
CHAPTER IV 

DIVERGENCE OF THE PERTURBATION SERIES 

II Divergent series are the invention of the devil, and it is 

shameful to base on them any demonstration whatsoever". 

N. H. Abel, 1828. 

10. Divergence of the perturbation series 

The RSPT (Chapter III) allows one to get an a~~roximation to the 

eigenvalues (En) of a given Hamiltonian o~erator through a series in 

powers of a real parameter A. However, the usefulness of the ~0\'7er se

ries is conditioned by a fundamental question: its convergence. 

As we know the computation of the RS coefficients is not a trivial 

task, but even in case of having them the use of the PT is not straight

forward. The second problem to be solved is to sum the perturbation 

series, when it is divergent or has a finite convergence radius. 

The determination of the convergence properties of the RS series 

makes up a whole chapter in l!athematica1 Physics and it has received 

a considerable attention from the beginning of 1970. Such convergence 

properties are basically determined by the properties of En(A) as an 

analytical function of A. The singularities of En(A) in the A Dlane 

determine the convergence radius of the Taylor series. 

(10.1) 

Several years ago, Rellich 11,21 and Kato 13,41 gave a sufficient 

condition for a RS series to have a finite convergence radius. In what 

follows we show the main results and their a~plications because a 

rigorous proof is beyond the interest and level of this \vork. 

The most important result we want to discuss is due to Rellich 11-41 
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and is given in the theorem below: 

Theorem 10.1 

Let HO be a self-adjoint operator and V another linear 

operator such that DV~DHO' If for every function 

~ £ DH exist two real positive constants a and b <1 

satisf?ing the condition 

(10.2) 

then H=HO + AV is a self-adjoint operator ¥ A£R and 

its eigenvalues En(A) and eigenfunctions ~n(A) are 

analytical functions of A in A=O and can be expanded 

in power series of A with non-zero convergence radius. 

We now present some examples of systems fulfilling theorem 10.1 for 

which the PT permits one to obtain convergent expansions for several 

observables of physical interest. 

1) Periodic systems 

For the sake of simplicity we consider a plane rigid rotator 

o < 6 < 211 (10.3) 

subjected to a nonsingular perturbation V(6). However, the argument 

below applies to other rotational systems as well. 

The eigenfunctions and eigenvalues of HO are 

2 
n n = 0,1, ... 

since IV(6) I is bounded in (0,211); i.e. 

we have 

(10.4a) 

(10.4b) 

(10.5) 
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(10.6) 

(10.7) 

from which it follows that the inequality (10.2) is satisfied for all 

a>vO. It si therefore concluded that the perturbation series for the 

eigenfunctions and eigenvalues of H will have nonzero convergence 

radii. 

As a particular case we consider 

H + Acos8 (10.8) 

whose eigenvalues En(A) have isolated double points on the complex A 

plane~ Everyone of such sin~ularities is a crossing point of a couple 

of eigenvalues./5/. 

2) Systems with finite boundary conditions 

Consider the Schrodinger equation 

H1/I = E1/I 1/1 (±xo ) = 0 (10.9) 

where 

H HO + AV HO 
a2 

(10.10) 
- dx2 

and V(x) is nonsingular in [-xO,x01• The eigenvalues of HO are 

(n+1) 211 2 / (2xO) 2 n=0,1, .•. (10.11) 

upon arguing as before we have 

(10.12) 

1 1 V 1/1 1 1 :> Vo 111/111 (10.13) 

from which it follows that 
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(10.14) 

will be larger than I Iv ~I I provided that 

since a and b can be found that satisfies this last inequality we 

conclude that the RSPT series has a nonzero convergence radius. 

3) Perturbed oscillators 

We now consider perturbed oscillators of the form 

H = HO + AV(X) (10.15) 

If 

V(x) = x (10.16) 

then 

from which it follows that a and b values can be found so that the ine
quality (10.2) is satisfied. This conclusion is in whole agreement with 
the fact that the eigenvalues of H are given by 

H (10.18) 

i.e. the RSPT series reduces to two terms and has therefore infinite 
convergence radius. 

