
P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

Multimedia Tools and Applications 7, 213–225 (1998)
c
 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Design and Query Strategies
to Hypermedia Applications
SILVIA GORDILLO gordillo@info.unlp.edu.ar
LIFIA, Universidad Nacional de La Plata, and Comisión de Investigaciones Cientı́ficas, de la Pcia. de Bs. As.,
CC: 11, La Plata, CP: 1900, Argentina

ALICIA DÍAZ alicia@info.unlp.edu.ar
LIFIA, Universidad Nacional de La Plata, and Consejo Nacional de Investigaciones, Científicas y Técnicas.,
CC: 11, La Plata, CP: 1900, Argentina

Abstract. In this paper we propose an object-oriented model for designing hypermedia applications. As the
object-oriented paradigm allows complex and user-defined types, nonconventional and nonatomic attributes, we
can take advantage of these capabilities, not only for information modelling, but also for providing alternative
ways for accessing information.

A query language is then presented; it is based on an Object-Oriented Database System query language. It
combines features of object-oriented databases queries and primitives for hypermedia navigation. The language
offers the possibility of querying both the application-domain information, and allowing the designers to obtain
information about the schema of the application.

We present some examples of the use of the object-oriented model and the query language.

Keywords: hypermedia query language, hypermedia design model, hypermedia design, object-oriented database

1. Introduction

Hypermedia applications are characterized by the use of information, organized as a graph
(nodes and links) where the user navigates in order to find specific information [8]. Model-
ling information using the nodes and links model and accessing it by navigation yields very
flexible applications. However, the nodes and links model with navigational access is not
enough to design and query a hypermedia application [10]. Developing a methodology for
hypermedia design has become a very important task because there exists a real need to
obtain applications in which concepts like reuse, easy maintenance, modularity, etc. can be
used to achieve a good quality level in the final product [20].

Besides, another important problem in this field is the “disorientation” problem. The
primary method for accessing information in hypermedia is through navigation. When the
underlying network is a small and well-structured web, navigation will be probably enough
for accessing it, but this is not always true if the hypertext has a lot of nodes and relationships
of different types, or if the user wants to retrieve specific information; in this case he/she
must navigate throughout the hypertext web to obtain the information. In both cases, he/she
will probably have problems with navigation, because he/she may get lost in the hyperspace.
Adding the capability of information querying is a way to solve this problem in order to



P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

214 GORDILLO AND DÍAZ

additional tools to retrive information about the hipermedia application. Besides, designers
could need to access, not only the information stored in the hypermedia application, but also
the structural information in any stage of the design process. This is very useful because it
allows the designer to understand the design structure of the application he is developing.

There are some proposals to define a model for hypertext design, as in [9, 11, 17, 21]
where the authors describe a hypermedia application design methodology, but they do not
define how to query a hypermedia application.

There are also some efforts for adding the capability of information querying to hyper-
media applications, as an additional possibility to navigational access, [1, 2, 7]. Some of
these use relational databases as a way to provide knowledge about the graph structure and
node types, but the specific information stored in the system cannot be reached by queries.
For example, Parunak [22] combines a hypermedia engine with a relational DBMS, and in
this way it represents information via atomic attributes which can be queried. An Object-
Oriented Database as the support for hypermedia applications is proposed in [16], in this
case, information access is provided using the specific database query language.

In this proposal we define a model for designing hypermedia applications using an Object-
Oriented Database System for supporting queries and semantic information. We first de-
scribe the main features of our model and the different design levels to build a hypermedia
application. In the next sections we describe the query language and discuss future works
and conclusions.

2. The methodology

Basically, the model consists of two design levels. The first, High-Level Design, models the
main components of the application described in an abstract way by using the well-known
concepts of Object-Oriented Modelling like objects, relationships, hierarchies, composition
and attributes [19]. Low-Level Design, however, allows designers to describe specific
characteristics of hypermedia systems like navigation, perspectives, etc.

