On weighted clique graphs

Flavia Bonomo^ and Jayme Luiz Szwarcfiter
IMAS-CONICET and Departamento de Computación, FCEyN, Universidad de Buenos Aires, Argentina
fbonomo@dc.uba.ar
COPPE and NCE, Universidade Federal do Rio de Janeiro, Brasil jayme@nce.ufrj.br

Abstract

Let $K(G)$ be the clique graph of a graph G. A m-weighting of $K(G)$ consists on giving to each m-size subset of its vertices a weight equal to the size of the intersection of the m corresponding cliques of G. The 2 -weighted clique graph was previously considered by McKee. In this work we obtain a characterization of weighted clique graphs similar to Roberts and Spencer's characterization for clique graphs. Some graph classes can be naturally defined in terms of their weighted clique graphs, for example clique-Helly graphs and their generalizations, and diamond-free graphs. The main contribution of this work is to characterize several graph classes by means of their weighted clique graph: hereditary clique-Helly graphs, split graphs, chordal graphs, $U V$ graphs, interval graphs, proper interval graphs, trees, and block graphs.

Keywords: weighted clique graphs, graph classes structural characterization.

1 Introduction

A complete set is a set of pairwise adjacent vertices. A clique is a complete set that is maximal under inclusion. We will denote by M_{1}, \ldots, M_{p} the cliques of G, and by $\mathcal{C}_{G}(v)$ the set of cliques containing the vertex v in G.

Consider a finite family of non-empty sets. The intersection graph of this family is obtained by representing each set by a vertex, two vertices being connected by an edge if and only if the corresponding sets intersect.

The clique graph $K(G)$ of G is the intersection graph of the cliques of G.
Let \mathcal{A} be a class of graphs. The notation $K(\mathcal{A})$ means the class of clique graphs of the graphs in \mathcal{A}, that is, $\mathcal{B}=K(\mathcal{A})$ if and only if for each G in \mathcal{A}, $K(G)$ belongs to \mathcal{B} and for each H in \mathcal{B}, there exists G in \mathcal{A} such that $K(G)=H$.

Given a graph G, the set of its cliques can be computed in $O(\mathrm{mnp})$ time [31], where n, m and p are the number of vertices, edges and cliques of G, respectively.

[^0]So, the clique graph $K(G)$ can be computed in $O\left(m n p+n p^{2}\right)$ time. Note that the number of cliques of a graph with n vertices can grow exponentially on n, so this time complexity is not necessarily polynomial in the size of G. In fact, deciding if the clique graph of a given graph G is a complete graph is a co-NP-complete problem [20].

The converse problem is also not easy to solve. Clique graphs have been characterized by Roberts and Spencer in [27], but the problem of deciding if a graph is a clique graph is NP-complete [1].

A family \mathcal{F} of subsets of a set S is separating when for every pair of different elements x, y in S, there is a subset in \mathcal{F} that contains x and does not contain y or, equivalently, when for each x in S, the intersection of all the subsets in \mathcal{F} containing x is $\{x\}$.

A family of subsets of a set satisfies the Helly property when every subfamily of it consisting of pairwise intersecting subsets has a common element. A graph is clique-Helly when its cliques satisfy the Helly property.

Clique-Helly graphs are clique graphs [15]. In that case, given a graph H, the problem of building a graph G such that $K(G)=H$ can be solved with the same time complexity as building $K(H)$. Nevertheless, the problem of deciding if the clique graph of a given graph G is clique-Helly is NP-hard [6].

Given a graph H, a weighting of H of size m, or m-weighting of H, consists on giving a weight w to every complete set of H of size m. A full weighting of H consists on giving a weight w to every complete set of H.