In order to treat the perturbations 

X2k , k = 1,2, .•• (10.19) 

it is convenient to consider the eigenfunctions and eigenvalues of HO: 

(10.20) 



76 

when k=l Eg. (8.7) leads us to 

~(n + 1/2)2 + 3/8 l~ (10.21) 

since I IHO~ I I = (n + 1/2)2 and I I~ I I = lone cannot find two constants n n 
a and b satisfying (10.2). For this reason Theorem 10.1 does not give 

us any information in this case. However, a straightforward calculation 

shows that the eigenvalues of 

H 

are 

(n + 1.) (1 +>..2 )~ (1+2A)l/2 
2 

(10.22) 

(10.23) 

which exhibit a branch point at A=-1/2. Therefore the RSPT converges 

for a111 A I < ~ 

When k>l the potentials Vk(x) are more singular at finity than VI (x) 

and Theorem 10.1 is not satisfied. Besides, the analytic properties 

of En(A) are not so simple as in the case k=l and will therefore be 

discussed later on. 

There exists a number of systems of great interest in Physical Che

mistry which Theorem 10.1 predicts a convergent RS power series. These 

systems are embodied in the following theorem due to Kato 13,41: 

Theorem 10.2 

According to Theorem 10.1 the RSPT series will have 

nonzero convergence radius for a partition of the 

electrostatic Hamiltonian H 

(10.24) 

of a molecule, atom or infinite crystal, provided 

that. V has no stronger singularity than that correspon

ding to the pole of the Coulombic potential. 

This Theorem has a paramount importance in Chemistry, so we deem it 
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appropriate to make some comments on it. Let us remark that the theorem 

assures us that considering the electron repulsions as a perturbation 

AV, the power series expansion in A has nonzero convergence radius. 

This leads us to a known result: the power series in z-l for the electro

nic energy of atoms and molecules are convergent for z>zO' with Zo 

finite /6/. 

For diatomic molecules (we restrict ourselves to this case for the 

sake of simplicity) it is important to consider the perturbation po

tential V as depending on a parameter R (i.e. the internuclear distance). 

In order to make the discussion even simpler we choose Z=l (i.e. unit 

nuclear charges) and the potential reads 

V 
1 
R 

(10.25a) 

where N is the number of electrons and r i represents the coordinate of 

the i-th electron measured from a given coordinate origin, usually coin

cident with the position of one of the nuclei. 

Let us now to re-write (10.25a) 

V A{l - ~[11 - riA1]-1} (10.25b) 
~ 

where A=R- 1 • 

We see that A appears within the potential itself, so that the hypo

thesis of Theorems 10.1 and 10.2 are not satisfied. In fact, it is well 
-1 known that the series expansion in powers of R possess zero convergence 

radius. We will discuss again this point later on. 

There are a large number of systems with great physical importance 

that do not obey the Kato and Rellich theorems and they give rise to 

perturbation series with null convergence radius, that is to say, Taylor 

expansions that do not represent the function in any region of the com

plex plane A. Finding out reasons of such divergences is one of the 

main problems in PT. 

Ref./7/ is very valuable as a complete review on the subject and its 

applications before the discovery of the above mentioned reasons. The 

first exhaustive works on RS perturbations series with zero convergence 
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radius were made independently and from quite different viewpoints by 

Bender and Wu /8/ and Simon /9/ on the basis of the anharmonic oscilla
tor model: 

H (10.26) 

in particular for the quartic anharmonic oscillator (k=2). 

As commented before, the model (10.26) has an utmost importance in 

Physics and Chemistry and especially interesting is the connection bet

ween this system and some field theories (see Appendix C). This parti

cular problem originated the early study of the divergences in PT. The 

relevance of such study in PT is peculiarly noteworthy when one takes 

into account that usually some approximation method is the only way to 

obtain information in field theory, since it is impossible to make the 

calculation of matrix elements required by the VM or any other non

perturbative technique. 

The fact that the RSPT gives rise to a power series with zero conver

gence radius implies two issues: 

i) The eigenvalue En is not an analytical function in A=O; 

ii) The RS coefficients satisfy 

n+oo 

lim IE(m+l) /E(m) I = 00 

n n 

We devote the remaining of this paragraph to discuss briefly the first 

point, while the second property will be analysed in the next paragraph. 

Several authors have tried to give simple and intuitive explanations 

for the divergence of the RSP series for the eigenvalues of (10.26). 

Among them, we can mention the analysis made by Hioe et al /10-12/. 

The argument is as follows: the operator (10.26) in the momentum re

pesentation reads 

(10.27) 

In this case, the Schrodinger equation becomes the Navier-Stokes 
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equation for turbulent fluids. Then, the PT generates a power series 

expansion in A, where the perturbation is that term with the derivative 

of highest order. 

It is a well-known mathematical result that such expansion is diver

gent /10-12/. Obviously, this reasoning, although valid, does not ex

plain the nature of the singularities responsible for such behavior. 