2.1. High-level design

The goal of this level is to think about the application domain in a conceptual way obtaining
a high-level representation of the application. To develop an application-domain model we
use object-oriented concepts and relationships between these objects.

Objects. They are represented in terms of their attributes and behavior [4] and are described
by classes called node classes. Attribute types are those defined in the most common Object-
Oriented Database Systems [3, 12], such as atomic, multivalued and derived attributes plus
a special one, multidomain attribute, that can take values in several domains and allows us
to visualize the information in different ways according to the perspective we want [9].

Relationships. The relationships between node classes are classes too and therefore they
are defined by means of attributes and behavior. Relationships classes are called link classes
defining two attributes: from and to representing source and target classes, respectively.



P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

DESIGN AND QUERY STRATEGIES 215

Figure 1. A graphical view of the schema of Art Gallery Application.

From the hypermedia point of view, relationships define links to navigate through the
information of the application. In this model they are first class objects and therefore they
should be represented in an explicit way. For this reason, in this level we do not allow
complex attributes like Object-Oriented Database Systems do, since they define implicit
relationships between objects.

Figure 1 shows an Object/Relationship diagram corresponding to the Microsoft Art
Gallery CD-ROM.1 It is a hypermedia application that presents the celebrated art col-
lection of the National Gallery, London. The rectangles showed in this figure, represent
the objects such as Pictures, Artists, and others, and relationships such as referenced by or
was painted by are represented by arrows.

Figure 2 is a representation of some node and link classes. Note that Artist’s name
is a multidomain attribute which can take values in String and/or Sound domains. Other
examples of multidomain attributes are the to and from attributes of the links classes refer-
enced by and references, respectively, since Picture, Artist, Picture Types and Setting have
associated Reference Terms and vice versa. They represent an interesting case where we
can describe a general relationship between a node class and a set of node classes.

Both node classes and link classes are organized in a is a hierarchy, where Node class
and Link class are the roots classes, respectively. The is a relationship has the same se-
mantic defined in the object-oriented paradigm. This means that a class (called subclass)
inherits all attributes, behavior and relationships from another class (its superclass) [4]. In
figure 3 the reader can see an example of the relationship is a between the node classes Pic-
ture and Detailed Picture. Therefor, Detailed Picture inherits the attributes name, painting
generalDescription, technicalDescription and dateOfCreation, and the relationships is like,



P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

216 GORDILLO AND DÍAZ

Figure 2. Squared boxes represents some node classes and their attributes and rounded boxes represent some
relationships of the Art Gallery Application.

Figure 3. There is an is a relationship between the node classes Picture and Detailed Picture and the class node
Picture Detail represents the parts of a Detailed Picture.



P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

DESIGN AND QUERY STRATEGIES 217

references/referenced by, belongs/includes, painted/was painted by, etc. from Picture
node class.

A special relationship exists to design composite objects which is called the is part of
relationship. The composition semantic allows us to define and handle the whole object
(including its conceptual parts) or one specific component. From a hypermedia point of
view, composite objects define a navigational context where the readers navigate inside the
same object. In the above example the relationship between the node classes Picture Types
and Theme is an is part of one. A Picture Detail is part of Detailed Picture, so it has its
own attributes and relationships and it knows all the attributes and relationships defined in
its container. Notice that attributes textualDescription and imageDescription of the node
class Picture Detail are two examples of multivalued attributes.

The result of this stage is not very different from those models constructed by Object-
Oriented Database Systems designers [12, 13]. In fact, the elements for modelling the
application are the same as those used in any object-oriented model. It is a schema composed
of a set of node classes capturing the information to be manipulated in the hypermedia
application, and the link classes representing the relationships among these node classes.
The next level, Low-Level Design, really makes the difference.