A weighting of $K(G)$ of size m, or m-weighting of $K(G)$, consists on defining the weight w for a subset of its vertices $\left\{M_{i_{1}}, \ldots, M_{i_{m}}\right\}$ as $w\left(M_{i_{1}}, \ldots, M_{i_{m}}\right)=$ $\left|M_{i_{1}} \cap \ldots \cap M_{i_{m}}\right|$. (In the right-hand side, we are considering $M_{i_{1}}, \ldots, M_{i_{m}}$ as cliques of G.) We will denote by $K_{m_{1}, \ldots, m_{\ell}}^{w}(G)$ the clique graph of G with weightings of sizes m_{1}, \ldots, m_{ℓ}. Note that w should be non-decreasing with respect to inclusion relationship. Also by definition of $K(G)$, if 2 is one of the sizes considered, then $w\left(M_{i}, M_{j}\right)>0$ for every edge $M_{i} M_{j}$ of $K(G)$.

Weighted clique graphs with weightings restricted to size 2 were considered in [21, 22], and in [12-14, 23, 24], in the context of chordal graphs.

The organization of this paper is at follows. In Section 2, we introduce some definitions and results related to clique graphs. In Section 3, we give a characterization of weighted clique graphs similar to Roberts and Spencer's characterization for clique graphs. One of the contributions of this work is to characterize several classical and well known graph classes by means of their weighted clique graph, and is given in Section 4. We prove a characterization of hereditary cliqueHelly graphs in terms of K_{3}^{w} and show that $K_{1,2}^{w}$ is not sufficient to characterize neither hereditary clique-Helly graphs nor clique-Helly graphs. For chordal graphs and their subclass $U V$ graphs, we obtain a characterization by means of $K_{2,3}^{w}$. We show furthermore that $K_{1,2}^{w}$ is not sufficient to characterize $U V$ graphs. We describe also a characterization of interval graphs in terms of $K_{2,3}^{w}$ and of proper interval graphs in terms of $K_{1,2}^{w}$. Besides, we prove that $\left\{K_{1}^{w}, K_{2}^{w}\right\}$ is not sufficient to characterize proper interval graphs. For split graphs, we give a characterization by means of $K_{1,2}^{w}$, and prove that $\left\{K_{1}^{w}, K_{2}^{w}\right\}$ is not sufficient to
characterize split graphs. Finally, we characterize trees in terms of K_{1}^{w} and block graphs in terms of K_{2}^{w}, and show that this last class cannot be characterized by means of their 1-weighted clique graph.

2 Preliminaries

We shall consider finite, simple, loopless, undirected graphs. Let G be a graph. Denote by $V(G)$ its vertex set and by $E(G)$ its edge set. Given a vertex v of G, denote by $N_{G}(v)$ the set of neighbors of v in G and by $N_{G}[v]$ the set $N_{G}(v) \cup\{v\}$. A vertex v of G is called universal if $N_{G}[v]=V(G)$. A diamond is the graph $K_{4}^{w}-\{e\}$, where e is an edge of the complete graph on four vertices K_{4}^{w}. A claw is the complete bipartite graph $K_{1,3}^{w}$. If H is a graph, a graph G is called H-free if G does not contain H as an induced subgraph.

A stable set in a graph is a set of pairwise non-adjacent vertices.
A graph is a split graph if its vertices can be partitioned into a clique and a stable set. A graph is a star if it has a universal vertex. In that case, the universal vertex is called the center of the star.

A graph G is an interval graph if G is the intersection graph of a finite family of intervals of the real line, and it is an proper interval graph if it is the intersection graph of a finite family of intervals of the real line, all of the same length. Proper interval graphs are exactly the claw-free interval graphs [28].

Theorem 1 (Fulkerson and Gross, 1965 [8]). A graph G is an interval graph if and only if its cliques can be linearly ordered such that, for each vertex v_{i} of G, the cliques containing v_{i} are consecutive.

Such an ordering is called a canonical ordering for the cliques.
Theorem 2 (Roberts, 1969 [28]). A graph G is a proper interval graph if and only if its vertices can be linearly ordered such that, for each clique M_{j} of G, the vertices contained in M_{j} are consecutive.

Such an ordering is called a canonical ordering for the vertices.
A graph G is a tree if it is connected and contains no cycle. A graph is chordal if it contains no chordless cycle of length at least 4. Equivalently, a graph is chordal if it is the intersection graph of subtrees of a tree [4, 9, 33]. A graph is a $U V$ graph if it is the intersection graph of paths of a tree.

