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The ground state phase diagram of a spin S = 1/2 XXZ Heisenberg chain with spatially modu-
lated Dzyaloshinskii-Moriya (DM) interaction

H =
∑

n

J
[(

Sx

nS
x

n+1 + Sy

nS
y

n+1 +∆Sz

nS
z

n+1

)

+ (D0 + (−1)nD1)
(

Sx

nS
y

n+1 − Sy

nS
x

n+1

)]

is studied using the continuum-limit bosonization approach and extensive density matrix renor-
malization group computations. It is shown that the effective continuum-limit bosonized theory
of the model is given by the double frequency sine-Gordon model (DSG) where the frequences i.e.
the scaling dimensions of the two competing cosine perturbation terms depend on the effective
anisotropy parameter γ∗ = J∆/

√

J2 +D2
0 +D2

1 . Exploring the ground state properties of the
DSG model we have shown that the zero-temperature phase diagram contains the following four
phases: (i) the ferromagnetic phase at γ∗ ≤ −1; (ii) the gapless Luttinger-liquid (LL) phase at
−1 < γ∗ < γ∗

c1 = −1/
√
2; (iii) the gapped composite (C1) phase characterized by coexistence of

the long-range-ordered (LRO) dimerization pattern ǫ ∼ (−1)n(SnSn+1) with the LRO alternating
spin chirality pattern κ ∼ (−1)n

(

Sx

nS
y

n+1 − Sy

nS
x

n+1

)

at γ∗
c1 < γ∗ < γ∗

c2; and (iv) at γ∗ > γ∗
c2 > 1

the gapped composite (C2) phase characterized in addition to the coexisting spin dimerization and
alternating chirality patterns, by the presence of LRO antiferromagnetic order. The transition from
the LL to the C1 phase at γ∗

c1 belongs to the Berezinskii-Kosterlitz-Thouless universality class, while
the transition at γ∗ = γ∗

c2 from C1 to C2 phase is of the Ising type.

PACS numbers: 75.10.Jm,75.25.+z

I. INTRODUCTION

Quantum spin chains continue to be the subject of in-
tensive studies because they serve as interesting model
systems to explore strongly correlated quantum order in
low dimensional magnetic systems [1–3]. A significant
fraction of current research is focused on studies of heli-
cal structures and chiral order in the frustrated quantum
magnetic systems [4–20]. The key couplings, responsible
for stabilization of non-collinear magnetic configurations
in these systems, is the Dzyaloshinskii-Moriya (DM) in-
teraction [21,22]

HDM =
∑

n

D(n) · [Sn × Sn+1] , (1)

where D(n) is an axial DM vector. The DM interac-
tion corresponds to the antisymmetric part of exchange
interaction between spin located on neighboring sites n
and n+ 1, it appears in a systems with broken inversion
symmetry due to the spin-orbit coupling and was first in-
troduced by I. Dzyaloshinskii on the grounds of general
symmetry arguments [21]. Later, the spin-orbit coupling
as the microscopic mechanism of the antisymmetric ex-
change interaction has been identified by T. Moriya [22].

Although the study of helical structures in antifer-
romagnets counts more then half of century [23], the
research activity in the field of one and quasi-one-
dimensional spin-1/2 chains with DM interaction remain
persistent and high during the last three decades. Ef-
fects caused by the uniform DM term or by the pure
staggered DM interaction on the ground state proper-
ties of the S = 1/2 Heisenberg chain were considered
within the framework of Bethe-Ansatz solvable mod-
els [4], as well as using the exactly solvable limiting
cases such as the XY chain with uniform DM couplings
[5]. Magnetic properties of the isotropic and anisotropic
(XXZ) Heisenberg chain with staggered [7–9] and uni-
form [11–14] DM interaction has been considered using
the continuum-limit bosonization approach and numer-
ical treatment. Recently more exotic extended versions
of the one-dimensional Heisenberg model, such as the
completely anisotropic spin-1/2 XYZ model with DM in-
teraction [15] and the Delta-chain model with DM inter-
action [16] have been studied using the density-matrix
renormalization group algorithm (DMRG) and a finite-
size scaling analysis. In last years, using the exact diag-
onalization technique, a special attention has been given
to the studies of the ground state phase diagram of finite
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spin chains with DM interaction based on calculation of
the entanglement, for the Heisenberg [17,18], Ising [19]
and bond-alternating Ising model [20].
Generally, in a chain, vectors D(n) may spatially vary

both in direction and magnitude, however, the symme-
try restrictions based on the properties of real solid state
materials usually rule out most of the possibilities and
confine the majority of theoretical discussion to two prin-
cipal cases – uniform DM interaction, D vector remains
unchanged over the system [4,10–12] and the case of stag-
gered DM interaction, with antiparallel orientation of D
on adjacent bonds [7,8]. Exception is only the Ref. [6]
where the XY spin chain with random changes in the
sign of DM interactions was studied.
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FIG. 1: Sketch of the ground state phase diagram of the spin
S=1/2 Heisenberg chain with modulated DM interaction.

