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Abstract Stationary segments in well log sequences can be automatically detected
by searching for change points in the data. These change points, which correspond to
abrupt changes in the statistical nature of the underlying process, can be identified by
analysing the probability density functions of two adjacent sub-samples as they move
along the data sequence. A statistical test is used to set a significance level of the
probability that the two distributions are the same, thus providing a means to decide
how many segments comprise the data by keeping those change points that yield low
probabilities. Data from the Ocean Drilling Program were analysed, where a high
correlation between the available core-log lithology interpretation and the statistical
segmentation was observed. Results show that the proposed algorithm can be used
as an auxiliary tool in the analysis and interpretation of geophysical log data for the
identification of lithology units and sequences.

Keywords Data mining · Segmentation · Zonation · Change point · Probability
density function

Introduction

Segmentation is an important data mining process. One important application is the
identification of locally stationary intervals or, equivalently, the location of change
points. In this context, segmentation (also known as zonation) is the dividing of a se-
quence into relatively homogeneous and stationary intervals such that each segment

D.R. Velis (B)
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, La Plata,
Argentina
e-mail: velis@fcaglp.unlp.edu.ar

D.R. Velis
CONICET, Paseo del Bosque s/n, B1900FWA La Plata, Argentina



410 Math Geol (2007) 39: 409–417

is distinctive from the adjacent ones. Well logs can be subdivided into relatively uni-
form segments that represent zones of similar lithologic character (stratigraphic units
and formations). Segment boundaries correspond to abrupt changes in the layering
and conform the limits of relatively stable periods or geologically meaningful zones.
These elementary units of similar properties can then be used as the basis for inferring
correlations between wells. A different approach consists of blocking or filtering the
data to get a simpler approximation (e.g. piecewise constant segments). This segmen-
tation problem will not be considered here, and the reader is referred to, for example,
Kaaresen and Taxt (1998) and the references therein for details. In this work, the
focus is on the identification of statistically distinct intervals in the log sequences.

There are various strategies for addressing this segmentation problem. Classical
approaches include the detection of abrupt changes in the mean (Webster 1973) or
in the variance (Gill 1970; Hawkins and Merriam 1973). A general description of
these techniques is given in Davis (1986). Recent studies include zonation by means
of cluster analysis (Gill et al. 1993), spectral analysis for identifying stationary in-
tervals (Ligges et al. 2002), etc. The method presented here takes into account both
the mean and the variance, and also higher-order robust statistics such as certain non
conventional skewness and kurtosis measures (Velis 2003) to identify change points.
Essentially, a split window is moved along the sequence and the probability density
functions (pdf) of the two adjacent half-windows are compared. When a significant
difference is detected, a change point is identified. Smooth pdfs are estimated using
the maximum entropy method as described in Velis (2003), which guarantees robust-
ness when dealing with short data sequences. Finally, a criterion for deciding which
is the number of segments that comprise the data is proposed.

The effectiveness of this strategy is supported by the analysis of various examples
using simulated and real data sequences derived from well-logs. The real data com-
prises various borehole measurements which are part of the Ocean Drilling Program,
Leg 197, Site 1203 (Tarduno et al. 2002). At this site, the lithology interpretation
based on extensive core samples and logging data analysis was available, so it was
possible to make a comparison between this interpretation and the statistical segmen-
tation. Results show that there is a high correlation between the published core-log
lithology and the segmentation generated by the proposed statistical procedure.

The Problem

Let Ex = (x1, x2, . . . , xN) be the sequence of well log data. The objective of the seg-
mentation process is to subdivide this series into smaller segments so that each inter-
val is relatively locally stationary. That is, we look for a sequence of change points

Et = (t1, t2, . . . , tM) (1)

which satisfy

1 = t1 < t2 < · · · < tM−1 < tM = N. (2)

These indexes determine a set of M − 1 segments of length

Tj = tj+1 − tj . (3)
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In practice the algorithm proceeds iteratively by searching successive change
points {tj } based on the assumption that two adjacent intervals are distinct when
the pdfs of the data on each side of tj are significantly different. For this purpose, a
split window of length 2L is centered at location tj , and the corresponding pdfs are
estimated and compared appropriately.

