prescription of BG, the self-energy in four 
dimensions becomes (A is an arbitrary constant)

and we see that, in BG’s DR approach, Σ� (k) is not uniquely 
defined because of the presence of an arbitrary constant. It 
is clear that one needs to generalize the BG approach, as 
we did in [2]. The generalization yields results without the 
constant A.

5.3 � Euclidean case with the treatment of [2]

The Euclidean case is quite similar to the precedent one, i.e.,

The self-energy in four dimensions is then

(38)

Σ� (k) = i�2(1 − C − lnm2 − ln�) −
i�2k2

2m2
F

(
1, 1, 3; −

k2

m2

)
.

FP
[
Σ� (�, �)

]
= lim

�→4

{
�

��

[
(� − 4)Σ� (�, �)

]}
=

(39)i�2(1 − C − lnm2 − ln�) −
i�2k2

2m2
F

(
1, 1, 3; −

k2

m2

)
.

(40)

Σ� (k, �) =

[
2i�2

4 − �
+ A

]
+ [FPΣ� (k, �) − A] +

∞∑

m=1

am(� − 4)m.

(41)

Σ� (k) = i�2(1 − C − lnm2 − ln�) − A −
i�2k2

2m2
F

(
1, 1, 3; −

k2

m2

)
,

Σ� (k, �) =
2�2

4 − �
+ �2(1 − C − lnm2 − ln�)−

(42)
�2k2

2m2
F

(
1, 1, 3; −

k2

m2

)
+

∞∑

m=1

am(� − 4)m.

(43)

Σ� (k) = �2(1 − C − lnm2 − ln�) −
�2k2

2m2
F

(
1, 1, 3; −

k2

m2

)
.

5.4 � The old BG‑DR treatment

The prescription of the DR of BG follows almost exactly the 
Minkowski’s one discussed above. One has

Laurent’s expansion reads

and the self-energy in four dimensions becomes

exhibiting again the undesired arbitrary constant A.

6 � The �‑dimensional vacuum polarization 
(VP)

In quantum field theory, the vacuum polarization describes a 
process in which a background field generates virtual parti-
cle–antiparticle pairs that change the distribution of charges 
and currents that produced the original field.

6.1 � Minkowskian case

The VP for the field � is given by [1]

so that in � dimensions one has

Appeal now to Feynman parametrization to find

where

FP
[
Σ� (�, �)

]
= lim

�→4

{
�

��

[
(� − 4)Σ� (�, �)

]}
=

(44)�2(1 − C − lnm2 − ln�) −
i�2k2

2m2
F

(
1, 1, 3; −

k2

m2

)
.

(45)

Σ� (k, �) =

[
2�2

4 − �
+ A

]
+ [FPΣ� (k, �) − A] +

∞∑

m=1

am(� − 4)m

(46)

Σ� (k) = �2(1 − C − lnm2 − ln�) − A −
i�2k2

2m2
F

(
1, 1, 3; −

k2

m2

)
,

(47)Π� (k) = ∫
d4p

(p2 + m2 − i0)[(p − k)2 + m2 − i0]
,

(48)Π� (k, �) = ∫
d�p

(p2 + m2 − i0)[(p − k)2 + m2 − i0]
.

(49)Π� (k, �) = i

1

∫
0

∫
d�p dx

[(p − kx)2 + a]2
,

(50)a = p2x(1 − x) + m2.
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Once again, we change variables in the fashion u = p − kx 
and get

Evaluating the integral over u yields

Feynman parametrization then gives

that can be recast as

6.2 � Euclidean case

Since it is quite similar to the above-discussed Minkowski one, 
we give just the final result.

7 � The four‑dimensional vacuum 
polarization

7.1 � Minkowskian case

In order to evaluate the vacuum polarization in four dimen-
sions, we again Laurent-expand around � = 4,

Therefore, the vacuum polarization in four dimensions is

(51)Σ� (k, �) = i

1

∫
0

∫
d�u dx

[u2 + a]2
.

