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Summary. — Some basic propertics of renormalized coupling constants
are discussed in the framework of spontancously broken gauge symmetries.
It is pointed out that conventional definitions lead to some difficulties
connected with infra-red divergences and two possible solutions are
suggested. The ultraviolet divergent contributions to the lowest-order
corrections are then studied and it is shown explicitly, in a number of
particular examples, how these divergent terms cancelin theinterrelations
between renormalized coupling constants and masses. The specific calcula-
tions are carried out in the unitary gauge of the SU,x U, gauge model,
using the v-dimensional regularization method.

1. - Introduction.

A very interesting recent development in particle physics has been the
study of unified models of weak and electromagnetic interactions constructed
on the basis of spontaneously broken gauge symmetries (*). In fact, recent
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investigations give strong support to the idea that such models are renor-
malizable, provided that Adler anomalies are cancelled internally (2).

In this paper we study some problems concerning the definition and inter-
relations of the renormalized constants of the theory. This subject is of course
of general theoretical interest as it is connected with the renormalization pro-
gram for the theories under consideration. It is also a matfter of practical
interest as can be readily ascertained by examining some recent papers and
results concerning the higher-order weak and electromagnetic corrections to
weak processes (*¢).

Our specific considerations are carried out in the framework of the SU, x U,
gauge model (). It shoulder be clear, however, that similar studies can be
extended, in principle, to other spontaneously broken gauge symmetries.

The plan of the paper is as follows. In Sect. 2 we discuss a rather conven-
tional definition of the renormalized coupling constants of the theory. We
point out that this leads to difficulties connected with infra-red divergences,
and offers two possible solutions to this problem. In Sect. 3 we study to lowest
nontrivial order the ultraviolet divergent contributions to some relevant two-
and three-point functions. We then show how these divergent contributions
eancel out in the relations between renormalized eoupling constants and masses.
All the calculations are done in the unitary gauge using the y-dimensional
regularization method ("#). Some of the calculational procedures and, in par-
ticular, the field renormalization of the massive lepton inthe presence of parity-
violating interactions, are discussed in an Appendix.

2. — Definitions.

In field theory renormalized coupling constants associated with trilinear
couplings are conventionally defined by considering the appropriate three-point
functions with the three particles on mass shell. For example, in QED the
renormalized charge ¢ may be defined by means of the equation

oy 0024 Z,u(p) T'y(p, p)u(p) = €u(p)y,u(p) ,

(3 B. W. Leg and J. ZiNN-JustiN: Phys. Rev. D, 5, 3121, 3137, 3155 (1972).
Tor an extensive review, see B. W. LEr: Proceedings of the XVI International Con-
ference on High-Energy Physies at Chicago-Batavia, Vol. 4 (1972), p. 249,

(®) G. RaJASERARAN: Divergences of the higher order corrections to . decay in the Gauge
theory, preprint, Tata Institute of Fundamental Research TIFR/TH/72-11 (1972).
() 8. Y. Les: Phys. Rev. D, 6, 1701 (1972).

() T.W. AppELQuUIST, J. R. PRiMACK and H. R. QUINN: Phys. Rev. D, 6, 2998 (1972).
(®) For a recent summary, see A. SIRLIN: Proceedings of the XVI International Con-
ference on High-Energy Physics ai Chicago-Batavia, Vol. 2 (1972), p. 252.
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where ¢, is the bare charge, I', is the proper unrenormalized vertex function
and Z, and \/Z deseribe the field renormalizations associated with the external
electron and photon lines. The leff-hand member represents the sum of all
the Feynman diagrams contributing to the three-point function with the two
electrons on mass shell, evaluated at zero momentum transfer.

It seems natural to use a similar definition for the renormalized coupling
constants in the gauge theories. For instance, in order to define a renormalized
coupling constant g,, , for the trilinear coupling ev,W one may consider the
sum of all the Feynman diagrams contributing to the three-point ev W fune-
tion with the three particles on mass shell. (Figure 1 illustrates the first- and
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Fig. 1. — Diagrams contributingi__to ev,W coupling renormalization. Figure 1 b), for
example, depicts three distinet diagrams, with the dashed line representing a Z, vy or ¢.

third-order contributions to this function in the ST, x U; gauge model.) An
important theoretical advantage of this procedure is that the matrix elements
involved are closely connected with physical amplitudes and are, therefore,
independent of the electromagnetic gauge. In faet this definition, along with