Here, L should be short enough to allow for the identification of short station-
ary intervals. Thus, a robust pdf estimation method that works well even for short
data sequences is required. The maximum entropy (MaxEnt) method with moment
constraints described in Velis (2003) produces smooth non-parametric pdfs which
are consistent with the data. The approach utilizes robust statistics computed directly
from the data to constrain the maximization of the pdf entropy. These statistics (called
S-measures) involve the non-conventional skewness and kurtosis indices that measure
shape and proved to be appropriate to identify the main features of the distribution of
primary reflection coefficients (reflectivity). In exploration seismology, the reflection
coefficient is the ratio of the amplitude of the displacement of the reflected wave to
that of the incident wave. The reflectivity is one of the components, together with the
seismic wavelet, of the so-called convolutional model of the seismic trace, especially
valid for layered geological models (Yilmaz 2001).

The strategy to carry out the segmentation is based on the sliding window ap-
proach, which consists of moving the analysing window along the whole sequence
and assigning a change point when a significant difference between the pdfs is ob-
served. To avoid the assigning of change points which are too close, we found it more
appropriate to look for a single change point at a time. Starting with j = 2 (recall that
t1 = 1), we look for optimum change points until the next change point that is added
does not yield a significant difference between the adjacent pdfs. These optimum
change points correspond to the smallest probabilities along the whole sequence for
the current iteration.

The Algorithm

Let t̂ be the current estimate of the j th change point. Let Eu = (xt̂−L,xt̂−L+1, . . . , xt̂ )

and Ev = (xt̂ , xt̂+1, . . . , xt̂+L) be the two subsets of Ex spanned by the split window, and
let p̂u(Eu) and p̂v(Ev) be the corresponding estimated pdfs, which are to be compared.
Rather than measuring the difference between p̂u and p̂v , we measure the difference
between their respective cumulative distribution functions (cdf), P̂u and P̂v , using
the Kuiper test (the cdfs are calculated numerically by integrating the pdf estimates).
The Kuiper test, a variant of the well-known Kolmogorov–Smirnov test (Press et al.
1992), quantifies the difference between two cdfs. The Kuiper statistic is given by

V = max
a≤x≤b

¡
P̂u − P̂v

¢ + max
a≤x≤b

¡
P̂v − P̂u

¢
, (4)

where a and b define the region of support of the cdf (usually the minimum and
maximum values in the data set). It turns out that the distribution in the case of the
null hypothesis that the two data segments come from the same distribution can be
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calculated asymptotically, giving rise to a formula that allows one to compute the
significance level (Press et al. 1992)

Probability(V > observed) = 2
∞X

i=1

¡
4i2λ2 − 1

¢
e−2i2λ2

, (5)

where

λ =
µr

L

2
+ 0.155 + 0.24

r
2

L

¶
V. (6)

The segmentation algorithm is a three stage process. In the first stage, the proba-
bility (5) is calculated for every possible change point location throughout the whole
sequence in the range (L,N − L). In the second stage, change points candidates are
added according to the following strategy: at the beginning, the point with the small-
est probability is selected as a candidate for the first change point, yielding t2 and the
new segmentation (t1, t2, t3), which is comprised of two segments of lengths T1 and
T2, respectively. Then, a new change point is added by selecting the smallest proba-
bility within the current longest segment (largest Tj ), giving rise to a new partition
(t1, t2, t3, t4). This process is repeated and new change points are added (within the
longest segments obtained so far) until all segments are shorter than a given minimum
length, Tmin.