However, recently it has been demonstrated that DM
interaction can be efficiently tailored with an substan-
tial efficiency factor by structural modulations [24] or
by external electric field [25–27]. This unveils the pos-
sibility not only to control DM interaction and mag-
netic anisotropy via the electric field or other control-
lable ways, but also opens a possibility to consider effect
of more general spatially modulated DM interaction on
properties of the spin chain. External electric field in-
duced modulation of the DM interaction can be realized
in spin-driven chiral multiferroic (MF) systems [28], ef-
fectively coupling the ferroelectric polarization with the
applied external electric field [29]. These studies became
very actual in last years, in particular in the context of
materials useful for electric field controlled quantum in-
formation processing [30].
In the present work we study the effect of the alter-

nating Dzyaloshinskii-Moriya (DM) interaction on the
ground state phase diagram of the spin-1/2 Heisenberg
chain. Because the DM term breaks the global spin ro-
tation symmetry, we consider the Hamiltonian

H = HXXZ +HDM

where

HXXZ =
∑

n

[

J(Sx
nS

x
n+1 + Sy

nS
y
n+1) + Jz S

z
nS

z
n+1

]

(2)

is the Hamiltonian of an anisotropic Heisenberg chain and
HDM is the DM term given in Eq. (1). In what follows
we choose the D(n) vector orientated, in the spin space,
along the ẑ axis D(n) = (0, 0, D(n)) and take

D(n) = D0 + (−1)nD1 . (3)

Our main objective is to show that the spatial mod-
ulation of the DM interaction leads to dramatic change
of the ground state phase diagram of the system, opens
a gap in a wide area of the parameter range and also
changes the nature of quantum phase transition in the
long-range-ordered antiferromagnetic phase. Results are
summarized in the Fig. 1. The ground state phase di-
agram is divided into four sectors depending on the
value of the effective exchange anisotropy parameter
γ∗ = Jz/

√

J2 +D2
0 +D2

1. The γ∗ = −1 point cor-
responds to the transition into the ferromagnetically
ordered phase (sector A). The gapless Luttinger-liquid
phase is shrunk up to a narrow region between−1 < γ∗ <
γ∗
c1 = −

√
2/2 (sector B). At γ∗ = γ∗

c1 the Berezinskii-
Kosterlitz-Thouless (BKT) phase transition takes the
system into the composite (C1) gapped phase charac-
terized by the coexistence of long-range ordered (LRO)
alternating spin dimerization pattern

ǫ(n) = 〈Sn · Sn+1〉 ∼ const+ (−1)nǫ

coexisting with long-range alternating pattern of the spin
chirality vector

κz
n = 〈[Sn × Sn+1 ]z〉 ∼ const+ (−1)nκ .

Finally, at γ∗ = γ∗
c2 > 1 there is an Ising type phase

transition into the other composite (C2) gapped phase,
characterized by the coexistence of long-range dimeriza-
tion, chirality and antiferromagnetic

〈Sz
n〉 ∼ const+ (−1)nm

modulations.
The outline of the paper is as follows. In Sec. II we con-

sider the exactly solvable limit case of the XY chain with
alternating DM interaction. In Sec. III using the gauge
transformation we gauge out the DM coupling and obtain
an effective XXZ spin-chain Hamiltonian with alternat-
ing transverse exchange. In Sec. IV we construct the
weak-coupling bosonized version of the effective Hamil-
tonian and discuss ground state phase diagram. In Sec.
V we present extensive numerical results supporting the
bosonization predictions. Finally, a brief summary is pre-
sented in Sec. VI.

II. THE XX CHAIN WITH ALTERNATING DM

INTERACTION.

In this Section we consider the exactly solvable case
of a XX chain with alternating DM interaction. It is
instructive to start from the full Hamiltonian

H =
∑

n

[J

2

(

S+
n S

−
n+1 + S−

n S+
n+1

)

+ Jz S
z
nS

z
n+1

+
i

2
(D0 + (−1)nD1)

(

S+
n S−

n+1 − S−
n S+

n+1

)

]

, (4)

where S+
n = S+

x ± iS+
y .
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Using the Jordan-Wigner transformations [31]

S+
n = a†n exp

(

iπ
∑

m<n

a†mam

)

, (5)

S−
n = exp

(

−iπ
∑

m<n

a†mam

)

an , (6)

Sz
n = a†nan − 1/2, (7)

where a†n (an) is a spinless fermion creation (annihila-
tion) operator on site n, we rewrite the initial lattice spin
Hamiltonian (4) in terms of interacting spinless fermions
in the following way:

H =
J

2

∑

n

(

a†nan+1 + a†n+1an

)

+
iD0

2

∑

n

(

a†nan+1 − a†n+1an

)

+
iD1

2

∑

n

(−1)n
(

a†nan+1 − a†n+1an

)

+ Jz
∑

n

(a†nan − 1/2)(a†n+1an+1 − 1/2) . (8)

We first discuss the exactly solvable XX limit Jz = 0.
Indeed, in absence of the Ising part of the spin exchange
(Jz = 0), the Hamiltonian can be easily diagonalized in
the momentum space. Indeed, performing the Fourier
transform,

an =
1√
L

∑

k

ake
ikn , (9)

at Jz = 0 we obtain

H =
∑

k

[

ǫ(k) a†kak + i∆(k)a†kak+π

]

, (10)

where

ǫ(k) = (J cos k −D0 sin k) = Jeff cos(k + q0) ,(11)

∆(k) = D1 cos k (12)

and

Jeff =
√

J2 +D2
0 (13)

q0 = arctan(D0/J) . (14)

Thus, in absence of the staggered component of the DM
interaction and (D1 = 0) the excitation spectrum of the
model is given by the same dispersion relation as the
standard XX chain

H0 =
∑

k

ǫ(k) a†kak , (15)

but for a uniform shift q0 in the momentum vector due to
the uniform part of the DM interaction [5]. The system is

characterized by two Fermi points k±F = ±π
2 − q0, so that

in the ground state all states with π/2 ≤ |k+ q0| ≤ π are
occupied and those with |k + q0| < π/2 are empty. The
bandwidth is half filled, the total magnetization of the
system in the ground state as well as the average value
of the on-site spin vanishes

m =
1

L

∑

n

〈0|Sz
n|0〉 = 0 . (16)

The vacuum spin current, determined via the chirality
order parameter [33,34] is evaluated as

Jsp =
1

L

∑

n

〈0|κz
n|0〉 =

2

π
sin q0 . (17)

Note that due to the gapless excitation spectrum, all cor-
responding correlations decay in power-laws [32] and no
LRO is present in absence of modulated part of the DM
interaction.