A graph is a block graph if each maximal 2-connected subgraph is a complete subgraph. Equivalently, a graph is a block graph if it is chordal and diamond-free.

A graph G is domino if all its vertices belong to at most two cliques. If, in addition, each of its edges belongs to at most one clique, then G is a linear domino graph. Linear domino graphs coincide with \{claw,diamond\}-free graphs [18].

A graph G is dually chordal if it admits a spanning tree T such that, for every edge $v w$ of G, the vertices of the $v-w$ path in T induce a complete subgraph in $G[3,30]$. In that case, T is called a canonical spanning tree of G.

A graph is hereditary clique-Helly when H is clique-Helly for every induced subgraph H of G.

Class \mathcal{A}	$K(\mathcal{A})$	Reference
Block	Block	$[16]$
Clique-Helly	Clique-Helly	$[7]$
Chordal	Dually Chordal	$[3,11,30]$
Dually Chordal	Chordal \cap Clique-Helly	$[3,11]$
Hereditary clique-Helly	Hereditary clique-Helly	$[26]$
Interval	Proper interval	$[17]$
Proper interval	Proper interval	$[17]$
Diamond-free	Diamond-free	$[5]$
Split	Stars	
Trees	Block	$[16]$
Triangle-free	Linear domino	$[25]$
Linear domino	Triangle-free	$[5]$
UV	Dually Chordal	$[30]$

Table 1. Clique graphs of some graph classes

Clique graphs of many graph classes have been characterized. The known results involving the graph classes that will be considered in this paper are summarized in Table 1.

3 Characterization of weighted clique graphs

The characterization of clique graphs is as follows.
Theorem 3 (Roberts and Spencer, 1971 [27]). A graph H is a clique graph if and only if there is a collection \mathcal{F} of complete sets of H such that every edge of H is contained in some complete set of \mathcal{F}, and \mathcal{F} satisfies the Helly property.

A similar characterization for 2-weighted clique graphs was presented in [21, 27]. We can extend this characterization to weighted graphs.

Theorem 4. Let H be a graph, provided with weightings w of sizes m_{1}, \ldots, m_{ℓ}. Then there exists a graph G such that $H=K_{m_{1}, \ldots, m_{\ell}}^{w}(G)$ if and only if there is a collection \mathcal{F} of complete sets of H, not necessarily pairwise distinct, such that:
(a) every edge of H is contained in some complete set of \mathcal{F},
(b) \mathcal{F} satisfies the Helly property,
(c) \mathcal{F} is separating,
(d) for every $1 \leq j \leq \ell$, each complete set $M_{i_{1}}, \ldots, M_{i_{m_{j}}}$ of H is contained in exactly $w\left(M_{i_{1}}, \ldots, M_{i_{m_{j}}}\right)$ complete sets of \mathcal{F}.

It would be interesting to analyze the computational complexity of deciding if a weighted graph is a weighted clique graph. For 1-weightings, the result is negative.

Theorem 5. The problem of deciding if a 1-weighted graph is a 1-weighted clique graph is NP-complete.

It remains as an open question to analyze the problem for other weighting sizes.

4 Characterization of classical graph classes by means of the weighted clique operator

Some graph classes can be naturally defined in terms of their weighted clique graphs. This is the case of clique-Helly graphs and their generalizations. A family of subsets of a set satisfies the (p, q, r)-Helly property when every subfamily of it in which every collection of p members have q elements in common, has a total intersection of at least r elements. A graph is (p, q, r)-clique-Helly when its cliques satisfy the (p, q, r)-Helly property [6].

Proposition 1. Let G be a graph. Then G is clique-Helly if and only if $K_{3, \ldots, \omega(K(G))}^{w}(G)$ satisfies $w\left(M_{i_{1}}, \ldots, M_{i_{\ell}}\right)>0$ for every complete set $M_{i_{1}}, \ldots, M_{i_{\ell}}$ of $K(G)$.