2.2. Low-level design

Hypermedia applications have additional features that make them different from database
applications and these features are not reflected in the previous level. During Low-Level
Design the intent is to define these facilities. In this way we complete the model by
incorporating three aspects that are concerned with:

• navigational structure: to maintain navigation as the primary method to gain access to
the application information;

• perspectives: many times it is also necessary to see objects from different perspectives
depending on a particular point of view;

• users interfaces: different interfaces to visualize different perspectives for the same object
can be defined;

To implement these characteristics we define two design concepts: Exemplars and Tem-
plates.

Exemplars. They establish different layouts for the information described in the same node
[14] done in an abstract way. So while node classes represent the conceptual information
of the application specifying the objects in the hyperbase, exemplars are used to navigate
because they provide the possible paths from a node and the information that will be
visualized.

An exemplar is defined by an attribute list, a behavior list and a set of anchors. Attributes
in the list are selected from those existing in the associated node class, (this list will contain
those attributes defined in the node class which are of interest for this particular exemplar)
and in addition, the expected behavior list is selected too.



P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

218 GORDILLO AND DÍAZ

Figure 4. Two perspectives for the instance Impasto of the class node Reference Term.

When the designer designs the navigation she/he has to embed the link origin inside
nodes. Then each exemplar has the anchors selected to be shown in a perspective. The
anchor is the visualization of a link origin inside the node where the node class of each
exemplar is the domain of the to attribute. By defining many exemplars for the same
node class we can obtain different perspectives of the same information. Each node class
always has at least one exemplar associated by default. So each exemplar constitutes one
perspective of the information where the designer decides what information is relevant, and
what anchors define navigational structure. In figure 4, two snapshots representing two
different exemplars for the instance Impasto of the node class Reference Term are shown.
In figure 5, the reader finds the description of these two exemplars Reference Term 1 and
Reference Term 2.

Multidomain attibutes also allow us to define different points of view for the same infor-
mation. Designers have to select which domains will be used in a particular perspective and
for each selected domain, they have to define one visual object as an atomic attribute which
takes values in this domain. As an example, in figure 2, Artist node class has a multido-
main attribute, name, whose domains are String and Sound. In figure 5, this multidomain
attribute has been solved by splitting it in two attributes name1 and name2. Notice that it
is not necessary to involve all domains in the exemplar. The designer could have selected
only one domain to show the multidomain attribute.

Moreover, each exemplar could add new relationships to model exceptional relationships
between exemplars. These kinds of relationships are modeled by link classes where to and
from attributes have domains in exemplar classes. A particular case of this is the More
Detail relationship between the exemplar Reference Term 1 and Reference Term 2, showed
in figure 5, where this relationship allows us to navigate among different perspectives of
the same node.



P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

DESIGN AND QUERY STRATEGIES 219

Figure 5. Some exemplars for the node classes Reference Term and Artist. More Detail is a relationship between
exemplars.

Like node and link classes, exemplars are organized in a specialization/generalization
hierarchy where the root class is the Exemplar class. Figure 5 shows the exemplar Artists 1
as one perspective of the node class Artist where some attributes and anchors are defined.
Artists 2 is a subclass of Artists 1, adding two new attributes.

Templates. They define “how” an exemplar will be perceived while Exemplars describe
in an abstract way “what” information will be manipulated. In this way, templates allow
us to separate the abstract information from its graphical representation. Each exemplar
has one associated template describing its interface and for each element in this exemplar
(attributes and anchors) one graphical element in the corresponding template is defined.
Template definition is a task where it is necessary to use human-computer interaction
techniques and it is out of the scope of our software engineering point of view.

3. The query language

The existence of an application schema lets us increase the model’s capabilities by defin-
ing a query language allowing access to specific information when navigation is either
unnecessary or it becomes a difficult process. For example, when the user wants to re-
trieve pictures that were painted by van Gogh, is better to use a query language than navi-
gation.

