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ON THE UNIQUENESS OF GIBBS STATES IN SOME DYNAMICAL
SYSTEMS

A. M. Mesón and F. Vericat UDC 517.987.5

Abstract. By applying Grothendieck theory and Ruelle thermodynamic formalism, we prove that,
for expansive dynamical systems and interaction potentials satisfying certain conditions of analyticity,
the associated Gibbs states are unique. This allows us to draw an analogy between some quantities in
classical thermodynamics and abstract dynamics in the spirit of the previous work of the authors [13].
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1. Introduction

The phenomenon of phase transition is manifested by the coexistence of two or more pure phases
for “physically acceptable” interactions. To investigate the coexistence or not of phases it is important
to study the structure of the space of all Gibbs states. This can be done by analyzing the variation
of some thermodynamical quantities, associated with these states, when internal parameters, such as
the temperature, are changed.

This problem was widely studied in the context of the classical statistical mechanics of lattices. In
this case, one considers a finite set Ω (whose elements are called spins) and a countable infinite set
L (the lattice, whose elements are the sites). The configuration space is ΩL, i.e., a configuration is
a sequence (σ(i))i∈L, where σ : L → Ω. The model is completed by given a function ρ : ΩL → R

called the interaction and a (card(Ω)×card(Ω))-matrix (the transition matrix ), which defines allowed
configurations of the system.

Our purpose is to apply a dynamical approach to subspaces X ⊆ R
d. This makes a difference

with the standard treatments in classical thermodynamics and even in more mathematical fields like
theoretical probability.

Let G(q) be the set of Gibbs states associated with “interaction” ϕ with a free energy T (q) = Tϕ(q),
where q is the inverse temperature. This set is convex [20], extremal Gibbs states are interpreted as
pure homogeneous phases, and any Gibbs state admits a unique integral decomposition in terms of
pure phases.

It is known from the Ruelle thermodynamic formalism that the Gibbs states are tangent to T (q).
The name “tangent” arises since T (q) = Tϕ(q) can be considered as a functional on the space of
interactions. Hence a phase transition is detected when this function has a singularity at some q. We
recall that an f -invariant measure μ is said to be tangent to T (q) at q with respect to an interaction
ϕ if for every q0, we have

T (q + q0) − T (q0) ≥
Z
q0ϕdμ.

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applica-
tions), Vol. 61, Optimal Control, 2008.
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This kind of analysis, for one-dimensional lattices, was done primarily by Ruelle [19, 20] and
Sinai [23]. Accordingly, the absence of phase transition is proved by showing that exp(T (q)) is an
isolated eigenvalue of the transfer operator associated with qϕ for interactions ϕ belonging to some
special classes. In [20], Ruelle also applied this formalism to more abstract spaces, namely, Smale
spaces.

In this work, we extend the previous analysis in some directions. Instead of a symbolic space (a one-
dimensional lattice in the terminology of statistical mechanics), we consider, as was earlier mentioned,
a compact submanifold X ⊂ R

d. More generally, the dynamics are given by continuous mappings
f : X → X and we introduce a free energy T (q) adequate to this context. In this way, a contact
with thermodynamics can be made, as was pointed out in [5, 20]. Following Mayer [12], we introduce
certain “transfer operators” Lq and establish for any q a relationship between free energy T (q) and
the spectral radius of Lq. This and other spectral properties that we study in this work lead to the
proof of absence of phase transition for the systems under consideration.

In a recent work [13] we have obtained formal relationships among statistical mechanics, multifractal
analysis, and abstract dynamical systems. Here we will prove nonexistence of phase transitions under a
substantially different approach and by imposing another class of conditions. Thus, we may reproduce
the results of [13] within the framework of this paper.

The plan is as follows: in the next section, we recall the concept of Gibbs states in any dimension
or, more generally, for abstract dynamics and introduce the formalism to define the partition functions
and free energy functions. In Sec. 3, we use the transfer operators and prove the absence of a phase
transition in the models considered.