28 — Il Nuovo Cimenfo A.
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a similar one for - has been used implicitly or explicitly in recent calcula-
tions concerning higher-order corrections to w decay and lepton-v scattering (>*°).
There is, however, the difficulty that the constants so defined are infra-red
divergent (?). This can be seen most easily if one observes, for example, that
the diagrams of Fig. 1 describe the amplitude for W—e~+9, and, therefore,
the virtual-photon contributions to Fig. 1 must somehow cancel the infra-red
divergences associated with soft-photon emission in W™ —e™4-9,-Fy. Similar
difficulties occur if one wishes to define the pion decay constant f_ and the
pion-nucleon coupling constant g . in the presence of electromagnetism. This
situation is unlike what occurs in « pure QED». In fact, Z, is infra-red
convergent and Z,u(p)I',(p, p)u(p) = (Z,/Z,)u(p)y,u(p); although Z, and Z, are
infra-red divergent, the Ward identity tells us that Z,= Z; so that the renor-
malized charge is free from such divergences.
We briefly comment on two possible solutions o this difficulty:

a) Separate out the infra-red divergent contributions to the three-point
function and define the renormalized coupling constant in terms of the re-
mainder. A method for separating out the infra-red divergent contributions
of order « in a manner which is independent of the gauge adopted for the
covariant photon propagafor has been already described in the literature (1°).
The advantage of this method is that, although not unique, it is universal
in the sense that it ecan be applied immediately to any three-point function
and, furthermore, the separated terms are free from ultraviolet divergences.

b) An alternative procedure is to define the renormalized coupling con-
stant g,, , by means of the relation

(2) I'W—e+35)+IT(W—e+9,+y)+..= g:vewmwl(48n) ,

where I'(W —f) means the total decay probabilify for W—£ and ... stands for
the emission of two or more photons. Clearly the left-hand member is free
from infra-red divergences. To lowest nontrivial order only the two first terms
need be considered. Note that this «infra-red difficulty » does not arise in
vertices involving three neutral particles, such as wZ.

Having thus suggested two methods to define the renormalized coupling
constants so that they do not involve infra-red divergences we now turn our
attention to the problem of studying the ultraviolet divergences and their
cancellations in the relations between renormalized quantities.

(*) This point was already emphasized in ref. (%).

(1) A. SirLiN: Phys. Rev. D, 5, 436 (1972). See, in particular, Sect. 4 where the method
is applied to the study of the pion decay constant. A similar procedure has been used
to isolate the infra-red divergent contributions in the electromagnetic corrections
to B decay: see A. SIRLIN: Proceedings of the Topical Conference on Weak Interactions,
OERN, 1969, edited by J. PrenTkI and J. STEINBERGER (Geneva, 1969), p. 408,
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3. — Calculations.

In this Section we discuss to lowest nontrivial order the divergent con-
tributions to some of the renormalized coupling constants of the theory and
show explicitly how they cancel in the relations between renormalized coupling
constants and masses. Insofar as we are ;discussing only the ultraviolet
divergent contributions, we can ignore the infra-red problem discussed in
Sect. 2 (11). The calculations are done in the framework of the SU, x U, lep-
tonic gauge theory, with v,, e, and v, u, constituting two independent doublets
and e, and p, two independent singlets. We have not included the effects of
hadrons or quarks which can be incorporated into the theory in the manner
discussed in the literature (**). The Feynman integrals are evaluated using
the y-dimensional regularization method (“#) in the unitary gauge of the theory.
In this method divergent contributions appear as terms proportional to (v—4)—1
(v is the number of dimensions in the regularization procedure and constitutes
the regularizing parameter). To show that a certain quantity or combination
of quantities is convergent, it is sufficient to show that the residue of the
v =4 poles cancel exactly. Proper vertex parts and two-point functions in-
volving photons are gauge-dependent quantities; our results are given in the
Feynman gauge for the photon propagator. However, as pointed out in Sect. 2,
with our definitions renormalized coupling constants and masses are independent
of the gauge chosen for the covariant photon propagator; it follows that our
final results enjoy the same property.