Proposition 2. Let G be a graph. Then G is (p, q, r)-clique-Helly if and only if $K_{3, \ldots, \omega(K(G))}^{w}(G)$ satisfies that every complete set in which all its subsets of size p have weight at least q, has weight at least r.

By the results in [7] shown in Table 1, we have the following corollary.
Corollary 1. Let if H be graph and w a full weighting of H that is strictly positive over every complete set of H. If there is a graph G such that $H=$ $K_{3, \ldots, \omega(H)}^{w}(G)$, then H is clique-Helly.

Diamond-free graphs have also a natural characterization in terms of their weighted clique graph. It is proved in [5] that a graph is diamond-free if and only each edge belongs to exactly one clique. This property can be restated as follows.

Proposition 3. Let G be a graph. Then G is diamond-free if and only if $K_{2}^{w}(G)$ satisfies $w\left(M_{i}, M_{j}\right)=1$ for every edge $M_{i} M_{j}$ of $K(G)$.

In particular, by the results in [5] shown in Table 1, we have the following corollary, that was also pointed out in [21].
Corollary 2. Let H be a graph and w a 2-weighting of H. If $w\left(v_{i}, v_{j}\right)=1$ for every $v_{i} v_{j}$ in $E(H)$, then there exists some graph G such that $H=K_{2}^{w}(G)$ if and only if H is diamond-free.

Moreover, since diamond-free graphs are clique-Helly, we have that in a fully weighted clique graph of a diamond-free graph, the weight of each complete set of size at least two is exactly one. In [2], the authors establish when a 1weighted graph H is $K_{1}^{w}(G)$ for some diamond-free graph G, thus completing the characterization of weighted clique graphs of diamond-free graphs.

Theorem 6 (Barrionuevo and Calvo, 2004 [2]). Let H be a graph and w a 1-weighting of H. Then there exists some diamond-free graph G such that $H=K_{1}^{w}(G)$ if and only if H is diamond-free and $w(M) \geq \max \left\{2,\left|\mathcal{C}_{H}(M)\right|\right\}$ for each M in $V(H)$.

The result above can be obtained also as a corollary of Theorem 4. Joining it with Proposition 3, we have the following Corollary.

Corollary 3. Let H be a graph and w be weightings of H of sizes 1 and 2, such that $w\left(M_{i}, M_{j}\right)=1$ for each edge $M_{i} M_{j}$ of H. Then there exists a graph G such that $H=K_{1,2}^{w}(G)$ if and only if H is diamond-free and $w(M) \geq$ $\max \left\{2,\left|\mathcal{C}_{H}(M)\right|\right\}$ for each M in $V(H)$.

It is clear that diamond-free graphs cannot be characterized by their 1weighted clique graph, since the diamond and two triangles sharing a vertex have the same 1-weighted clique graph.

A connected graph G with at least two vertices is triangle-free if and only if $w(M)=2$ for each vertex M of $K_{1}^{w}(G)$. Indeed, the results in [25] showed in Table 1 imply the following proposition.

Proposition 4. Let H be a graph and w a 1-weighting of H such that $w(M)=2$ for each vertex M of H. Then there exists a graph G such that $H=K_{1}^{w}(G)$ if and only if H is linear domino.

Also linear domino graphs can be naturally defined in terms of their weighted clique graph.

Proposition 5. Let G be a graph. Then G is linear domino if and only if $K_{2}^{w}(G)$ is triangle-free and satisfies $w\left(M_{i}, M_{j}\right)=1$ for every edge $M_{i} M_{j}$ of $K(G)$.

In the remaining of this section, we will show characterizations of some classical and widely studied graph classes in terms of their weighted clique graphs. Many of them are subclasses of chordal and/or clique-Helly graphs.