Another argument used frequently to determine whether the RS expansion 

has a zero convergence radius is the so-called "change-of-sign-argument" 

This proposition was originally introduced by Dyson /13/ to explain the 

divergence of the power series for the electronic charge appearing in 

Quantum Electrodynamics. Later on, such explanation was critically re

examined by Killingbeck /14/, and then this subject stirred up a sig

nificant controversy about its interpretation and justification /15-19/. 

In short, the basic idea is as follows: if the power series converges 

in a disc of radius IAOI around the origin; then the series converges 

for positive and negative 'A values provided IAI < IAol. However, when 

A<O the anharmonic oscillator does not hold any bound state. For this 

reason the convergence radius must be zero. 

The conclusions derived from the change of sign argument should be 

taken with care /16,13,19/. The precedent argu~ent assumes implicitly 

that the RSPT should approach something with a physical meaning, such 

as the energy of a bound state. But this is not necessarily so, and 

such an assuption has originated an apparent conceptual confusion /16, 

13,19/, just rec.ently cleared up. As a general rule, we can assert that 

the regular perturbations /4/ (i.e. those satisfying Theorems 10.1 and 

10.2) converge to bound states, which is the sense usually aSigned to 

the convergence towards physically meaningful quantities. In a similar 

way, those asymptotyc divergent perturbations (i.e. expansions with zero 

convergence radius) usually converge to the real part of the poles of 

the resolvent for the eigenvalue probl~s, although it is not through a 

simple term by term addition. Then, the perturbation series for those 

systems having singularities at A=O have some weaning for positive and 

negative values of A. The main difference lies on the fact that in the 

first case the RSPT converges to a bound state by way of some appro

priate method of sum, and in the second case to the real part of the 

system resonances. 

so, we can assert a central conclusion which is of vital relevance in 
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what follows: the RSPT makes up an algorithm to derive a regular or 

aSymptotyc power series, which when summed with a suitable method 

yields a quantity with a well defined physical meaning. 

Let us recall here that the essential issue about the reason of non

analyticity of En(A) at A=O is not disclosed at all by the precedent 

discuSSion and the criteria presented before have just a certain pre

dictive value with regard to obtainin~ or not power series with zero 

convergence radius. 

The detailed explanation of the deep reasons of the divergence requi

res to know the analytic structure of EnlAI in the plane. Naturally 

this is not a very simple matter, and it has been carried out 

thoroughly for a few eigenvalue problems. 

The first system analysed was the quartic anharmonic oscillator /8,9/ 

and we sum up here the most relevant results: 

i) The energy En(A) has a periodicity of 6n in arg(~), i.e. when one 

turns over arg(A) from 0 to 6~, the real eigenvalues are recovered for 

Re A>O. 

ii) For arg(A) ~ 3; and 9; (asymptotic phase) there exist complex con

jugated branch pOints linked by an arc-like branch line (see Fig. 4.1.) 

1m X 1m A 1m A 

Re >. Re) 

arg >. ; 0 - 2 TT a rg >. : 2 7T - 4 rr arg >. : 4 rr - 6 7( 

Fig.4.1: Simplified sketch of the E(A) structure (eigenvalue of the 

quartic anharmonic oscillator) for several sheets of the 

complex plane A. Branch pOint singularities are denoted. 
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iii) Each pair of branch p.oonts P b ) corresponds to a c1='ossing point 

between a pair of eigenvalues as 

E ().. (n)) 
n b n=O,l, 2, .•• (10.28) 

The location of the singularities for the quartic anharmonic oscilla

tor has been calculated by Shanley (P.E. Shanley Phys. Lett. A 117 (1986) 

161). The results confirm rigorously some conjectures proposed by Bender 

and Wu /8/. 

These branch points are unique, in the sense that every value only 

crosses the adjacent one. 

iv) The sequence of branch points tends to an accumulation point at the 

origin )..=0 (see Fig. 4.1), so that En()..) has there a non-isolated 

singularity. Let us remark that this situation is more complicated than 

the isolated singularity which gives rise to a finite convergence radius 

for k=1. (Eq. (10.23)). 

All these results remain qualitatively unchanged with respect to the 

anharmoniticity degree (k=2,3, .•• ) /20/ and the number of terms in the 

perturbation potential /21/. 

Katriel /22/ has proposed a differet alternative to analyse the ana

lytic properties of En()..) regarding those viewpoints given by Bender 

and Wu/8/ and Simon /9/. The discussion presented in this paragraph has 

intended to give an overview of regular and asyrnptotyc RSP series and 

to analyse briefly the reasons of the divergence in a perturbation 

series. 