We describe a query language which allows us to retrieve two kinds of information:

• one is information about the schema and it is oriented to help designers in the design
process, and



P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

220 GORDILLO AND DÍAZ

Figure 6. The query language operators.

• the other one is information from hyperbase and it is useful for users of the hypermedia
application.

Query language is based on the model defined in [12] and some changes and additions
have been made to work with hypermedia applications. In particular, from the Kim’s query
language we take the select operator, each and exits quantifiers and comparison operators.
But we add some special functions for retrieving information about relationships among
objects and scheme information. In figure 6, the reader can see a table showing the operators
of our query language. The tables are organized in two parts, one showing the operators
to query the application information and the other showing the operators to query the
application schema. Asterisks indicate those operators took from Kim’s query language.

3.1. Querying information

The essential operation for querying information is the selection operator and it is similar
to selection in Object-Oriented Database Systems.

Selection. The selection of objects from one or more classes, when a condition holds, is
similar to selection in relational databases.

select [targetClause]
from rangeClauses
in [source]
[where qualificationClause]



P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

DESIGN AND QUERY STRATEGIES 221

where targetClause is the specification of classes to be output; rangeClause indicates the
binding of variables to corresponding sets of instances of classes; source is the hypertext
or set of objects that will be queried; qualificationClause is a Boolean combination of
predicates; and [. . .] indicates optional parameters.

The query example given below retrieves the sub-hypertext with pictures and their artists
where pictures were painted before 1870.

Q := select Picture, Artist
from Picture :p
where (p.dateOfCreation < 1870)

Assign. By means of the assign operation we are able to store the results of queries in
variables. This capability allows one to perform additional queries, by using these results
as the source of information.

The result of a query is a hypertext made up of instances of the node classes in the
targetClause plus the relationships among them. In other words, the result is another
hypertext created out of the source hypertext but having only those instances satisfying
the where clause and their relationships. So it can be assigned to a variable (i.e., Q), in
order to obtain a new navigational context to query and navigate. Here Q is a view of
the source hypermedia application made of node classes Picture and Artists, link classes
painted and was painted by, and the instances of these classes satisfying the whereClause
p.dateOfCreation< 1870.

Quantifiers. The qualification clause can include multivalued attributes. For this reason,
the model includes two quantifiers: EACH and EXIST, corresponding to the universal and
existential quantifiers, respectively.

The example below retrieves all Picture Details instances whose descriptionText is aText

Q := select Picture Detail
from Picture Detail : pd
where exist pd.textDescription = aText

IsPartOf. This operator allows to retrieve parts of an instance. For example, the query
below retrieves those Picture Type instances which have a Theme called “flowers”.

Q := select Picture Type
from Picture Type : ps, Theme :t
where t isPartOf ps and t.name = “flowers”

Projection. The projection operator allows the retrieval of some attributes and methods
from objects belonging to one or more classes. This operation is similar to the project
operation of relational databases systems.

select [targetClause]
from rangeClauses in [source]
[where qualificationClause]



P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

222 GORDILLO AND DÍAZ

where the definition of targetClause, rangeClause, source, qualificationClause are the same
as the select operation.

The answer to a project query always is a set of lists of specified attributes.
In the next example, the result is a set of lists containing pairs representing the name of

the Artists and the name of the Pictures of those Pictures painted before 1870.

Q := select Artist.name, Picture.name
from Picture: p
where (p.dateOf Creation < 1870)

Related by. Retrieving objects where a condition holds is very useful in hypermedia appli-
cations. The Related by operation allows one to establish if there is a relationship between
two node objects. The result of this operation is a Boolean value, it is true if the relationship
exists, and false otherwise.

The syntax of this query is:

related by (fromObject, relationshipName, toObject)

The example shows how to retrieve the Artists of Pictures whose Picture Types is “portraits”.