2. Gibbs States and the Free Energy Function

Let X be a compact subset of R
d, d > 0, a dynamical mapping f : X → X be continuous, and a

potential ϕ ∈ C(X). The statistical sum for x ∈ X

Sn(ϕ(x)) :=
n−1X
i=0

ϕ(f i(x)). (1)

The set of “microstates” under consideration will be the whole set of periodic points Pn(f) = {x :
fnx = x}. The “Hamiltonian of n particles” will be given by the statistical sum Hn(x) = Sn(ϕ(x)).

By analogy with classical statistical mechanics, we introduce the canonical partition function (q is
interpreted as the inverse of the temperature):

Zn(q) =
X

x∈Pn(f)

exp(−qHn(x)). (2)

Therefore, the function free energy is the limit

T (q) = Tϕ,f (q) = lim
n→∞

1
n

logZn(q) (3)

if it exists.
Given a metric d in X, we consider the associated distance

dn(x, y) = max
i=0,1,...,n−1

d(f i(x), f i(y)). (4)

The ball with center x of radius ε in this metric will be denoted by Bn,ε(x).
The space G(q) of Gibbs states associated with qϕ consists of f -invariant measures μq such that [8,

20] for sufficiently small ε > 0, there exist constants Aε, Bε > 0 such that for any x ∈ X and any
positive integer n

Aε(exp(Sn(qϕ(x))) − nT (q)) ≤ μq(Bn,ε(x)) ≤ Bε(exp(Sn(qϕ(x))) − nT (q)). (5)
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We make the following assumptions on the systems to be studied. Any dynamical system (X, f)
will be endowed with a (card(Ω)× card(Ω))-matrix A (where Ω is some finite set). This matrix plays
a role similar to that of transfer matrices in statistical mechanics of lattices. Its entries are either 0
or 1, and for κ, λ ∈ Ω, the number Aκ,λ indicates the “admissibility” of κ and λ with respect to the
system considered. For example, if the system admits a Markov partition, i.e., a set {W1,W2, . . . ,Wk},
where Wi ∩Wi = ∅, i 6= j, f(Wj) =

kS
l=0

Wkl
, and Wi = int(Wi), then admissible pairs κ, λ are those

for which Aκ,λ = 1 whenever f(Wj) ∩Wi 6= ∅ and Aκ,λ = 0 otherwise. The elements of Ω can be
assimilated to the spins in classical statistical mechanics. In order to ensure that cardPn(f) <∞, we
may assume that the dynamical mapping f is expansive, i.e., there exists a constant δ > 0 such that
d(fn(x), fn(y)) < δ for any integer n implies x = y. Since Pn(f) is (n, δ)-separated and X is compact,
it follows that Pn(f) is finite (this is a standard fact in topological dynamics).

On dynamical systems as above, the following conditions are imposed:
(C1) There exists a finite covering (Wκ)κ∈Ω ⊂ X such that any Wκ has a complex neighborhoods

Uκ ⊂ C
d such that f can be holomorphically extended to bf :

S
κ∈Ω

Uκ → S
κ∈Ω

Uκ.

(C2) The mapping bf has holomorphic inverse branches

ψκ :
[
λ∈Ωκ

Uλ → Uκ,

i.e., bf ◦ ψκ = id | S
λ∈Ωκ

Uλ
for any κ ∈ Ω, where bf(Uκ) =

S
λ∈Ωκ

Uλ. Here Ωκ = {λ ∈ Ω : Aκ,λ = 1}.
Moreover, the functions ψκ map

S
λ∈Ωκ

Uλ strictly inside Uκ.

Since the mapping is expansive, the entropy mapping μ 7−→ hμ(f) (where hμ(f) is the classical
Kolmogorov–Sinai measure-theoretic entropy) is upper semi-continuous. In the space of invariant
measures, the weak topology is considered. Under this hypothesis, the following result holds: the free
energy mapping T (q) = Tϕ,f (q) is differentiable in q if and only if there exists a unique equilibrium
state for qϕ (see [9, 25]).