It remains yet as an open question the way such a divergence reveals 

itself in the RS coefficients i.e. the rate of divergence of the power 

series. This poins is examined in detail in the next section. 

11. Mathematical Methods to study the Asymptotic Behaviour of the RS 

coefficients 

Let E()..) be an arbitrary function which can be expanded in a Taylor 

series 
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E (A) (11.1) 

At the moment we do not make any assuption about the convergence pro
perties of (11.1). Our interest is to compute E(n), n» 1, for the 

functions E(A) satisfying some specific properties. 

The convergence radius R of (11.1) can be determined from theD'Al~t 
theorem: 

lim IE(n+l) I I IE(n) I R<: 0 (l1.2a) 
n+oo 

whenever this limit exists. 

Another way to compute R is through the Cauchy-Hadamard theorem: 

l ' IE(n) I lin sup ~m 

n-+OO 

(11. 2b) 

where Eq. (11.2b) denotes the superior limit of the sequence of positive 
numbers IE (1) I ~ , IE (2) I ~,... . These theorems make evident the fun-. 

damental importance of the asymptotyc behaviour of E(n), n» 1. 

The aim of this section is to determine such behaviour for a wide 

class of functions, including those with R=O. According to our previous 

discussion in 10, these functions are of interest in Physics and Chemis

try. 

In the following we show a very useful relationship, which later on 

\'iill allow us to compute E (n). Such relationship is the so-called "dis

persion relation" and has been presented by several authors 19,23,241 

from quite different viewpoints. Here we introduce an alternative 

approximation which has some advantages: 

Definition I: The power series (11.1) is asymptotic if for every inte

ger m the condition 

lim 
IAI-+o 

m 
1: 

i=O 
o (11. 3) 
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is satisfied. 

In agreement with (11.3), an asymptotic divergent (i.e. R=O) power 

series possess the following characteristic properties: 

i) For a fixed number of terms m, the error diminishes monotonously 

as A becomes smaller. 

ii) For IAI<l the error diminishes at the beginning as m increases, then. 

remains stationary and finally increases. 

The asymptotic series can only give an acceptable approach to E(A) 

if both IAI and the number of terms in the sum are small enough. 

Now let us consider a function E(A) fulfilling the following condi

tions: 

i) E(A) is analytic for 8 <TI, where A=IAlei8 

H) E (A) is asymptotic (Eq. (11.3); and 

iii) lim E(A) = 0 
IAI~oo 

(11. 4) 

The discussion below also applies to functions that do not obey (11.4). 

For instance, if 

lim IAI-S E(A) = eO 
IAI~oo 

S> 0 

we can define a new function 

E I (A) = A -s {E (A) -
s 
L 

n=O 

(11. 5) 

S< s< S + 1 (11.6) 

which not only satisfies (11.4) but also gives rise to a power series ex

pansion with the same asymptotic behaviour. 

Let A be a point in the complex plane where E is analytic. Taking 

the integration path C in the complex plane as shown in figure 4.2 
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1m X' 

E----- --

ReX' 

Fig. 4.2: Inte~ration path for E(A) in the complex ~lane A. 

the Cauchy theorem assures that 

1 E (A') 4 
E(A) 2ni rDc dA' c = V c (11. 7) 

A' - A n=l n 

where c is a Jordan curve. Let us note that c does not cut the negative 

real axis, where the function is not analytic. 

The condition (11.4) leads to 

lim 
R +00 

J E (A') dA' 
c 1 A' - A 

o (11. 8) 
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Furthermore, since 

lim f E(A' ) dA' 0 

r+O c 3 A' - A 

we have finally that 

lim (; E (A') dA' lim fO D(A' ) dA' 
r+O c A' A E+O 

-00 

A' - - A 
R+oo 

where 

D(A' ) 1 

21fi 
{E(A' + iE) - E(A' - id} 

(11.9) 

(ll.lOa) 

IIDE(A' + iE) 
(11.l0b) 

1f 

If (ll.lOb) is introduced into (ll.lOa) we find the expression for 

E(A) as a generating function for a Stieltjes series /24/ 

1 o Ir:1E(A') 1 foo 
{ImE (-l/y) /y} 

E (A) f . dA' dy (11.11) 
_00 

A' - A 0 1f 1f 1 + AY 

Upon expanding the integrand of (11.11) in a power series of A 

o II:\ E (A') 

f dA' 
_00 A' - A 

fO 1. II:lE(A') (1 _ ~)-l dA'= 
A' A' 

o 
f A,-n-l I~(A') dA'} (11.12) 

and comparing this result with (11.1) we obtain the desired dispersion 

relation 

1 o I::tE(A) 
f 

1f A n+l 
dA (11.13) 