4.1 Hereditary clique-Helly graphs

A first characterization of hereditary clique-Helly graphs is the following.
Theorem 7. Let G be a graph. Then G is hereditary clique-Helly if and only if $K_{2,3}^{w}(G)$ satisfies $w\left(M_{i}, M_{j}, M_{k}\right)=\min \left\{w\left(M_{i}, M_{j}\right), w\left(M_{j}, M_{k}\right), w\left(M_{i}, M_{k}\right)\right\}$, for every $1 \leq i<j<k \leq|K(G)|$.

Moreover, this property holds also for m-weightings, with $m \geq 3$.
Theorem 8. [26, 32] Let G be an hereditary clique-Helly graph, and let $m \geq 3$. Then $K_{2, m}^{w}(G)$ satisfies $w\left(M_{i_{1}}, \ldots, M_{i_{m}}\right)=\min \left\{w\left(M_{i}, M_{j}\right): i, j \in\left\{i_{1}, \ldots, i_{m}\right\}, i<\right.$ $j\}$, for every $1 \leq i_{1}<\ldots<i_{m} \leq|K(G)|$.

Fig. 1. Two graphs G, G^{\prime} such that $K_{1,2}^{w}(G)=K_{1,2}^{w}\left(G^{\prime}\right)$. The rightmost one is hereditary clique-Helly, the leftmost one is not even clique-Helly. The leftmost one is $U V$, the rightmost is not.

The examples in Figure 1 show that $K_{1,2}^{w}$ is not sufficient to characterize neither hereditary clique-Helly graphs nor clique-Helly graphs. But we can obtain a characterization of hereditary clique-Helly graphs in terms of K_{3}^{w}.

Theorem 9. Let G be a graph. Then G is hereditary clique-Helly if and only if $K_{3}^{w}(G)$ satisfies $w\left(M_{i}, M_{j}, M_{k}\right) \geq \min \left\{w\left(M_{i}, M_{j}, M_{\ell}\right), w\left(M_{j}, M_{k}, M_{\ell}\right), w\left(M_{i}, M_{k}, M_{\ell}\right)\right\}$, for every complete set $M_{i}, M_{j}, M_{k}, M_{\ell}$ of size four in $K(G)$.

4.2 Trees and block graphs

The characterization of trees and block graphs are as follows.
Theorem 10. Let G be a graph, $|V(G)|>1$. Then G is a tree if and only if $K_{1}^{w}(G)$ is a connected block graph such that $w\left(M_{i}\right)=2,1 \leq i \leq|K(G)|$.

Theorem 11. Let G be a connected graph. Then G is a block graph if and only if $K_{2}^{w}(G)$ is a connected block graph such that $w\left(M_{i}, M_{j}\right)=1$, for every edge $M_{i} M_{j}$ of $K(G)$.

The same example used in the case of diamond-free graphs shows that block graphs cannot be characterized by their 1 -weighted clique graph.

4.3 Split graphs

A characterization of split graphs in terms of $K_{1,2}^{w}$ is the following.
Theorem 12. Let G be a graph. Then G is split and connected if and only if $K_{1,2}^{w}(G)$ is a star with center M_{1} and $w\left(M_{1}, M_{j}\right)=w\left(M_{j}\right)-1,2 \leq j \leq|K(G)|$.

The examples in Figure 2 show that K_{1}^{w} and K_{2}^{w} are not sufficient to characterize split graphs.

Fig. 2. Two graphs G, G^{\prime} such that $K_{1}^{w}(G)=K_{1}^{w}\left(G^{\prime}\right)$ and $K_{2}^{w}(G)=K_{2}^{w}\left(G^{\prime}\right)$. The leftmost one is split, the rightmost one is not. The rightmost one is proper interval, the leftmost one is not.

4.4 Interval graphs

For interval and proper interval graphs, we have the following characterizations.
Theorem 13. Let G be a graph. Then G is an interval graph if and only if $K_{2,3}^{w}(G)$ admits a linear ordering M_{1}, \ldots, M_{p} of its vertices such that for every $1 \leq i<j<k \leq p, w\left(M_{i}, M_{j}, M_{k}\right)=w\left(M_{i}, M_{k}\right)$.