3. Study of Phase Transitions by Transfer Operators

By A∞(U), U ⊂ C
d, we denote the space of functions holomorphic in U and bounded on the closure

of U (with the supremum norm).
For dynamical systems satisfying conditions (C1)–(C2) and potentials ϕ ∈ A∞(U), U =

S
κ∈Ω

Uκ,

transfer operators acting on
L
κ∈Ω

A∞(Uκ) can be defined by

(Lϕ(χ))κ(z) =
X
λ∈Ωκ

Aκ,λ exp(ϕ
λ
(z))χ(ψλ(z)), (6)

where ϕλ(z) := ϕ(ψλ(z)).
The potentials are originally defined on X and take real values. We assume that, in the sense of

conditions (C1)–(C2), the potentials which characterize the systems can be extended to

ϕ : U =
[

κ∈Ω

Uκ ⊂ C
d → C.

The following fixed point theorem is useful to compute the trace of the transfer operators.

Theorem (Earle–Hamilton [4]). Let D be a bounded connected subspace of a Banach space B and ψ
be a holomorphic mapping on D applying it strictly inside itself. Then ψ has exactly one fixed point
z ∈ D, and kDψ(z)k < 1.
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The meaning of “strictly inside itself” is the following: let D be a bounded connected subspace of
a Banach space B and ψ be a holomorphic mapping on D. We say that ψ applies D strictly inside
itself if

inf
z∈D

z0∈B−D
kψ(z) − z0k ≥ δ > 0.

Here Dψ is the differential mapping of ψ considered as a linear operator on B.
The trace of the operator Lϕ is given by

Tr(Lϕ) =
X
κ∈Ω

Aκ,κ exp(ϕκ(zκ))
1

det(1 −Dψκ(zκ))
, (7)

where ϕκ(z) := ϕ(ψκ(z)) and zκ is the fixed point of ψκ. This trace formula was obtained by Mayer [12]
and yields an expression in the style of the Atiyah–Bott formula on Lefschetz fixed point.

We set Lq = Lqϕ. One main observation is that the operators of this class are nuclear . Let us recall
that an operator L acting on a Banach space B is nuclear if there exist sequences (xn) ⊂ B, (fn) ⊂ B∗

(the dual space of B) such that kxnk = 1, kfnk = 1 and numbers (ρn) with
∞P
n=0

|ρn| < ∞ such that

L(x) =
∞P
n=0

ρnfn(x)xn for every x ∈ B.

Example. Let

L(κ)(z) =
X

κ∈{±1}
exp(κJ z)χ(β(κ+ z)),

where J and β are some real parameters. This operator has the form (6) for ψκ(z) = β(κ + z),
Aκ,λ = 1, for any κ, λ ∈ Ω = {±1} and the interactions ϕ1(z) = J z and ϕ−1(z) = −J z.

For R >
β

1 − β
, the function exp(κJ z)χ(β(κ+ z)) belongs to A∞(DR), where

DR = {z ∈ C : |z| < R}
and, therefore, L is nuclear for this choice of the parameters.

The operator from the example has an interesting analogy with the following physical model of
system of many particles. Let us consider the following one-dimensional spin model: particles at
positions i ∈ N have spins xi, which can take the values +1 (spins up) or −1 (spins down). A
configuraction is a symbolic sequence C = x0 x1, . . . , where xi ∈ {±1}. Thus, the set of configurations
can be considered as a Markov system

X
A

= {C = x0x1, . . . , xi ∈ {±1}, Axi,xi,+1 = 1},

where A is the transition matrix.
The potential interaction is given by the mapping φ(C) =

∞P
n=1

J x0xnβ
n, where J is interpreted as a

coupling parameter and β as a number which describes the asymptotic dependence of the interaction
φ on the particles xn. If we add an extra particle x to the configuration C = x0, x1, . . . , we denote
by hx,Ci the configuration x, x0, x1, . . . , i.e., the position of x0 is now occupied by x and any particle
that was originally at the ith site in C is moved to the i+ 1th site in hx,Ci. Thus, the interaction in
hx,Ci has now the potential

φ(hx,Ci) =
∞X
n=1

J xxn−1β
n.
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The transfer operator for this model is defined as

Sφ(ω)(C) =
X

κ∈{±1}
exp

 
κJ

∞X
n=1

xn−1β
n

!
φ(hx,Ci)

(see [12]).
Consider the space of functions

F
�X

A

�
=
�
ω ∈ C

�X
A

�
: there exists χ ∈ A∞(DR), ω(C) = χ(π(C))

�
,

where

π :
X
A

→ DR, π(C) =
∞X
n=1

xn−1β
n, and R >

β

1 − β
.