The third stage of the algorithm consists of discarding those change points whose
associated probabilities are larger than a predefined threshold. Also, the change points
with largest probabilities in excess of a predefined number of change points are
deleted. Note that a large probability is indicative of a high degree of confidence on
the null hypothesis that the two distributions are the same, so low values of probabil-
ity are desired to obtain a high confidence on the hypothesis that the two distributions
are different. To avoid too fine segmentations (i.e. two change points separated by
a few samples), a minimum separation Δ between two consecutive change points is
forced by adjusting the search range accordingly.

Step by step, the algorithm is as follows.

1. Set j = 1.
2. For every t̂ in the initial search range (L,N − L):

(a) Set Eu = (xt̂−L,xt̂−L+1, . . . , xt̂ ) and Ev = (xt̂ , xt̂+1, . . . , xt̂+L).
(b) Estimate p̂u and p̂v using the MaxEnt method.
(c) Estimate P̂u and P̂v by numerical integration.
(d) Compute V and evaluate the probability (5).

3. Set j = j + 1.
4. Find the smallest probability within the current search range to get a new optimum

change point tj .
5. Sort, in ascending order, the current set of change points and update the segmen-

tation (t1, t2, . . . , tj , tM).
6. Compute segment lengths according to (3).
7. Update the search range: (tjmax + Δ, tjmax+1 − Δ), where tjmax is the beginning

of the longest segment, Tmax.
8. If Tmax > Tmin, go to Step 3.
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9. Delete all change points whose probabilities are larger than a predefined signifi-
cance level.

10. Delete all change points in excess of a predefined maximum number of change
points whose probabilities are largest.

Test Results

To check the consistency of the segmentation algorithm, we applied it to the simulated
sequence (8400 random values) shown in Fig. 1. The sequence was generated by con-
catenating samples drawn from eight different non-parametric distributions. These
distributions were selected so as to simulate a realistic reflectivity sequence (Velis
2003) and are shown in Fig. 2.

In the segmentation process we set L = 250 and Δ = 200, and change points
were added until no segment was larger than Tmin = 200 samples. At the end of
the process, the change points with the associated probability larger than 0.01 were
discarded. This significance level was chosen based on the inspection of Fig. 3, where
the probability (5) was plotted in ascending order for all the identified change points.
For values larger than about 0.01, the probability of the null hypothesis that the two
distributions are the same increases rapidly. The estimated change points are shown
in Fig. 1 and in Table 1, along with the correct change points. All eight segments
were identified correctly.

Fig. 1 Simulated random sequence comprised of eight statistical independent segments. The segmentation
is indicated by vertical lines: true (top) and estimated (bottom). Table 1 shows the exact location of the
change points

Fig. 2 Probability density
functions used to generate the
reflectivity sequence shown in
Fig. 1
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Fig. 3 Probability of the null
hypothesis that the two
distributions are the same. The
plot reveals an abrupt change at
about 0.01, a value which is
selected as a threshold to discard
change points with high
probabilities in the third stage of
the segmentation process

Table 1 The eight segments
used to build the sequence
shown in Fig. 1 and their
corresponding change points
(true and estimated), Kuiper
statistics and associated
probability

pdf tj t̂j V Prob

1 1 – – –

2 1751 1751 0.360 0.00000

3 2601 2601 0.198 0.00162

4 4151 4179 0.196 0.00189

5 5051 5055 0.318 0.00000

6 5951 5957 0.469 0.00000

7 6451 6439 0.355 0.00000

8 7426 7487 0.230 0.00006

The next example shows the results of the segmentation process when applied to
various geophysical logging data sequences. The data, which are part of the Ocean
Drilling Program (Leg 197, Site 1203), were collected to characterize the southward
motion of the Hawaiian Hotspot in the Emperor Seamount trend (Tarduno et al.
2002). The drilling achieved moderate basement penetration and high recovery al-
lowing for a detailed lithostratigraphy analysis. Downhole measurements, which are
of very good quality in the basement sections, included various standard and non-
standard tool strings and passes.