Theorem 14. Let G be a graph. Then G is a proper interval graph if and only if $K_{1,2}^{w}(G)$ admits a linear ordering M_{1}, \ldots, M_{p} of its vertices such that for every triangle $M_{i}, M_{j}, M_{k}, 1 \leq i<j<k \leq p, w\left(M_{j}\right)=w\left(M_{i}, M_{j}\right)+w\left(M_{j}, M_{k}\right)-$ $w\left(M_{i}, M_{k}\right)$.

The examples in Figure 2 show that K_{1}^{w} and K_{2}^{w} are not sufficient to characterize proper interval graphs.

4.5 Chordal and $\boldsymbol{U} \boldsymbol{V}$ graphs

It is a known result that clique graphs of chordal graphs are dually chordal graphs. Moreover, it holds that, for a chordal graph G, there is some canonical tree T of $K(G)$ such that, for every vertex v of G, the subgraph of T induced by $\mathcal{C}_{G}(v)$ is a subtree. Such a tree is called a clique tree of G. McKee proved [24] that those trees are exactly the maximum weight spanning trees of $K_{2}^{w}(G)$. Also in the context of chordal graphs, 2 -weighted clique graphs where considered in [10, 12-14, 19, 23, 29].

Theorem 15. Let G be a connected graph. Then G is chordal if and only if $K_{2,3}^{w}(G)$ admits a spanning tree T such that for every three different vertices M_{i}, M_{j}, M_{k} of T, if M_{j} belongs to the path $M_{i}-M_{k}$ in T, then $w\left(M_{i}, M_{j}, M_{k}\right)=$ $w\left(M_{i}, M_{k}\right)$.

Let G be a connected $U V$ graph, and let (T, \mathcal{F}) be a representation of G as the intersection graph of a family of paths of a tree T, \mathcal{F} being the family of paths. By taking a tree T that minimizes the number of vertices preserving the
intersection relationship in the family of paths, we obtain that $V(T)=\mathcal{C}(G)$ and each path in \mathcal{F} representing vertex v corresponds to $\mathcal{C}_{G}(v)$ [12]. That will be called a clique tree of the $U V$ graph G.

Theorem 16. Let G be a connected graph. Then G is $U V$ if and only if $K_{2,3}^{w}(G)$ admits a spanning tree T such that for every three different vertices M_{i}, M_{j}, M_{k} of T, if M_{j} belongs to the path $M_{i}-M_{k}$ in T, then $w\left(M_{i}, M_{j}, M_{k}\right)=w\left(M_{i}, M_{k}\right)$, and for every M in T and M_{i}, M_{j}, M_{k} in $N_{T}(M)$, it holds $w\left(M_{i}, M_{j}, M_{k}\right)=0$.

The examples in Figure 1 show that $K_{1,2}^{w}$ is not sufficient to characterize $U V$ graphs.