On F(
P

A), the transfer operator Sφ acts as

Sφ(ω)(C) =
X

κ∈{±1}
exp

�
κJ

∞X
n=1

xn−1β
n

�
χ(ψκ(π(C))),

where ψκ(z) = β(κ+ z) and ω = χ ◦ π (see [12]).

By making the change of variables z =
∞P
n=1

xn−1β
n, the operator Sφ induces an operator acting on

A∞(DR) as follows:
L(κ)(z) =

X
κ∈{±1}

exp(κJ z)χ(β(κ+ z)).

Next, we state our main result.

Theorem 1. Let (X, f), X ⊂ R
d, be a dynamical system and ϕ : X → R be an interaction potential,

for which conditions (C1)–(C2) are satisfied. Then, for a such systems, there is no phase transition.

To prove the theorem, we establish before the following two results.

Lemma 2. The spectral radius ρ(Lq) of any operator Lq is equal to exp(T (q)), provided that conditions
(C1)–(C2) are fulfilled.

Proof. For any admissible string (κ0, κ1, . . . , κn−1) ∈ Ωn, we denote

ψ(κ0,κ1,...,κn−1) := ψκn−1 ◦ · · · ◦ ψκ0 .

By “admissible” we mean that Aκs,κs+1 = 1 for every s = 1, . . . , n. Let z(κ0,κ1,...,κn−1) be a fixed point
of ψ(κ0,κ1,...,κn−1), and recall that by condition (C2), the mappings ψκ are inverse branches of bf . By
this fact, we obtain that if

ψ(κ0,κ1,...,κn−1)(z(κ0,κ1,...,κn−1)) = z(κ0,κ1,...,κn−1),

then bf (n)(z(κ0,κ1,...,κn−1)) = z(κ0,κ1,...,κn−1).

Thus, there exists a one-to-one correspondence between periodic points of bf and the set of admissible
strings. More precisely, the set {z(κ0,κ1,...,κn−1)} is equal to Pn( bf).

Now, if Eq is the maximum in modulus eigenvalue of Lq, then

logEq = lim
n→∞

1
n

logLnq 1 = lim
n→∞

1
n

log
X

x∈Pn(f)

exp(−Sn(qϕ(x))),

because of the commented correspondence between the configurations and periodic points. Therefore,

ρ(Lq) = exp(T (q)).
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The concept of nuclearity can be extended to mappings from complete metric topological spaces
(Frechet spaces) to Banach spaces (for details, see [6, 12]). There existss a particular class F of Frechet
spaces with the property that any bounded mapping L : F → B, where B is an arbitrary Banach
space, is nuclear. Such spaces are also said to be nuclear.

Proposition 3. The transfer operators Lq :
L
κ∈Ω

A∞(Uκ) →
L
κ∈Ω

A∞(Uκ), Uκ ⊂ C
d, for systems which

satisfy conditions (C1)–(C2) are nuclear for any q.

Proof. The demonstration is a direct application of the Grothendieck theory [6, 7]. First of all, we
note that the operators are sums of operators of the form φCψ, where Cψ is the composition operator
Cψ(χ)(z) = (χ◦ψ)(z). Thus, for studying the spectral properties of L, it suffices to analyze composition
operators. For this, we consider a suitable nuclear space F and prove that Cψ defined on F is bounded.
The space H(D) will be the space of holomorphic functions in a domain D ⊂ C

d equipped with the
seminorm kχkK = sup

z∈K
|χ(z)|, where K is a compact subset of C

d. It is known that the space H(D)

with the topology of the seminorms k kK is nuclear [12]. Now, proving that composition operators are
bounded in the space H(D), we prove that they are nuclear.

Let K be a compact subset of D such that ψ(D) ⊂ D ⊂ K. We set

BM := {χ ∈ H(D) : kχkK < M}.
Thus,

kCψ(χ)k = sup
z∈D

{|(χ ◦ ψ)(z)|} < M.