− 1
2π

1
2π

k

E(k)

FIG. 2: Free spinless fermion (spinon) dispersion relation in
the case of finite uniform and alternating DM interaction.
Here J = 1, Jz = 0, D0 = tan(π/6) and D1 = 0.2

At D1 6= 0, diagonalization of the Hamiltonian (10) is
also straightforward. It is convenient to restrict momenta
within the reduced Brillouin zone −π/2 < k ≤ π/2 and
to introduce a new notation ak+π = bk. In these terms
the Hamiltonian reads

H =
∑

k
′
[

ǫ(k)
(

a†kak − b†kbk

)

+ i∆(k)
(

a†kbk − b†kak

)]

,

where prime in the sum means that the summation is
taken over the reduced Brilluoin zone −π/2 < k ≤ π/2.
Using the unitary transformation

ak = cosφk αk + i sinφk βk , (18)

bk = i sinφk αk + cosφk βk . (19)

and choosing

tan (2φk) = −∆(k)/ǫ(k)

we obtain

H =
∑

π/2<k≤π/2

E(k)
(

α†
kαk − β†

kβk

)

(20)



4

where

E(k) =
√

J2
eff cos

2(k + q0) +D2
1 cos

2 k (21)

Note that in absence of the uniform component of the DM
interaction (D0 = 0, D1 6= 0), E(k) = ±

√

J2 +D2
1 cos k

and therefore the excitation spectrum is gapless, the vac-
uum spin current Jsp = 0 and no LRO is present in the
ground state.
Only at D 6= 0, D1 6= 0 the spectrum is characterized

by a finite excitation gap (see Fig. 2).

∆exc = J∗

√

2

(

1−
√

1− (2D0D1/J∗)
2

)

≃ 2D0D1/J
∗ , (22)

where

J∗ =
√

J2 +D2
0 +D2

1 .

In the ground state of the gapped phase, all states in

the negative energy β-band are filled nβ(k) = 〈β†
kβk〉 = 1,

while all the states in the positive energy α-band are

empty, nα(k) = 〈α†
kαk〉 = 1. As the result, in the ground

state the z-projection of the total spin

M =
∑

n

〈0|Sz
n|0〉 =

L

2π

ˆ π/2

−π/2

[nβ(k)− 1/2 ] = 0 (23)

as well as the staggered part of the on-site magnetization

m =
1

L

∑

n

(−1)n〈0|Sz
n|0〉 = 0 . (24)

It is straightforward to obtain, that the ground state
average of the staggered transverse spin dimerization and
chirality order parameters [33,34] are given by

ǫ⊥ =
1

L

∑

n

(−1)n〈0|
(

S+
n S

−
n+1 + S−

n S+
n+1

)

|0〉 =

= −D1

π

ˆ π/2

−π/2

sin k cos k

E(k)
dk (25)

and

κ =
i

L

∑

n

(−1)n〈0|
(

S+
n S

−
n+1 − S−

n S+
n+1

)

|0〉 =

=
D1

π

ˆ π/2

−π/2

cos2 k

E(k)
dk . (26)

respectively.
It is easy to check by inspection, that both link-located

order parameters ǫ⊥ → 0 and κ → 0 at D0 = 0 and
D1 6= 0.
To conclude the considerations on the XX limit of the

model (2), we present exact results of the local ground

state expectation values of the considered order param-
eters, aiming to illustrate the described ordered pat-
terns. They have been obtained for finite chains of length
L = 64 with open boundary conditions (OBC), also pro-
viding an insight into boundary features found in DMRG
computations for the interacting case (see Section V).

In Fig. 3 we have plotted the ground state distribution
of the transverse and longitudinal components of the spin-

0 10 20 30 40 50 60
bond

−0.18

−0.17

−0.16

−0.15

−0.14

−0.13

−0.12

−0.11

−0.10

ε
⟂

0 10 20 30 40 50 60
bond

−0.20

−0.18

−0.16

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04
ǫ
∥

0 10 20 30 40 50 60
bond

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

〈 κ
z
〉

FIG. 3: The ground state expectation value distribution
along bonds of: the transverse part of the nearest-neighbor
spin-spin exchange operator ǫ⊥n (top panel), the longitudinal

part of the same operator ǫ
‖
n (middle panel), and the spin chi-

rality operator κz

n (bottom panel) in the case of finite uniform
and alternating DM interactions. The results correspond to
a chain of L = 64 sites with OBC, with parameters J = 1,
D0 = tan(π/6) and D1 = 0.2.
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exchange

ǫ⊥(n) =
1

2
〈
(

Sx
nS

x
n+1 + Sy

nS
y
n+1

)

〉 , (27)

ǫ‖(n) = 〈Sz
nS

z
n+1 〉 , (28)

and that of the z-component of the spin chirality vector,
κz
n. These show a well pronounced alternating pattern

in complete agreement with analytical results. Notice
that distortions close to the edges are a byproduct of
OBC, thus in order to compute bulk averages one usually
discards a convenient number of sites at each boundary.
In Fig. 4 we show the ground state distribution of the

0 10 20 30 40 50 60
site

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

〈 S
z
〉

FIG. 4: The ground state expectation value distribution of
the z component of the spin operator as a function of site
number. System parameters are the same as in Fig. 3.

on-site magnetization. In spite of the modulated terms
in the Hamiltonian one observes that the z-component
of the spin density is homogeneous and strongly zero, in
marked contrast with the ground state averages of the
link-located order parameters.