Q := select Artist
from Artist :a, Picture :p, Picture Types :ps
where (ps.name =“portraits”

and related by (p, WasPaintedBy, a))

Path. The Path operation allows one to establish if there is a path of relationships among
node objects. The result of this operation is a Boolean value, it is true if the path exists, and
false otherwise.

The syntax of this query is:

path (fromObject, relationshipsList, toObject)

where relationshipsList is a list of link classes.
The following example retrieves settings where worked those artists who painted pictures

whose pictureType is “portrait” and these pictures.

Q := select Setting
from Artist :a, Picture :p, Picture Types :ps, Setting: s
where (ps.name =“portraits”

and path(p, was painted by, worked in, a))

3.2. Querying the schema

This kind of queries is useful for the designer; it allows her/him to obtain information about
any of the hypertext schema hierarchies.



P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

DESIGN AND QUERY STRATEGIES 223

Hierarchy. This operation is used to establish which are the superclasses or subclasses of
a given class.

hierarchy↑ className From Hierachy Type

or

hierarchy↓ className From Hierachy Type

where className is a class name of any hierarchy and hierarchy type is one of Node, Link
or Exemplar hierarchies.

The difference between hierarchy↑ and hierarchy↓ is that the first retrieves className’s
superclasses and second retrieves its subclasses.

Properties. Retrieves the properties defined in a class.

properties className from hierarchy type

className and hierarchy type are defined as in hierarchy operation.

Source and target. Retrieve the source and the target node class of specific relationships,
respectively.

source className target className

where className is the class name in the Link hierarchy.

Exemplar. This query retrieves the names of exemplars which are associated with a specific
node class.

exemplar className

where className is node class name.

Related to and related from. The related to operation determines what node classes are
reachable from a specific class, and related from operation defines all node classes from
which the specific class can be reachable.

related to nodeClass
related from nodeClass

where nodeClass is a node class name.



P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

224 GORDILLO AND DÍAZ

4. Conclusion and future work

We have presented a model for hypermedia design, which provides the base for structuring
information through nodes, relationships and exemplars. Using it we can model the appli-
cation in different abstraction levels, like modern software engineering methods do, without
loosing the traditional hypermedia facilities. Maintaining applications designed with this
model is easier than the traditional approach because there is a better understanding about
the application domain.

Having defined a schema, a query language definition adds the necessary characteristics
for manipulating hypermedia applications, and provides additional tools for retrieving in-
formation, avoiding navigational access when specific information is required. Also this
query language is useful to designers because they can query the schema, improving their
knowledge about the application domain.

Now we are completing the query language defining additional operations, and testing
the model using different applications.

We are beginning to implement the model in an Object-Oriented Hypermedia Framework
[18]. This framework allows modelling a schema and its instances and it is possible to
navigate the schema and the application information. We will extend the present work to
be able to query information based on our language.

Note

1. Art Gallery is a trademark of Microsoft Corporation.

References

1. B. Amann and M. Scholl, “Gram: A graph data model and query language,” in Proceedings of the 4th ACM
Conference on Hypertext and Hypermedia (ECHT’92), Milano, Italy, 1992, pp. 201–211.

2. B. Amann and M. Scholl, “Querying typed hypertexts in Multicard/O2,” in Proceedings of the 5th ACM
Conference on Hypertext and Hypermedia (ECHT’94), 1994, Edinburgh, Scotland.

3. E. Bertino and L. Martino, Object Oriented Database Systems: Concepts and Architecture, Addison Wesley:
Reading, MA, 1993.

4. G. Booch, Object Oriented Analysis and Design with Applications, Addison Wesley: Reading, MA, 1994.
5. V. Chistiphides and A. Rizk, “Querying structured documents with hypertext links using OODBMS,” in

Proceedings of the 5th ACM Conference on Hypertext and Hypermedia (ECHT’94), Edinburgh, Scotland,
1994.