Therefore, the set BM is carried by Cψ to a bounded set in A∞(D). To guarantee that Cψ is defined
on A∞(D), we just take the composition of Cψ with the canonical injection ι : A∞(D) ,→ H(D). Thus,
Cψ ◦ ι : A∞(D) → A∞(D) is nuclear and, therefore, the transfer operators Lq are also nuclear.

Proof of Theorem 1. The Fredholm determinant of Lq is

det(1 − zLq) = exp

 
−

∞X
n=1

zn

n
Tr(Lnq )

!
,

z ∈ C. The fact of Lq is nuclear implies that the function det(1− zLq) is entire in both variables z, q.
Moreover, the set of zeros z of the Fredholm determinant agrees with the set of nonzero eigenvalues
of Lq.

To obtain from Eq. (7) a development of Tr(Lnq ), we use the relationship

det(1 − L) =
dX
p=0

(−1)p Tr
�^

p

L
�
,

where
V
p
L is the p-fold exterior product [12]. From this, a broader class of transfer operators can be

obtained. If
V
p
B(Uκ) denotes the Banach space of the differential p-forms holomorphic on Uκ, then

we define

L(p)
ϕ :

M
κ∈Ω

^
p

B(Uκ) →
M
κ∈Ω

^
p

B(Uκ), Uκ ⊂ C
d,

(L(p)
ϕ (wp))κ(z) =

X
λ∈Ωκ

Aκ,λ exp(ϕ
λ
(z))

^
p

Dψλ(z)(wp)(ψλ(z)),
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where wp ∈
V
p
B(Uκ) and

V
p
Dψ is the p-fold exterior product of the differential mapping Dψ (consid-

ered as a linear operator). Here, L(0)
ϕ = Lϕ.

The Fredholm determinant is related with the Ruelle zeta function [20], which is defined as

ς(z, q) = exp

 ∞X
n=1

zn

n
Zn(q)

!
.

This series converges in {z : |z| < exp(−T (q))}. The Fredholm determinant is used to show that the
Ruelle zeta function may have a meromorphic extension to the whole complex plane.

For example, if d = 1 [12], then

ς(z, q) =
det(1 − zL(1)

q )

det(1 − zL(0)
q )

. (8)

Therefore, z-poles of ς(z, q) are found among z-zeros of det(1 − zL(0)
q ), i.e., nonzero eigenvalues of

L(0)
q ≡ Lq. The zeta-function has a pole localized in exp(T (q)).
Next, we will prove, as we commented in the Introduction, the absence of phase transitions, i.e.,

the analyticity of the free energy function T (q), by showing that any operator Lq has an isolated
eigenvalue. Then, since exp(T (q)) is an isolated singularity of the mapping ς, the leading eigenvalue
of Lq is isolated.

To complete the analysis, we present a description of the spectrum of transfer operators under
consideration as in Proposition 3 for proving the nuclearity, the operators of the form L = φCψ,
where Cψ is the composition operator. For ψ ∈ A∞(D), this composition operator has a discrete
spectrum [12]. Let ψ ∈ A∞(D). We have the equation for eigenvalues:

Lχ(z) = φ(z)χ(ψ(z)) = Eχ(z).

Clearly, if χ(z) 6= 0, then an eigenvalue of L is E = φ(z), where z is a fixed point of ψ. If χ(z) = 0,
then, differentiating with respect to z, we obtain the following form of the above equation:

Dφ(z) × χ(z) + φ(z) ×Dχ(z)Dψ(z) = EDψ(z).

Thus, if Dφ(z) 6= 0, then E = φ(z)Dψ(z). Now the eigenvalues of L (recall that it is discrete) form
the set

En =
�
φ(z)(Dψ(z))n

	
.

Recall that, by the Earle–Hamilton theorem, kDψ(z)k < 1 and, therefore, 0 is the only point of
accumulation.

Note that

Tr(L) =
∞X
n=1

En =
∞X
n=1

φ(z)(Dψ(z))n =
φ(z)

det(1 −Dψ(z))
,

which is the Mayer trace formula.