III. GAUGING AWAY THE DM INTERACTION

To make next step forward, it is useful to rewrite the
Hamiltonian (4) in a physically more suggestive manner
by rotating spins and gauging away the DM interaction
term. Here we follow the route, developed in the Ref.
[11], in the case of a chain with uniform DM interaction.

In the considered case of the Heisenberg chain with
alternating DM interaction, as a first step it is convenient
to rewrite the Hamiltonian in a way which explicitly takes
into account doubling of the unit cell by the staggered
part of the DM interaction. Defining new dimensionless

parameters d± = (D0±D1)/J the Hamiltonian (2) reads

H =
J

2

N/2
∑

m=1

[

(

S+
2m−1S

−
2m + S−

2m−1S
+
2m

)

+ i d−
(

S+
2m−1S

−
2m − S−

2m−1S
+
2m

)

+
(

S+
2mS−

2m+1 + S−
2mS+

2m+1

)

+ i d+
(

S+
2mS−

2m+1 − S−
2mS+

2m+1

)

+2∆Sz
2m

(

Sz
2m−1 + Sz

2m+1

)

]

. (29)

We introduce new spin variables τ2m and τ2m+1 by per-
forming a site-dependent rotation of spins along the chain
around the z axis with relative angle ϑ− for spins at con-
secutive odd-even sites (2m− 1, 2m) and ϑ+ for spins at
consecutive even-odd sites (2m, 2m+ 1), so that

S+
2m−1 = ei(m−1)(ϑ

−
+ϑ+) τ+2m−1 ,

S+
2m = eimϑ

−
+i(m−1)ϑ+ τ+2m , (30)

S+
2m+1 = eim(ϑ

−
+ϑ+) τ+2m+1 ,

Sz
2m±1 = τz2m±1 Sz

2m = τz2m .

In the new variables we obtain

S+
2m−1S

−
2m ± h.c. = cosϑ−

(

τ+2m−1τ
−
2m ± τ−2m−1τ

+
2m

)

−i sinϑ−

(

τ+2m−1τ
−
2m ∓ τ−2m−1τ

+
2m

)

, (31)

S+
2mS−

2m+1 ∓ h.c. = cosϑ+

(

τ+2mτ−2m+1 ± τ−2mτ+2m1

)

−i sinϑ+

(

τ+2mτ−2m+1 ∓ τ−2mτ+2m+1

)

. (32)

Inserting (31)-(32) in (29) we map the initial Hamiltonian
onto

H =
J

2

N/2
∑

m=1

[

(cosϑ− + d− sinϑ−)
(

τ+2m−1τ
−
2m + τ−2mτ+2m−1

)

−i (sinϑ− − d− cosϑ−)
(

τ+2m−1τ
−
2m − τ−2mτ+2m−1

)

+(cosϑ− + d+ sinϑ+)
(

τ+2mτ−2m+1 + τ−2mτ+2m+1

)

−i (sinϑ− − d+ cosϑ+)
(

τ+2mτ−2m+1 − τ−2mτ+2m+1

)

+2∆ τz2m
(

τz2m−1 + τz2m+1

)

]

. (33)

Choosing angles ϑ± such that

tanϑ± = d±,

one can cancel DM like terms

J(sinϑ± − d± cos θ±) = 0 ,

J(cosϑ± + d± sin θ±) = J
√

1 + d2± ≡ J± (34)

and obtain the Hamiltonian without the DM interaction
but only with the alternating transverse exchange inter-
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action [6]

H =

N/2
∑

m=1

[ J−
2

(

τ+2m−1τ
−
2m + τ−2m−1τ

+
2m

)

+
J+
2

(

τ+2mτ−2m+1 + τ−2mτ+2m+1

)

+ Jz τ
z
2m

(

τz2m−1 + τz2m+1

)

]

. (35)

It is instructive to rewrite the Hamiltonian (35) in the
following, more common, form

H = J̃
∑

n

[ 1

2
(1 + (−1)nδ)

(

τ+n τ−n+1 + τ−n τ+n+1

)

+γ∗τznτ
z
n+1

]

, (36)

where, at di ≪ 1 ( i = ±),

J̃ =
1

2
(J+ + J−) ≃ J∗ +O

(

d4i
)

, (37)

δ J̃ =
1

2
(J+ − J−) ≃

D0D1

J∗
+O

(

d4i
)

(38)

and

γ∗ = Jz/J̃ ≃ Jz/J
∗ +O

(

d4i
)

. (39)

At J− 6= J+ the Hamiltonian (36) is recognized as a
Hamiltonian of the XXZ chain with alternating trans-
verse exchange. Note that the alternation of the trans-
verse exchange δ 6= 0 only for finite D1 6= 0 and D0 6= 0.
In the following we will discard O

(

d4i
)

corrections.
In the case of uniform DM interaction (D1 = 0) the

gauge transformation reduces to the consecutive rotation
of spins along the chain around the z axis with respect
to the nearest neighbor on the same angle

θ = arctan (D0/J) .