6. D. Chorafas and H. Steinmann, Object Oriented Databases, PTR Prentice Hall, 1993.
7. M.P. Concens and A. Mendelzon, “GaphLog: A visual formalism for real life recursion,” in Proceedings of

the ACM SIGACT, Nashville, TN, 1990.
8. J. Conklin, “Hypertext: An introduction and survey,” IEEE Computer, Vol. 20, No. 9, pp. 17–41, 1987.
9. F. Garzotto, P. Paolini, and D. Schwabe, “HDM—A model based approach to hypermedia applications design,”

ACM Trans. Info. Syst., Vol. 11, No. 8, pp. 1–26, 1993.
10. F. Halasz, “Reflections on NoteCards: Seven issues for the next generation hypermedia systems,” Communi-

cations of the ACM, Vol. 31, No. 7, pp. 836–852, 1988.
11. T. Isakowitz, E.A. Stohr, and P. Balasubramaninan, “RMM: A methodology for structured hypermedia design,”

Communication of ACM, Vol. 38, No. 8, pp. 34–44, 1995.
12. W. Kim, Introduction to Object Oriented Databases, MIT Press: Cambridge, MA, 1990.



P1: VBI/JSN
Multimedia Tools and Applications KL620-03-Gordillo August 20, 1998 12:6

DESIGN AND QUERY STRATEGIES 225

13. W. Kim, Modern Database Systems, ACM Press: New York, NY, 1995.
14. W. LaLonde, “Designing families of data types using exemplars,” ACM Toplas, Vol. 11, No. 2, pp. 212–248,

1989.
15. M. Loomis, Object Oriented Databases. The Essentials, Addison Wesley, Reading, MA, 1994.
16. M. Marmann and G. Schlargeter, “Towards a better support for hypermedia authoring: The HYDESIGN

model,” in Proceedings of the 4th ACM Conference on Hypertext and Hypermedia (ECHT’92), Milano, Italy,
1992, pp. 232–241.

17. J. Nanard and M. Nanard, “Using structured types to incorporate knowledge in hypertext,” in Proceedings of
Hypertext’91, San Antonio, TX, 1991, pp. 329–343.

18. G. Rossi and A. Garrido, “Extended object oriented applications with hypermedia functionalities,” in Work-
shop on Hypertext Functionalities, ECHT’94, Edinburgh, Scotland, 1994

19. J.J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object Oriented Modeling and Design,
Prentice Hall Inc.: New York, NY, 1991.

20. D. Schwabe and G. Rossi, “An object oriented hypermedia design model,” Communication of ACM, Vol. 38,
No. 8, pp. 45–46, 1995.

21. D. Schwabe, G. Rossi, and S. Barbosa, “Systematic hypermedia design with OOHDM,” in Proceedings of
the Twenty-Eighth Hawaii International Conference on System Sciences, Maui, HI, 1995.

22. H. Van Dyke Parunak, “Don’t link me in: Set based hypermedia for taxonomic reasoning,” in Proceedings of
Hypertext’91, San Antonio, TX, 1991, pp. 233–242.

Silvia Gordillo is a full Professor at Universidad Nacional de La Plata inLa Plata, Argentina. She is a member of
LIFIA (Laboratorio de Investigación y Formación en Informática Avanzada). Her areas of work include Object-
Oriented Databases and Geographic Information Systems. Silvia has presented results of research projects at
many Computer Science Conferences. She is a Visiting Professor at Universidad Nacional de Rio Cuarto. She is
a member of SADIO (Sociedad Argentina de Informatica e Investigacion Operativa).

Alicia Dı́az is an Associate Professor at Universidad Nacional de La Plata in La Plata, Argentina. She is memebr
of the LIFIA (Laboratorio de Investigación y Formación en Informática Avanzada). Her areas of work include
Hypermedia Systems and Application, specializing in Hypermedia Design. Alicia has presented results of research
projects at many Computer Sciences Conferences. She is a Visiting Professor at Universidad Nacional de Rio
Cuarto.