References

1. Alcón, L., Faria, L., de Figueiredo, C., Gutierrez, M.: The complexity of clique graph recognition. Theoretical Computer Science 410, 2072-2083 (2009)
2. Barrionuevo, J., Calvo, A.: Sobre grafos circulares y sin diamantes. Master's thesis, Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires (2004)
3. Brandstädt, A., Chepoi, V., Dragan, F., Voloshin, V.: Dually chordal graphs. SIAM Journal on Discrete Mathematics 11, 437-455 (1998)
4. Buneman, P.: A characterization of rigid circuit graphs. Discrete Mathematics 9, 205-212 (1974)
5. Chong-Keang, L., Yee-Hock, P.: On graphs without multicliqual edges. Journal of Graph Theory 5, 443-451 (1981)
6. Dourado, M., Protti, F., Szwarcfiter, J.: Complexity aspects of the Helly property: Graphs and hypergraphs. The Electronic Journal of Combinatorics \#DS17, 1-53 (2009)
7. Escalante, F.: Über iterierte clique-graphen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 39, 59-68 (1973)
8. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pacific Journal of Mathematics 15(3), 835-855 (1965)
9. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory. Series B 16, 47-56 (1974)
10. Gavril, F.: Generating the maximum spanning trees of a weighted graph. Journal of Algorithms 8, 592-597 (1987)
11. Gutierrez, M.: Tree-clique graphs. In: Proceedings of the Workshop Internacional de Combinatória. pp. 7-26. Rio de Janeiro, Brazil (1996)
12. Gutierrez, M., Szwarcfiter, J., Tondato, S.: Clique trees of chordal graphs: leafage and 3-asteroidals. Electronic Notes in Discrete Mathematics 30, 237-242 (2008)
13. Habib, M., Stacho, J.: A decomposition theorem for chordal graphs and its applications. Electronic Notes in Discrete Mathematics 34, 561-565 (2009)
14. Habib, M., Stacho, J.: Reduced clique graphs of chordal graphs (2010), manuscript
15. Hamelink, R.: A partial characterization of clique graphs. Journal of Combinatorial Theory. Series B 5, 192-197 (1968)
16. Hedetniemi, S., Slater, P.: Line graphs of triangleless graphs and iterated clique graphs. Lecture Notes in Mathematics 303, 139-147 (1972)
17. Hedman, B.: Clique graphs of time graphs. Journal of Combinatorial Theory. Series B 37(3), 270-278 (1984)
18. Kloks, T., Kratsch, D., Müller, H.: Dominoes. Lecture Notes in Computer Science 903, 106-120 (1995)
19. Lin, I., McKee, T., West, D.: The leafage of a chordal graph. Discussiones Mathematicae. Graph Theory 18, 23-48 (1998)
20. Lucchesi, C., Picinin de Mello, C., Szwarcfiter, J.: On clique-complete graphs. Discrete Mathematics 183, 247-254 (1998)
21. McKee, T.: Clique multigraphs. In: Alavi, Y., Chung, F., Graham, R., Hsu, D. (eds.) Graph Theory, Combinatorics, Algorithms and Applications, pp. 371-379. SIAM, Philadelphia (1991)
22. McKee, T.: Clique pseudographs and pseudo duals. Ars Combinatoria 38, 161-173 (1994)
23. McKee, T.: Restricted circular-arc graphs and clique cycles. Discrete Mathematics 263, 221-231 (2003)
24. McKee, T., McMorris, F.: Topics in Intersection Graph Theory. SIAM, Philadelphia (1999)
25. Metelsky, Y., Tyshkevich, R.: Line graphs of Helly hypergraphs. SIAM Journal on Discrete Mathematics 16(3), 438-448 (2003)
26. Prisner, E.: Hereditary clique-Helly graphs. The Journal of Combinatorial Mathematics and Combinatorial Computing 14, 216-220 (1993)
27. Roberts, F., Spencer, J.: A characterization of clique graphs. Journal of Combinatorial Theory. Series B 10, 102-108 (1971)
28. Roberts, F.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139-146. Academic Press (1969)
29. Shibata, Y.: On the tree representation of chordal graphs. Journal of Graph Theory 12(2-3), 421-428 (1998)
30. Szwarcfiter, J., Bornstein, C.: Clique graphs of chordal and path graphs. SIAM Journal on Discrete Mathematics 7, 331-336 (1994)
31. Tsukiyama, S., Idle, M., Ariyoshi, H., Shirakawa, Y.: A new algorithm for generating all the maximal independent sets. SIAM Journal on Computing 6(3), 505-517 (1977)
32. Wallis, W., Zhang, G.H.: On maximal clique irreducible graphs. The Journal of Combinatorial Mathematics and Combinatorial Computing 8, 187-193 (1990)
33. Walter, J.: Representations of chordal graphs as subtrees of a tree. Journal of Graph Theory 2(3), 265-267 (1978)

[^0]: * Partially supported by ANPCyT PICT-2007-00518 and PICT-2007-00533, and UBACyT Grants X069 and 20020090300094 (Argentina), CAPES/SPU Project CAPG-BA 008/02 (Brazil-Argentina), and Math-AmSud Project 10MATH-04 (France-Argentina-Brazil).