3.1. Expanding analytic mappings with finite Markov partitions. We consider an interest-
ing particular case, which was treated in [10] to calculate Hausdorff dimensions of some sets. A map-
ping f : X → X, X ⊂ R

d, is expanding with respect to a finite Markov partition P = {W1,W2, . . . ,Wk}
if

(i) f restricted to any Wj is injective;
(ii) kDx(fn)k ≥ δ > 1 for some n ∈ N and for every x ∈ X.
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Recall that the set {W1,W2, . . . ,Wk} for (X, f) is a Markov partition of X if Wi ∩Wi = ∅, i 6= j,

f(Wj) =
kS
l=0

Wjl , and Wi = int(Wi). The transition rules are established as Ai,j=1 if f(Wj)∩Wi 6= ∅.
Note that, for the conditions for expanding mappings, there exist inverse branches ψj . If these branches
are analytic, the mapping is called an expanding analytic mapping . The contraction property for the
branches indeed holds for this kind of mappings.

For the potential interaction, ϕ(x) := − log kDf(x)k, where f is an expanding analytic mapping;
the free energy has the form

T (q) = lim
n→∞

1
n

log
X

x∈Pn(f)

n−1Y
i=0

kDf i(x)k−q. (9)

The transfer operators can be expressed as

Lq(κ)(z) =
X
i∈Ω

X
j:Ai,j=1

kDψi,j(z)k−qχ(ψi,j(z)), (10)

where ψi,j : Uj → Ui are the branches bf ◦ ψi,j = id |Uj and bf is the holomorphic extension of f to
complex neighborhoods Uj of Wj .

Thus, for a finite Markov partition, we have the validity of the results about the nuclearity of the
transfer operator for any q, absence of phase transitions, etc.

3.2. A case of an expanding mapping with infinite partition. Important cases of analytic
expanding mappings are obtained as follows. Let H2 denote the hyperbolic plane in its disk model.
Let Γ be a Klein group on H2, i.e., a group which acts discontinuously on H2. Recall that ξ is a
limit point of Γ if and only if there exists a point w ∈ H2 such that the Γ-orbit Γ(w) = {γw : γ ∈ Γ}
accumulates at ξ. The set Λ is called the limit set of Γ. Since Γ acts discontinuously, Λ ⊂ ∂H2.
This action generates functions f : ∂H2 → ∂H2, called boundary hyperbolic mappings. They are
introduced by Series, and the details of the construction of them can be found in [21, 22]. We used
them in connection with multifractal analysis [14] and dimension theory [15].

We have the following result.

Theorem (see [21, 22]). There exist a one-sided finite type subshift Σ and a mapping p : Σ → Λ
continuous and bijective, except possibly for a countable set of points such that p◦τ = f ◦p (τ : Σ → Σ
is the Bernoulli shift).

Therefore, if ∂H2 is partitioned in finite arcs, then the absence of phase transitions is ensured. Now
it is interesting to investigate a similar case, where the partition is infinite.

We consider the Gauss mapping f : I → I given by f(ξ) = ξ−1 − [ξ−1] (I = [0, 1], [a] is the integer
part of a). It is a boundary hyperbolic mapping originated from the action of the modular group
SL2(Z) (for details, see [15, 21, 22]).

Let us consider the Markov partition P =
�
In =

�
1

n+ 1
,
1
n

��
n∈N

. We have f |In (ξ) =
1
ξ
−n and,

therefore, f |In is analytic if ξ 6= 0 and |(f2)
0 | ≥ 4. The branches are ψn(z) =

1
z + n

.

Remark. The reason for which there is no finite Markov partition in this case can be explained by
the above theorem. In the proof of this result, it is shown that ∂H2 is into a set partitioned at most

countable set of arcs {Ij} such that f(Ij) =
rS

jl=0
Ijl , i.e., P = {Ij} is a Markov partition for (Λ, f).