We first consider the renormalized coupling constant g,,.. Figure 1 a)
represents the first-order contribution while Fig. 1 b)-14) depict the lowest-
order corrections. For brevity, a single Figure represents several Feynman
graphs, for instance, Fig. 1 b) stands for three separate Feynman graphs with
the virtual line representing either a Z-meson, a ¢-meson or a photon. The
sum of Fig. 1b)-1 d) gives the proper vertex function with the three particles
on mass shell. For this contribution we find

_ar % me (o 1\ 1
(3) vt [~ T v am 4 g (R )| 2 e,

(1) Note, however, that for the evaluation of the finite corrections to the relations
among renormalized quantities, it is important to give a precise definition of the coupling
constants which takes into account the infra-red difficulty.

(*?) Rigorously speaking, the inclusion of the multiplets such as quarks is necessary
in order to eliminate the Adler anomalies (see, for example, B. W. Lux’s review cited
in footnote (2)). As the difficulties associated with the Adler anomalies do not manifest
themselves to the order of our calculations, and as there are many different ways to
introduce the hadrons, we have neglected them altogether.
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where
(4a) R = mijmy,
(4b) My=—i P ayam,

V2

is the lowest-order matrix element, a = (1—7;)/2, ¢, is the unrenormalized
coupling constant, &* is the polarization vector of the W-meson and Pf stands
for «finite part » of the corresponding Feynman diagrams.

Figures 1e), 1f) and 1 ¢)-114) depict the field renormalizations of the ex-
ternal e, v, a,nd W, respectively. These quantities can be obtained from the
corresponding two-point functions which are studied in Appendix A. In par-
ticular, in that Appendix we discuss the determination of the field renormaliza-
tion of the electron in the presence of parity-nonconserving interactions. Using
the results of Appendix A, we obtain

_ go ’mz __Ri 1
(5) 16) = My [1 R+ 1——2)]——+Pf
_ @ 3m: 1
© = °16n24mwv—4+Pf’
. g5 I8 1
() 1g) + 10) +10) = — 3, 2 [+Jﬂv:z+PL

The sum of eqs. (3), (5)-(7) gives the complete contribution of order g§ to the
three-point function:

®) V1o t1)£1g) +1h) +10)— 3,013 1

°16n® 2 v— +Pf

Thus, we have

2

(9) Jovw = o [1 - 1g;2 (12—3 vi R Pf) + 0(93)] :

The corresponding caleulation for Juvuw is obtained by replacing m, < m,.
Note that although egs. (3), (5) and (6) contain divergent contributions pro-
portional to the squared lepton mass, such terms cancel in the sum of eq. (8)
and, therefore, in the final answer of eq. (9). This is necessary for the success
of the renormalization program as otherwise the ratio g,,w/g,,,w Would have
turned out to be divergent! This ratio is, in fact, finite and calculable in this
theory in terms of such parameters as o, R, m}/m}, and the lepton masses (*°).
The constants g, . and g,,,\ appear naturally in the caleulations of higher-
order corrections to y decay and to neutrino-lepton scattering (*°). The actual
calculation of the finite parts of gt,“,ev\,/gwuW is of interest in the detailed studies
of such corrections. It may also be of interest in the distant future if it becomes
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feasible to test e-p universality by measuring the ratio
W — e+ 9)[['(W —p=+79,)

with a precision of order «.

Turning our attention to the renormalized charge, we note that only the
renormalizations of the external photon line need be considered as all other
contributions vanish for ¢ = 0 by virtue of electromagnetic-current conserva-
tion. The relevant diagrams are depicted in Fig. 2. By gauge invariance the
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Pig. 2. — Diagrams contributing to charge renormalization.

sum of the diagrams involving the Z vector meson in Fig. 2 f) and 2 g) must
be proportional to Dﬁv(q)(q2g"9—q”q9)se, where D% i3 the Z-meson propagator.

w

8 m ) 13 not singular as ¢—9 an erefore the sum o ese two
As mp#0 D, t 1 0 and therefore th f th t
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diagrams must vanish in that limit. The same is true for the diagram in-
volving the ¢-meson in Fig. 2 f) and for the matrix elements of Fig. 2 &)
and 2 ¢). The other diagrams give a total contribution

. e 13
(10) 2b) + 2(/‘) + 2d) + 26) = 16y Uy U &y [— ﬁ; (m + Pf)],
where ¢,>0 is the bare charge of the positron and ie,u,»*u,¢, is the lowest-
order matrix element corresponding to Fig. 2 a). Thus on the basis of eq. (10)
we obtain
e 13