Because in this limit J+ = J− i.e. δ = 0, the effect of
the uniform DM interaction reduces to the renormaliza-
tion of the exchange anisotropy γ → γ∗ and change of
the boundary conditions. Respectively the Heisenberg
chain with uniform DM interaction is equivalent to an
XXZ chain with twisted boundary conditions. In par-
ticular, the excitation spectrum and the bulk correlation
functions of a spin-1/2 XXZ Heisenberg chain with DM
interaction can be obtained from that of the correspond-
ing XXZ chain

H = J∗
N
∑

n=1

[ 1

2

(

τ+n τ−n+1 + τ−n τ+n+1

)

+ γ∗τznτ
z
n+1

]

,(40)

taking into account the shift in momentum induced by
the mapping (30) and renormalization of the anisotropy
parameter [11].
In the case of staggered DM interaction D(n) =

(−1)nD1

ϑ+ = −ϑ− = ϑ = arctan (D1/J)

and the gauge transformation becomes global and corre-
sponds to the rotation of all spins on even sites around
the z axis on the same angle θ

S+
2m = eiθ τ+2m, Sz

2m = τz2m+1 , (41)

while the spins on even sites remain untouched:

S+
2m−1 = τ+2m−1, S

z
2m = τz2m. (42)

This gives again the Hamiltonian (40), but with trans-
verse exchange

J∗ =
√

J2 +D2
1 .

Thus the effect of staggered DM interaction reduces
only to the enhancement of the exchange anisotropy and
to the renormalization of the bandwidth without any
influence on the character of the spectrum. For a sys-
tem with open boundary conditions there are no further
changes, except for the appearance of gapless topological
edge states [35] that we take apart in numerical com-
putations. The bulk correlation functions of a spin-1/2
Heisenberg chain with staggered DM interaction can be
obtained from that of the corresponding XXZ chain (40)
by taking into account the shift on the relative angle θ
between spins located on even and odd sites.
The next step is to incorporate the effect of longi-

tudinal part of the spin exchange. Below we use the
continuum-limit bosonization approach to study low-
energy properties of the Hamiltonian (36).

IV. THE CONTINUUM-LIMIT BOSONIZATION

APPROACH

The continuum-limit bosonization approach to spin
chains is well known and discussed in detail in many ex-
cellent reviews and books. Therefore, below we briefly
sketch the most relevant steps and bosonization conven-
tions, while for technical details we refer the reader to
the corresponding references [36–38].
To obtain the continuum version of the Hamiltonian

(40), we use the standard bosonization expression of the
spin operators [37]

τzn ≃
√

K

π
∂xφ(x) + (−1)n

a

πα
sin

√
4πKφ(x) , (43)

τ±n ≃ b

πα
cos(

√
4πKφ) e±i

√
π/Kθ

− (−1)n
c

πα
e±i

√
π/Kθ . (44)

Here φ(x) and θ(x) are dual bosonic fields, ∂tφ = u∂xθ,
and satisfy the following commutational relation

[φ(x), θ(y)] = iΘ(y − x) ,

[φ(x), θ(x)] = i/2 . (45)
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Here the non-universal real constants a, b and c depend
smoothly on the parameter γ∗, are of the order of unity at
γ∗ = 0 [39,40] and are expected to be nonzero everywhere
at |γ∗| < 1. The Luttinger liquid parameter is known
within the critical line −1 < γ∗ < 1 to be [41]

K =
π

2 arccos (−γ∗)
. (46)

Thus the parameter K decreases monotonically from its
maximal value K → ∞ at γ∗ → −1 (ferromagnetic in-
stability point), is equal to unity at γ∗ = 0 (Jz = 0) and
reaches the value K = 1/2 at γ∗ = 1 (isotropic antifer-
romagnetic chain). In the case of dominating Ising type
anisotropy, at γ∗ > 1, K < 1/2.

Using (43)-(44) we finally obtain for the initial lattice
Hamiltonian (35):

H = u

ˆ

dx
[1

2
(∂xφ)

2 +
1

2
(∂xθ)

2 +
m0

πα2
cos

√
4πKφ

+
M0

πα2
cos

√
16πKφ

]

, (47)

where

m0 ≃ δ = D0D1/J
∗ 2 , (48)

M0 ≃ γ∗/2π (49)

and u ≃ J∗/K stands for the velocity of spin excitation.
Thus the effective continuum-limit version of the initial
lattice spin model (35) is given by the double-frequency
sine-Gordon (DSG) model [42]. The DSG model (47)
describes an interplay between two perturbations to the
Gaussian conformal field theory with the ratio of their
scaling dimensions equal to four. The DSG model and
its realizations in various 1D systems have been subject
of intensive studies in last decades [43–51]. It has been
shown [43], that the ground state properties of the DSG
model are controlled by the scaling dimensions of the two
cosine terms

d = dim[cos
√
4πKφ] = K

and

d∗ = dim[cos
√
16πKφ] = 4K

present in the Hamiltonian. Each of these cosine terms
becomes relevant in the parameter range where the cor-
responding scaling dimensionality d ≤ 2 or d∗ ≤ 2. Using
(46) we find that d ≤ 2, i.e. the first cosine term in (47)

is relevant, at γ∗ > γ∗
c1 = −

√
2/2, while d∗ ≤ 2, i.e. the

second cosine term in (47), for γ∗ > 1. This gives follow-
ing four segments of the model parameter range (see Fig.
1), where each one corresponds to the different mecha-
nisms of formation of the ground-state properties of the
system:

A. The Ferromagnetic sector γ∗ ≤ −1

At γ∗ ≤ −1 the system is in the ferromagnetic phase,
all spins are oriented along the z-axis

〈τzn〉 = 〈Sz
n〉 = 1/2; 〈τxn〉 = 〈τyn〉 = 0

and therefore the effect of the DM interaction is com-
pletely suppressed.