The set P is infinite if and only if Γ contains parabolic elements (i.e., hyperbolic isometries with fixed
points in ∂H2, see [3]).
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We assign to any ξ ∈ Λ (the limit set of Γ) its expansion into a continued fraction:

ξ =
1

m0 +
1

m1 +
1

m2 · · ·

,

and, therefore, we may identify ξ with the string (m0m1 · · · ); we denote this as ξ ↔ (m0m1 · · · ). Thus,
we have fn(m0,m1, . . .) = (mn+1mn+2 · · · ), and, therefore, ξ ∈ Pn(f) if and only if the continued
fraction (m0,m1, . . .) associated with ξ is such that mi+n = mi for each n. Now, for ξ ∈ Pn(f), we
can write ξ ↔ [m0,m1, . . . ,mn].

Thus, the partition function is defined as follows:

Zn(q) =
X

m0,m1,...,mn−1

n−1Y
j=0

exp(qϕ([mj ,mj+1, . . . ,mn,m0, . . . ,m1+j−1])). (11)

Theorem 4. Consider the dynamical system (I, f), where I = [0, 1] and f is the Gauss mapping. It

ensures absence of a phase transition for q >
1
2
.

Proof. A condition that the above sums converge is that |ϕ(ξ)| ∼ |ξ|2q as ξ → 0 for some q > 1. The
transfer operators act on A∞(D), where

D =
�
z ∈ C : |z − 1| < 3

2

�

and the mappings ϕ◦ ψn must be holomorphic in the disk D [11]. The mapping ϕ(ξ) = − log |f 0
(ξ)|

satisfies the above conditions.
Now the transfer operators are given by [11]

Lq(κ)(z) =
∞X
n=1

�
1

z + n

�2q

χ

�
1

z + n

�
. (12)

By the above-mentioned convergence reasons, the nuclearity of the transfer operators is ensured for

q >
1
2
, and the Fredholm determinant det(1 − zLq) for the corresponding transfer operator is entire

in z and analytic for q >
1
2
.

3.3. The critical exponent of the group and dimension.

Definition. The critical exponent of a group Γ acting on H2 is the number

δ = lim
N→∞

1
N

log card{γ ∈ Γ : dh(x, γy) < N},
where dh is the hyperbolic metric on the hyperbolic disk and x, y ∈ H2.

Simple hyperbolic geometry arguments imply that this limit is finite and, moreover, it does not
depend on x or y. This is proved by considering the Poincaré series [17]

ηx,y(s) =
X
γ∈Γ

exp(−sdh(x, γy)),

for which
exp(−sdh(x, y))ηy,y(s) ≤ ηx,y(s) ≤ exp(sdh(x, y))ηy,y(s)

(using triangle inequality). This shows that the critical exponent depends only on Γ. Under certain
conditions, for example, if the group is geometrically finite, we have δ = dimH Λ [16], where as above,
Λ denotes the limit set of the Γ-action on H2 and dimH is the Hausdorff dimension.
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The potential ϕ = −δ log |f 0 | has an equilibrium state μ
δ
, precisely, the Patterson–Sullivan measure

[18], which is concentrated on Λ, and, which is more important, it is the unique Gibbs state. An
explicit proof of this fact, mentioned in [21], is presented in [15]. Therefore, the case q = δ can be
analyzed by a special technique in order to establish the absence of phase transitions.

We complete this section by a brief comment about zeros of the free energy. Recall that the set
of z-zeros of the Fredholm determinant det(1 − zLq) is equal to the set of nonzero eigenvalues of Lq.
Also, recall that the spectral radius of Lq is exp(T (q)). Hence Lq has 1 as an eigenvalue if and only if
T (q) = 0. This condition is equivalent to det(1 − Lq) = 0. Therefore, to find the maximum zero for
the free energy T (q), we should find the values of q for which det(1 − Lq) vanishes.

For the case of boundary hyperbolic mappings, by the Bowen equation and Lemma 2, the largest
zero of the free energy is given by dimH Λ. In some cases, for example, if the group is geometrically
finite, δ = dimH Λ.

In [10], an algorithm to compute the largest zero of the free energy for dynamics derived from
expanding analytic mappings was designed. In this case, the largest zero of the corresponding free
energy agrees with the Hausdorff dimension of the so-called limit set of the iterative scheme. These
calculations can be extended to our more general systems by using the expansion of the Fredholm
determinant from the Grothendieck theory and estimate from the Hadamard matrix algebra. We omit
details since it is not an aim of this article.
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