(52)

Π� (k, �) = i�
�

2Γ
(
2 −

�

2

)(
k2 + 4m2

4

) �

2
−2

1

2

∫
−

1

2

(
1 −

4k2x2

k2 + 4m2

) �

2
−2

dx.

(53)Π� (k, �) = i�
�

2Γ
(
2 −

�

2

)(
k2 + 4m2

4

) �

2
−2

F

(
2 −

�

2
,
1

2
,
3

2
;

k2

k2 + 4m2

)
,

(54)

Π� (k, �) = i�
�

2m�−4Γ
(
2 −

�

2

)
F

(
1, 2 −

�

2
, ,
3

2
; −

k2

4m2

)
.

(55)

Π� (k, �) = �
�

2m�−4Γ
(
2 −

�

2

)
F

(
1, 2 −

�

2
, ,
3

2
; −

k2

4m2

)
.

Π� (k, �) =
2i�2

4 − �
− i�2(lnm2 + ln� + C)−

(56)
i�2k2

6m2
F

(
1, 1,

5

2
; −

k2

4m2

)
+

∞∑

m=1

am(� − 4)m.

(57)

Π� (k) = −i�2(lnm2 + ln� + C) −
i�2k2

6m2
F

(
1, 1,

5

2
; −

k2

4m2

)
.

Instead, if we use the old BG-DR recipe discussed 
above, we have

so that the four-dimensional vacuum polarization is given by

displaying once again the unwelcome constant A.

7.2 � Euclidean case

In the Euclidean space, and using our [2]-recipe, things do 
not change much from the Minkowski instance. Thus, we give 
only the final result. One has

Instead, with the old BG-DR recipe, we get a result depend-
ent on an undesired arbitrary constant A:

8 � The non‑renormalizable 
eight‑dimensional case for the self‑energy

8.1 � Minkowskian case

Laurent’s expansion for Σ in 8-dimensions is

Π� (k, �) =

(
2i�2

4 − �
+ A

)
− i�2(lnm2 + ln� + C) − A

(58)
i�2k2

6m2
F

(
1, 1,

5

2
; −

k2

4m2

)
+

∞∑

m=1

am(� − 4)m,

(59)

Π� (k) = −i�2(lnm2 + ln� + C) − A −
i�2k2

6m2
F

(
1, 1,

5

2
; −

k2

4m2

)
,

(60)

Π� (k) = −�2(lnm2 + ln� + C) −
�2k2

6m2
F

(
1, 1,

5

2
; −

k2

4m2

)
.

(61)

Π� (k) = −�2(lnm2 + ln� + C) − A
�2k2

6m2
F

(
1, 1,

5

2
; −

k2

4m2

)
.

Σ(k, �) =
i�4m4

3(8 − �)

[
1 +

1

2

k2

m2
+

1

10

(
k2

m2

)2
]
+

i�4m4

6

(
11

6
− C − lnm2 − ln�

)
+

i�4m4

12

(
11

12
− C − lnm2 − ln�

)
k2

m2
+
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Note the presence of k2 powers in the expansion. The eight-
dimensional self-energy is then

8.2 � Euclidean case

Here, Laurent’s expansion becomes

so that

i�4m4

60

(
29

30
− C − lnm2 − ln�

)(
k2

m2

)2

−

(62)i�4m4

280
F

(
1, 1, 7; −

k2

m2

)(
k2

m2

)3

+

∞∑

m=1

am(� − 4)m.

Σ(k) =
i�4m4

6

(
11

6
− C − lnm2 − ln�

)
+

i�4m4

12

(
11

12
− C − lnm2 − ln�

)
k2

m2
+

i�4m4

60

(
29

30
− C − lnm2 − ln�

)(
k2

m2

)2

−

(63)i�4m4

280
F

(
1, 1, 7; −

k2

m2

)(
k2

m2

)3

.