B. The Luttinger-liquid sector −1 < γ∗ < γ∗
c1

At −1 < γ∗ < γ∗
c1, d∗ > d > 2 and therefore

both cosine terms in (47) are irrelevant and can be ne-
glected. The gapless long-wavelength excitations of the
anisotropic spin chain are described by the standard
Gaussian theory with the Hamiltonian

H0 = u

ˆ

dx
[ 1

2
(∂xφ)

2 +
1

2
(∂xθ)

2
]

. (50)

In this critical Luttinger-liquid phase, all correlations
show a power-law decay, with indices smoothly depend-
ing on the parameter K [37].

C. The dimerized sector γ∗
c1 < γ∗ ≤ 1

At γ∗
c1 < γ∗ ≤ 1, d < 2 while d∗ > 2, therefore the

double-frequency cosine term is irrelevant and can be ne-
glected. In this case infrared properties of the system are
described by the standard sine-Gordon (SG) model

H = u
´

dx
[

1
2 (∂xφ)

2 + 1
2 (∂xθ)

2 + m0

πα2 cos
√
4πKφ

]

.(51)

With increasing γ∗, the scaling dimensionality of the
relevant cosine term changes from the marginal value
d = 2 at γ∗ = γ∗

c1, to d = 1/2 at γ∗ = 1. Thus, at
γ∗ = γ∗

c1 ≃ −0.7 the BKT [52] quantum phase transition
takes place in the ground state of the system, the exci-
tation gap opens at γ∗ = γ∗

c1 and remains finite in the
whole region −0.7 < γ∗ ≤ 1.
From the exact solution of the quantum sine-Gordon

model [53,54] it is known that for arbitrary finite m0 the
gapped excitation spectrum of the Hamiltonian Eq. (51)
at 2 > d > 1 (−0.7 < γ∗ ≤ 0), consists of solitons and
antisolitons with masses

Msol ∼ (m0/J
∗)

1
2−d = (m0/J

∗)
1

2−K , (52)

while at 1 > d ≥ 1/2 (0 < γ∗ ≤ 1) in addition, also of
soliton-antisoliton bound states (”breathers”) with the
lowest breather mass

Mbr = 2Msol sin

(

πK

4− 2K

)

. (53)

Thus, in the whole parameter range 0 < γ∗ ≤ 1 the
soliton mass Msol is the energy scale which determines
the size of the spin excitation gap.
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The excitation gap is exponentially small at the BKT
phase transition point

∆exc ∼ J∗ exp (−1/(γ∗ − γ∗
c1)) , (54)

it smoothly increases with increasing γ∗, and at γ∗ = 0

∆exc = 2J∗Msol = 2m0 = 2D0D1/J
∗ , (55)

in a perfect agreement with results obtained in the Sec.
II (see Eq. (22)). Finally, at γ∗ = 1 the gap is

∆exc = J∗Mbr = J∗
(

D0D1/J
∗ 2
)2/3

. (56)

The gap in the excitation spectrum leads to suppres-
sion of fluctuations in the system and the φ field is con-
densed in one of its vacua ensuring the minimum of the
dominating potential energy [55]

√
4πK〈φ〉 =

{

π at m0 > 0
0 at m0 < 0

. (57)

As it follows from (43)-(44) trapping of the φ field in
one of the vacua from the set given by (57) leads to sup-
pression of the site-located magnetic degrees of freedom

〈τzn〉 = 〈τxn 〉 = 〈τyn〉 = 0.

Respectively, using (30) we obtain, that the site-located
magnetic order is also fully suppressed in the initial spin
chain system:

〈Sz
n〉 = 〈Sx

n〉 = 〈Sy
n〉 = 0.

Moreover, if we consider the link-located degrees of
freedom, using (43)-(44) one obtains that the continuum
limit bosonized version of the τ -spin chirality operator is
given by

κ(τ)
n = −i

(

τ+n τ−n+1 − h.c.
)

→

→ 2√
π
∂xθ + (−1)n

2b

πα
sin(

√
4πKφ) (58)

and therefore in the gapped phase, where
√
4πK〈φ〉 =

0 mod π

〈κ(τ)
n 〉 = 0. (59)

However, the bosonized expressions for the staggered
parts of the τ -spin longitudinal and transverse nearest-
neighbor spin exchange operators

ǫ
(τ)
⊥ (n) =

(−1)n

2

(

τ+n τ−n+1 + h.c.
)

∼

∼ a

2π2α2
cos(

√
4πKφ) (60)

ǫ(τ)z (n) = (−1)nτznτ
z
n+1 ∼ b

πα
cos(

√
4πKφ) (61)

are characterized a finite vacuum expectation value in the
gapped phase and therefore, in the given gapped sector of

the phase diagram we find the presence of the long-range
dimerization pattern in the ground state:

(−1)n〈 ǫ(τ)⊥ (n) 〉 ∼ (−1)n〈 ǫ(τ)z (n) 〉 ≃ ǫ (62)

where

ǫ = 〈 cos
√
2πKφ 〉 ≃ mK

0 =
(

D0D1/J
∗ 2
)K

(63)

at weak coupling (m0 << J∗) and becomes of the unit
order in the strong coupling, at m0 ≥ J∗ [56].
Using (62), from (31)-(32) we obtain, that in the

gapped phase the initial spin chain shows a long-range
dimerization order

1

L

∑

n

(−1)n〈Sn · Sn+1 〉 ∼ (cosϑ+ − cosϑ−) ǫ , (64)

which coexists with the long-range order pattern of the
alternating spin chirality vector

1

L

∑

n

(−1)n〈κz
n〉 ∼ (sinϑ+ − sinϑ−) ǫ . (65)

D. The Ising type sector γ∗ > 1

At γ∗ > 1 both cosine terms in (47) are relevant and, in
principle, have to be considered on equal grounds. There-
fore in this case the low-energy sector of the initial spin
chain is given in terms of the double sine-Gordon model

H = u

ˆ

dx
[1

2
(∂xφ)

2 +
1

2
(∂xθ)

2 +
m0

πα2
cosβφ

+
M0

πα2
cos 2βφ

]

, (66)

with β =
√
4πK, which describes an interplay between

two relevant perturbations to the Gaussian conformal
field theory H0 (50) with the ratio of their scaling di-
mensions equal to 4. Since at γ∗ > 1 the Luttinger pa-
rameter is K < 1/2, the parameter β satisfies the in-
equality β2 = 4πK < 4π and no extra relevant terms
are generated via the renormalization procedure. In con-
sequence, the description of the system is closed within
the Hamiltonian (66) [43]. Moreover, the very presence
of two independent model parameters, δ and γ∗, which
determine the bare values of masses of two competing
cosine terms, makes the phase diagram of the model rich
and opens the possibility to manipulate the low-energy
properties of the system by changing intensity of the DM
interaction.
Since both terms are relevant, acting separately, each

leads to the pinning of the field φ in corresponding min-
ima, however because these two perturbations have dif-
ferent parity symmetries, the field configurations which
minimize one perturbation do not minimize the other.
Indeed the vacuum expectation value 〈φ 〉 =

√

π/16K, which corresponds to the minimum of the
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M0 cos
√
16πKφ term, leads to the suppression of con-

tributions coming from the m0 cos
√
4πKφ term, while

trapping of the field at the minima 〈φ 〉 = 0, or
√

π/4K,
which ensure minimum of the latter cosine term, corre-
spond to the maximum of the former, double-frequency
cosine potential. This competition between possible sets
of vacuum configurations of the two cosine terms is re-
solved via the presence of the quantum phase transition
(QPT) in the ground state.
The very presence of the QPT can already be traced

performing minimization of the potential

V(φ) = m0 cosβφ+M0 cos 2βφ , (67)

where the transition corresponds to the crossover from a
double well to a single well profile of the potential (67).
indeed, one can easily obtain, that atM0 > m0/4 the vac-
uum expectation value of φ field which minimizes V(φ)
is given by (57) and therefore in this case the dimerized
phase is realized ground state. However, at M0 > m0/4
the φ field is condensed in the minima

〈φ 〉 = φ0 =
1

β
arccos (m0/4M0) (68)

and, as the result, in addition to the dimerization pattern

(−1)n〈 ǫ(τ)i (n) 〉 ∼ 〈 cos(
√
4πKφ0)〉 i =⊥, z (69)

the ground state of the τ -spin system is characterized by
the long range antiferromagnetic order with the ampli-
tude of the staggered magnetization

m = (−1)n〈 τzn 〉 ∼ sin
√
4πKφ0 . (70)

Following the analysis, developed in the Ref. [43] one
can show that the model displays an Ising criticality with
central charge c = 1/2 on a quantum critical line. The
critical properties of this transition have been investi-
gated in detail by mapping the DSG model onto the de-
formed quantum Ashkin-Teller model [45]. The dimen-
sional arguments based on equating physical masses pro-
duced by the two cosine terms separately is usually used
to define the critical line. Using (52) one finds

{

m = m
1/(2−K)
0

M = M
1/(2−4K)
0

(71)

Equating these two masses we obtain the following ex-
pression for the critical value of the chain anisotropy pa-
rameter vs. DM coupling:

γ∗
c2 = 1 +

(

D0D1

J∗ 2

)

2−4K

2−K

. (72)

Because at γ∗ ≫ 1 the parameter K has to approach
its minimal value K ≃ 1/4, we take as the transition
point K ∼ 1/3 and therefore from (72) we obtain the

following rather rough estimate for the critical value of
the longitudinal exchange

Jz
c ∼ 1 +D0D1/J

∗.

Below the critical point the system is in the dimer-
ized phase, while γ∗ > γ∗

c2 the field is condensed in a

such vacuum minima 〈φ 〉 = φ0 where
√
4πKφ0 6= 0, π/2.

Therefore, in this case the composite ordered phase with
coexisting dimer and antiferromagnetic order is realized
in the ground state of the τ -spin chain.
It is evident that in this phase the initial spin-chain, be-

sides the dimerization and chirality order, given by (64)-
(65), shows a long range antiferromagnetic arrangement
of the z-projections of the S-spins.