11 =e|1—— 1.
an o= e t—it (qp g + 1)+ o)

The ratio g,, /¢ can be obtained by dividing eq. (9) by (11). Using the
relation

2 0 2 2
€o Mw\® (1 — dmw/my)
12 =1 () =1 pE W W)
() @ (m) (= smfmd) ’
where (ml)* and (mg)* are the squared bare masses of the W and Z mesons

and dm?, and dmj, the corresponding mass shifts, we obtain

% Smyy  dmy
(13) ; :1—R+R(m;”— m;“)+

Tovew W z
p 13 13 1 .
oo B (g5 0-m) g e 4ol

The mass shifts dmZ, and Om} can be obtained from the analysis of the two-
point functions for the W and Z mesons. Using the results of Appendix A
we have

14 =
(14) my mz 8n 6

dmy  dmy g 13 1
Rl

2R——1———)%~4+Pf.

Insertion of eq. (14) into eq. {13) shows that in fact the residue of the v =4
pole exactly cancels in the ratio of the renormalized constants. Note that
evaluation of the finite parts in eqgs. (13) and (14) would essentially give the
leading correction to the lowest-order formula

¢ = g:vew(l —R)+ O(Q:vew) .

As a further example, we consider the renormalized vy.Z coupling constant.
The diagrams of order g, and g3 are depicted in Fig. 3. Again we find that the
proper vertex diagrams Fig. 3 b)-3 d) and the field renormalizations of the
external particles Fig. 3 ¢)-3 k) contain divergent contributions proportional
to m? but such terms cancel in the overall sum. The final answer can be writ-
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(9o + 90} % [13 1 1 4
15 =0 07 11— —|1——=+R)— +PE|+O0 .
(15)  Gvyez V2 T62i |3 op TE), —4 TP+ (9o)

The absence of divergent terms proportional to m? in eq. (15) implies that
owezl 9y, 18 finite, as expected. Dividing eqs. (11) and (15) and using the
relation ¢2/(g2 + ¢.%) = [1— (m%/m})*][m%/m3]* we find

1/ e \ Smy, SM%)
6 = — R(1—R)+R(1—2R _Mw
(16) ( g) (1—R) +B(1—2R) ( )

2

9o 13 1 1 .
+ o R B 5 (20 o) ;2 + P+ 0.

Inserting eq. (14) into eq. (16) we verify that the residues of the » =4 poles
cancel in the expression for (e/g,, ,)*

Thus, we have shown in some simple examples how the lowest-order di-
vergent corrections cancel against each other in the relations between renor-
malized coupling constants and masses. This is of course necessary for the
success of the renormalization program (*). Furthermore, the present discussion

(*) Note added in proofs. — After having submitted this paper for publication we have
received a preprint entitled Renormalization of Gauge theories W-decay and \-decay
by T. W. ArpELqUIST, J. R. PRiMaCK and H. R. QUINN. Among other subjects, these
authors have independently studied the renormalization of the SU,x U; model in the
unitary gauge, and have also analysed in detail the role of the infrared divergences in
the renormalization program.
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establishes a convenient framework to study the leading finite corrections to
lowest-order relationships between the renormalized constants of the theory.

* %k K

One of us (A. S.) would like to thank Prof. A. E. RopricUEZ for the warm
hospitality shown to him at La Plata University, where part of his work on
this subject was done. He is also indebted to Prof. J. R. PRIMACK for very
interesting and illuminating conversations.

APPENDIX

In this Appendix we discuss some aspects of the evaluation of the regularized
two-point functions (i.e. the self-energy parts) to lowest nontrivial order. From
the corresponding expressions one obtains the field renormalizations and mass
shifts used in the calculations of Sect. 3.

The integrals are evaluated with the aid of the »-regularization method (%#).
In this scheme translation of variables is permissible and all integrals can be
reduced to

T e e

2n)" [k*— L +iel™  (2v/@) I'(v[2)I'(m)

This expression defines the regularized integral, with the number of dimen-
sions v playing the role of the regularization parameter. Divergent intervals
exhibit simple poles at v = 4.

A.l. - Electron twe-point function.