Σ(k, �) =
�4m4

3(8 − �)

[
1 +

1

2

k2

m2
+

1

10

(
k2

m2

)2
]
+

�4m4

6

(
11

6
− C − lnm2 − ln�

)
+

�4m4

12

(
11

12
− C − lnm2 − ln�

)
k2

m2
+

�4m4

60

(
29

30
− C − lnm2 − ln�

)(
k2

m2

)2

−

(64)�4m4

280
F

(
1, 1, 7; −

k2

m2

)(
k2

m2

)3

+

∞∑

m=1

am(� − 4)m,

Σ(k) =
�4m4

6

(
11

6
− C − lnm2 − ln�

)
+

�4m4

12

(
11

12
− C − lnm2 − ln�

)
k2

m2
+

9 � The eight‑dimensional vacuum 
polarization

9.1 � Minkowskian case

We proceed as for the eight-dimensional self-energy’s 
instance. Laurent’s expansion reads

and then

9.2 � Euclidean case

Similarly, here the Laurent’s expansion is

�4m4

60

(
29

30
− C − lnm2 − ln�

)(
k2

m2

)2

−

(65)�4m4

280
F

(
1, 1, 7; −

k2

m2

)(
k2

m2

)3

.

Π(k, �) =
i�4m4

(8 − �)

[
1 + 4

k2

m2
+ 8

(
k2

m2

)2
]
+

i�4m4

2

(
3

2
− C − lnm2 − ln�

)
+

2i�4m4

3

(
1 − C − lnm2 − ln�

) k2
m2

−

4i�4m4

15

(
C + lnm2 + ln�

)( k2

m2

)2

−

(66)8i�4m4

105
F

(
1, 1,

9

2
; −

k2

m2

)(
k2

m2

)3

+

∞∑

m=1

am(� − 4)m,

Π(k) =
i�4m4

2

(
3

2
− C − lnm2 − ln�

)
+

2i�4m4

3

(
1 − C − lnm2 − ln�

) k2
m2

−

4i�4m4

15

(
C + lnm2 + ln�

)( k2

m2

)2

−

(67)8i�4m4

105
F

(
1, 1,

9

2
; −

k2

m2

)(
k2

m2

)3

.
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so that

10 � Conclusions

In QFT, when we use perturbative expansions, we deal either 
with products of distributions in configuration space or with 
convolutions of Schwartz’ distributions in momentum space 
[2].

We have here appealed to a rather non-conventional QFT 
approach developed in [2] that uses Schwartz’ distribution 
theory (SDT) [6]. The technique of [2] avoids the need for 
counterterms. In this SDT approach to QFT, infinities arise 
due to the presence of products of distributions with coin-
cident point singularities. In [2], the problem is tackled and 
solved using special Schwartz distributions called STDELI, 
discussed at length in [2]. The ensuing considerations were 
of a very complex nature, so that a simple model became 
absolutely necessary to illustrate these novel techniques.

We have done precisely this in this work. We appealed to 
a simple two-fields ( � and � ) model with interaction g��2 . 
The model is renormalizable in 4-dimensions but NOT in 

Π(k, �) =
�4m4

(8 − �)

[
1 + 4

k2

m2
+ 8

(
k2

m2

)2
]
+

�4m4

2

(
3

2
− C − lnm2 − ln�

)
+

2�4m4

3

(
1 − C − lnm2 − ln�

) k2
m2

−

4�4m4

15

(
C + lnm2 + ln�

)( k2

m2

)2

−

(68)8�4m4

105
F

(
1, 1,

9

2
; −

k2

m2

)(
k2

m2

)3

+

∞∑

m=1

am(� − 4)m,

Π(k) =
�4m4

2

(
3

2
− C − lnm2 − ln�

)
+

2�4m4

3

(
1 − C − lnm2 − ln�

) k2
m2

−

4�4m4

15

(
C + lnm2 + ln�

)( k2

m2

)2

−

(69)8�4m4

105
F

(
1, 1,

9

2
; −

k2

m2

)(
k2

m2

)3

.

8-dimensions. We were able to calculate for such model two 
important QFT quantities: the self-energy and the vacuum 
polarization for the field �.

The present works add then ”flesh” to the rather abstract 
and involved mathematical discussion of [2], showing con-
clusively that we can rather easily obtain observables for 
non-renormalizable QFT models.
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