V. NUMERICAL RESULTS

In order to investigate the detailed behavior of the
ground state phase diagram and to test the validity of
the picture obtained from the continuum bosonization
treatment, we present in this Section results of numerical
calculations for finite chains with open boundary condi-
tions, obtained with the DMRG technique [57].

−1 0 1 2 3 4 5 6

γ*

0

1

2

3

4

5

∆
ex

c

L=48
L=64
L=96
L=128
L→∞

−1.0 −0.8 −0.6 −0.4
0.00

0.05

0.10

FIG. 5: Spin excitation gap above the Sz

total = 0 ground
state. In the inset one can see a gapless phase. DMRG results
for finite chains of lengths L = 48, 64, 96, 128 and their 1/L
extrapolations (black line) for a wide range γ∗ > −1.

The computations were carried out for finite-length
systems with L = 48, 64, 96 and 128 sites, using the ALPS
library [58,59]. System parameters are set to J = 1,
D0 = tan(π/6) and D1 = 0.2, while the bare value of the
anisotropy ∆ is varied providing values of −1 < γ∗ ≤ 6.
This restricts the ground state analysis to the Stot

z = 0
subspace. Keeping m = 400 states and performing 10
sweeps we reproduced exact energies and expectation val-
ues at γ∗ = 0 for the same lengths with accuracy of at
least 6 digits. Open boundary conditions on the alternat-
ing coupling have been chosen in a topologically trivial
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sector, so as to avoid gapless edge states. Averages of
local expectation values are computed in the central half
of each chain in order to minimize open boundary effects.
In Fig. 5 we show the excitation gap numerically com-

puted as

∆exc = E0(N + 1) + E(N + 1)− 2E(N) , (73)

where E0(f) is the lowest energy state in the subspace

with fermionic occupation number f and N = L/2 cor-
responds to the Stot

z = 0 subspace. In the inset one can
appreciate the gapless LL region described in subsection
IVB, in full agreement with bosonization predictions. It
is also apparent the exponentially small gap opening at
γ∗
c1 ∼ 0.7, supporting the presence of the BKT transition

discussed in subsection IVC. The gap value for γ∗ = 0
of course coincides with exact results in section II.

−1 0 1 2 3 4 5 6

γ*

0.00

0.02

0.04

0.06

0.08

κ

L=48
L=64
L=96
L=128
L→∞

−1 0 1 2 3

γ*

0.0

0.1

0.2

0.3

0.4

m

L=48
L=64
L=96
L=128
L→∞

−1 0 1 2 3 4 5 6

γ*

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

ǫ
∥

L=48
L=64
L=96
L=128
L→∞

−1 0 1 2 3 4 5 6

γ*

−0.035

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005

ǫ
⟂

L=48
L=64
L=96
L=128
L→∞

FIG. 6: Various order parameters, computed as staggered averages of local ground state expectation values. Top right panel:
spin chirality. Top left panel: staggered magnetization. Bottom panels: longitudinal and transverse spin-spin correlations.
DMRG results for finite chains and their 1/L extrapolations.

In Fig. 6 we show the various order parameters dis-
cussed in the previous Sections. The top right panel
shows the staggered part of the chirality operator expec-
tation value in the ground state. These results confirm
that the long-range spin chirality dimer order, already
computed at γ∗ = 0 in section II, remains present for
γ∗ > −1 with a maximum at γ∗ ≈ 1. The top right panel
shows the z-component of the staggered magnetization in
the Stot

z = 0 ground state. One can see that it is strictly
zero for −1 < γ∗ < γ∗

c2 ∼ 2.5 and raises suddenly thereof.

This agrees with the bosonization analysis in subsection
IVD, signaling an Ising transition to the antiferromag-
netic ordered phase. Finally, in the bottom panels we
show the staggered part of the transverse and longitu-
dinal components of the spin exchange. Oscillations of
both components tend to zero as AFM LRO dominates
and |〈Sz

n〉| tends to 0.5.
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VI. SUMMARY

In this paper, we have studied the ground-state proper-
ties of the one-dimensional spin S = 1/2 XXZ Heisenberg
chain with spatially modulated Dzyaloshinskii-Moriya
(DM) interaction. Our goal was to describe the inter-
play between the uniform and staggered parts of the DM
interaction which, when acting alone, do not change the
excitation spectrum of the system. We have shown that
joint effect of the uniform and staggered components of
the DM coupling opens a possibility for formation of un-
conventional gapped phases in the ground-state of the
system
Depending on the effective anisotropy parameter γ∗ =

Jz/
√

J2 +D2
0 +D2

1 , besides the standard ferromagnetic
at γ∗ ≤ −1 and gapless Luttinger-liquid phase at −1 <
γ∗ < γ∗

c1, the ground state phase diagram of the model
contains two unconventional composite gapped phases.
The gapped C1 phase exists for γ∗

c1 < γ∗ < γ∗
c2 and

is characterized by the coexistence of LRO dimerization
and alternating spin chirality patterns, while the com-
posite C2 phase, which is realized at γ∗ > γ∗

c2 > 1, is
characterized by the presence, in addition to the dimer-
ization and alternating spin chirality order, of long-range
antiferromagnetic order.

Exploring the critical properties of the effective double
sine-Gordon theory we argue, that the transition from
the LL to the C1 phase at γ∗

c1 belongs to the Berezinskii-
Kosterlitz-Thouless universality class, while the transi-
tion at γ∗ = γ∗

c2 from C1 to C2 phase is of the Ising type.
Extensive DMRG results support these statements.
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