After performing the mass renormalization, we find that the divergent
part of the electron two-point function (Fig. 4 a)) can be written as

(A.2)  2Z(p)— Z(m)=B(p—m)+ C(p—m)*+ D(p—m)’—
— Ap]/s_ Ep'}/s(pz_ mz) + Pt y

W,Z2,%,®
a)
zaXa\N)q’ Z/,—‘,qa ( l\ .
- N
-t ’/ \\ P € — — __L_.___q_. - —— =M
e e w W W W
a) b) c)
e [
Os O3
“—— —_— —_—— .
W '\/e W VP. W
d) e)

Fig. 4. — Diagrams contributing to electron and W-meson two-point functions.
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where m stands now for the lepton mass and

% m] 1
(A.3) B = 160 2[(1 R)+miv]v—4’
g [m? 1
A. A4=-"""|—(1— -
(A-4) 1672 [m;v ( R)] y—4’

and ¢, D and E are known constants proportional to (v —4)~1, Note, how-
ever, that the terms involving ¢, D and E do not contribute to the field
renormalization of the electron. This is obvious for the terms involving €
and D. On the other hand the term proportional to E can be written as
E(p — m)py;(p —m), thus it gives no contribution when ingerted into dia-
gram le).

We must then take into account the contributions of B(yp —m) and Apy,
to the field renormalization of the electron. The appearance of the last term
is, of course, due to the fact that the interactions are parity violating. We
discuss two methods of taking into account the effect of the last term.

i) Following Hiida’s suggestion (%), one replaces the free Lagrangian of
the electron by

(A.5) Lo = pliy* 0,1 + Ay;) —m]y

and adds a compensating counterterm — ¢iy” 9, Ay,y which cancels the — Apy;
term in X,

In this formulation the « free spinor » #' is not a solution of Dirae’s equa-
tion but rather it satisfies

(A.6) p(1 4+ Ay)u’ = mu’ .

Calling % the solution of Dirac’s equation pu = mu, writing %' = (1 — cy;)u
and neglecting terms of O(g;), one finds ¢ = 4 /2. Therefore, the « zeroth order »
term (Fig. 1 a)) gives now a contribution

(A7) —i%elﬁ;ylavve = \/2 €37, (1 4= 3 y5)y av,, = (1 + )

Thus the overall effect of the term Apy; in the corrections to W~ e~ 43,
is to give a contribution (4/2)M,, which we have included in eq. (5). The
contribution of B(p—m) can be calculated in the usual manner and gives
(B/2) M,, after taking into account the factor (1/4/Z,) ~1— B2 in the re-
duction formula.

ii) An alternative although somewhat more involved method is to rescale
independently the fields ((1—y;)/2)e and ((1 + y5)/2)e. 1f we write

1-— 1 1
( 275 \/Z;? 5)6,, ( ";yS) ,\/Z_(;I;( +V5) I’

(**) K. Hupa: Phys. Rev., 132, 1239 (1963).
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the free Lagrangian generates the counterterms

(A8) Lo\ = (29— 1) 8 iy"d,ae + (29— 1) & iy"d e —
~[m(VZRZG—1) — ImVIGLG)E ¢

Adjusting Z%) —1 and Z$ — 1 to cancel the terms B(p— m) — Apy; in X (p) —
— X (m) gives

(A.9) Z®—1=B+ A+ Pf,

(A.10) Z8—1=B— A +Ptf.
If we now express the interaction term éy*a», W, in terms of the renormalized
field ¢’ we see that a factor VZY ~ 14 (Z,;,—1)/2 is introduced. This con-

tributes a second-order correction ((ZZL—l)/2)M ((4 + B)[2) M, + Pf, in
agreement with the previous method.

A.2. ~ Vector-meson two-point functions,

We illustrate the procedure with the W-meson two-point functions. The
polarization tensor m,(q) is defined as (—¢) times the Feynman diagrams
depicted in Tig. 4 b)-4 ¢) with the external legs extracted. We find

(A1) 7l (g) =

26 7 2 5 1 7 ‘R?] 1
——g"—%(q)[—JerL—Rw%(——+aR——R2)—q ]#—
7T My 2

16n2 3 3 3 6 6mi |v—4
~ 8 wgals (15 =) pret ) Lo,
where
(A.12) Zolq) = 0*for— Qo Ga -
If we write:
(A.13) 7aa(q) = B(¢*)9or + O(4%) € 1

the squared-mass shift 3m2, and the conventionally defined renormalization
constant Z{™ are given by