Figure 4 displays all data sequences used in the segmentation procedure. In partic-
ular, we selected total natural gamma ray, electrical resistivity, bulk density, porosity
and S-wave velocity. The sampling interval is 0.1524 m, and each data sequence con-
tains about 3300 samples in the interval considered. The last column of the figure,
labeled “mean standardized log data”, was built so as to take into account all log-
ging data into a single sequence. For this purpose, the five previous sequences were
standardized and averaged with equal weight and appropriate sign into a single se-
quence (the logarithm of the electrical resistivity was used in this sum. The polarity
of both the total natural gamma ray and porosity was changed before the sum). The
resulting “mean” sequence was the data that we actually used to carry out the statis-
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tical segmentation. Note that this sequence exhibits features of the five previous data
sequences, allowing for a full multivariate segmentation of the whole data set.

The results of the segmentation are shown in the same figure along with the avail-
able core-log lithology interpretation. The available interpretation in the analysed in-
terval (400–900 meters below sea-floor, mbsf) comprises 30 units of alternating sed-
iments (ooze and volcaniclastic) and basalts. The basement starts at about 460 mbsf.
For details, see Tarduno et al. (2002). As for the statistical segmentation process, we
set L = 31, Δ = 31 and Tmin = 50 (sample units) and we kept the 32 change points
with the lowest probabilities. In general, the correlation between the statistical seg-
mentation and the core-log interpretation is from good to excellent. All the major
units were correctly identified. In particular, all the units identified in the available
log interpretation were automatically detected by the statistical segmentation algo-
rithm, except for the thin layers at about 475 mbsf (unit 2), 490 mbsf and 850 mbsf.
In any case, these thin beds are not so clear by inspecting the considered log data. Ac-
tually, except for unit 2, the other two beds were not identified in the core lithology
analysis. On the other hand, there is a total of 12 change points (denoted by dashed
lines in the figure) which are not identified in the available log lithology interpre-
tation. Some of these change points may be associated to units clearly identified in
the core lithology. For example, units 27 and 28 are identified as a single unit in the
available log lithology, but as two units in the statistical segmentation, in accordance
to the core lithology analysis. The same can be said for units 19 and 20. Moreover,
units 12, 13 and 14 are identified as two units in the available log interpretation, but
correctly as three distinct units in the statistical segmentation. Finally, some of the
remaining detected change points that do not correlate with the available core-log
interpretation may be associated to a fine lithology layering (e.g. division of units
into sub-units, etc.). In effect, the three change points detected in unit 4 by the statis-
tical segmentation at 505, 515 and 524 mbsf, for example, correlate very well with
core-lithology subunits 4i, 4k and 4m at 508, 516 and 523 mbsf, respectively. These
subunits are not indicated in the core lithology column, and the interested reader can
find detailed information in Tarduno, Duncan, and Scholl (2002). A deeper analysis
regarding subunits is beyond the scope of this work.

Another point worth mentioning is the accuracy of the detected change points. The
statistical segmentation procedure automatically detects very accurately the presence
of a change point. Based on the information provided by the core interpretation, the
thickness of unit 22, for example, is about 14 m. The same value is obtained after the
statistical segmentation. On the contrary, the available log interpretation estimates a
thickness of about 16.5 m.

Conclusions

The detection of stationary segments in geophysical log data sequences can be car-
ried out in a quasi-unsupervised mode by searching for change points in the data. The
MaxEnt method using robust non-conventional statistics that measure shape provides
an appropriate technique to estimate the distributions that are to be compared. After
estimating the distributions of the two halves of a moving window, abrupt changes
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are easily identified based on the analysis of the probability of the null hypothesis
that the two distributions are the same. The Kuiper test proved to be a useful crite-
rion to decide which change points lead to significant differences between adjacent
distributions. This provides a means of choosing the appropriate number of locally
stationary segments that the data sequence can be subdivided into.

The statistical segmentation algorithm presented in the work is viewed as an aux-
iliary tool that may contribute useful information in the identification of the main
lithology units and sequences as derived from measured geophysical log data. The
zonation of a borehole environment is an essential step in the correlation of subsur-
face layers between wells, with application in oil exploration and reservoir evaluation.
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