(A.14) dm2, = Re B(my) ,

1 zl—iReB(q)

Zgm dg? iy

(A.15)
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Using eq. (A.11) we find

Sm?, g 3 miiml] 1
1 = o | g4 2 Mty Pt
(A-16) miy 167‘62[ 1 +2R mi ]v—4+
and
: 116 1
A7 2 1=— D 120 epl 2 L pt,
( ) ¢ 167z2[3 + ]v~4+

With this conventional definition of Z{™, eq. (7) is given by (Z{™ — 1)(M,/2).
The field renormalizations of the Z, v and v and the mass shift of the
Z-meson are obtained in the same manner, We list the results:

2 3md: 1
Al O ] Jo 2M 1
(4.18) Zs 1 16n22m%v—4+Pf’
213 1
Al w_q1__ P _p - P
(4.19) Z"—1 8;123(1 R)v_4+ t
2 5 7 13 1
A.20 z0_ =Y | 2 L _POpl Lt i ps
( ) i S| 3T 3B 3Rv—4Jr ’

+ Pf.

8m§: g 1735 26R_m§—|~mi 1
my  16n° 3 '6R 3 m2, |v—4

We make two further observations: i) as there is no mass counterterm for
the photon available in the theory, the polarization tensor n%} for the photon
must be proportional to P,(¢) in order to satisfy gauge invariance; ii) to
order g; the Z and y mesons can transform into each other. Because the Z
and y are not degenerate in zeroth order, this mixing can only contribute to
our results through the diagrams of Fig. 2 f)-2 7). As pointed out in the text,
however, at ¢ = 0 such matrix elements vanish by virtue of gauge invariance.

® RIASSUNTO (%

Si discutono alcune proprietd fondamentali delle costanti di accoppiamento rinorma-
lizzate nel contesto delle simmetrie di gauge spontaneamente infrante. Si mette in
tilievo che le definizioni convenzionali portano ad aleune difficolta connesse con le diver-
genze infrarosse e si suggeriscono due possibili soluzioni. Si studiano poi i contributi
alle correzioni di ordine inferiore divergenti nell’ultravioletto e si mostra esplicitamente,
con numerosi esempi particolari, come questi termini divergenti si eliminano nelle inter-
relazioni fra costanti di accoppiamento rinormalizzate e masse. Si eseguono i calcoli
specifici nella gauge unitaria del modello di gauge SU,x U,, facendo nso del metodo
di regolarizzazione v-dimensionale.

(*) Traduzione a cura della Redazione.
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3aMeuanns, kacamiolpecss NePeHOPMHPOBAHHLIX KOHCTAHT CBSA3H KAJHGPOBOMHBIX TeOpHii.

Pe3rome (*). — B paMkax CHOHTAaHHO HAPYIICHHBIX KaiMOPOBOYHBIX CHMMETpPHH OOCYX-
JAIOTCS HEKOTOpPHIE OCHOBHEBIC CBOMCTBA TePEHOPMHUPOBAHHBIX KOHCTAHT CBa3u. OTMe-
4aeTCs, YTO OOIICIPUHATEHIC OIpPENENIEHHsI MPABOIAT K HEKOTOPBIM TPYIHOCTSM, CBA3AH-
HbIM ¢ wHpakpacHBIMH PACXOOMMOCTAMH. Ilpemmararorcsi MBa BO3MOXHBIX peEINEHHS.
3ateM wmccnenyroTcs yNbTpabHONeTOBbIE PACXONMAIINECH BKJIAaAbl B IONPABKA HHU3IIETO
HIOpAKa U SIBHO IIOKA3BIBAETCS HAa PANE YaCTHBIX MPEIeIIOB, KaK 3TH PAaCXOaAIIHeCcs YIIeHbI
B3aUMHO YHWYTOXAIOTCA B COOTHOINCHHSAX MEXKAY NEPEHOPMHUPOBAHHBIMU KOHCTAHTAMU
cBsA3W M Maccamu. IIpoBOAsATCS cHeLManbHble BBHIYMCNEHHS B YHUTAPHON KanmOpPOBKe
o SU, x U, xarmubpoBOYHOM MONCTH, WMCIONB3YS »-MEPHBIA METOH pPeryIApH3alliH.

(*) Ilepesedeno pedaxyueil.