Eq. (11.13) tells us that the n-th coefficient in the Taylor expansion 

can be computed fron the knowledge of the imaginary part of E, analy

tically continued into the complex plane with larg (A) < 1f . In other 

words, the coefficients E(n) are related to the discontinuity of E(A) 
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through a cut in the Riemann surface. 

There are several techniques to obtain the imaginary part of a func

tion E with the above mentioned properties. These procedures have been 

developed recently and they have provided asymptotic form of the ex

pansion coefficients E(n) (n» 1) number of models of interest in Physics 

and Chemistry. 

In this section we restrict ourselves to discuss two particular tech

niques and models of relevance for our present purposes, but they are 

really representative of the procedures applied to study other systems. 

In the following we present the results in a detailed manner fo the 

sake of clearness and to be useful from the pedagogical point of view. 

Let us consider the integral (11.14) which is a function whose expan

sion as a power series in A has a zero convergence radius: 

E(A) (11.14) 

The integral (11.14) although apparently simple, has not an analytic 

expression as a function of A and possess a marked interest in several 

Physics fields. For example, E(A) represents a zero-dimensional model 

in Field Theory for a Lagrangian with interaction ¢4 /25/, and it has 

been studied as an elementary test of different approximations /23,26-

30/. Besides, (11.14) stands for the classic partition function of a 

quartic anharmonic oscillator, and so it has been used in Statistical 

Mechanics /31/. Here, we consider E~) as an illustrative example, 

since its simplicity allows one to perform the necessary computation 

in a closed and rigorous way. 

It is quite straightforward to verify that (11.4) is not analytic at 

the origin because the integral does not exist for A< O. Then, we know 

that the formal Taylor series for E (A) about;\. =0 has a null convergence 

radius. 

In order to get some additional information about El;\.) we must study 

its structure as a function depending on a complex variable. This func

tion, the same as those to be studied later on, has two types of singu

larities: 

i) Those due to the mu1tiva1ued nature of the function which will be 
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termed "trivial" and can be determined through the dilatation relations. 

They are taken into account in the dispersion relation (11.13) to obtain 

the asymptotic behavior of the coeffic~ents E(n) • 

ii) Those singularities called "essential" that determine the analyticity 

domain of E(A) and which are responsible for the divergence of the power 

series of A around A =0. 

The first kind of singularity is easily found. In fact, the change of 

variable x = A -~ y in Eq. (11.14) gives 

A-~ TI -~ 
4 A-~ /) 

E (>..) = f+ooe - (y + dy (11.15) 

The dominant factor A-~denotes that the Riemann surface consist of 

four sheets. That is to say, it is necessary to turn four times around 

the origin to get the initial value of the function. Consequently, the 

functions has cuts in the complex plane but it is analytic for 

larg (>..) I < TI, as required by Eq. (11.13). 

In order to study the analyticity of E(A) in the complex plane, we con
sider: 

I A I > 0 (11.16a) 

Ixl > 0 (11. 16b) 

The sulilstitutions (1l.16a) and (1l.16b) into x 2 + ~x4 gives 

(11.16c) 

Then, if the integral (11.14) exists(i.e. its real part is finite) the 

following conditions must be fulfilled: 

(11. 17a) 

(11.17b) 

From (11.17b) it follows that 

cos 2a > 0 , then (11.18a) 
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In a similar way we get from (11.17b)that 

cos (4a + e ) > 0 , then 'IT 'IT - 2 - 4a < e < 2 4a (11.1Sb) 

In order to obtain (ll.lS) we have restricted ourselves to the first 

sheet of the Riemann plane. Introducing (ll.lSa) in (11.1Sb) we deduce 

the domain of A where E(A) is analytic: 

, then I arg (A) I < 3; (11.19) 

The last result fixs the domain of A where there exists a formal A-power 

series expansion for E(A). 

Nothing has yet been said about the singularities that make E(A) non

analytic in A=O. It can be proved that the origin is an accumulative 

point of branch-point singularities (c. f. the discussion in :§.10 for the 

anharmonic oscillator model). 

Let us study some methods to obtain the RS coefficients for E(A). In 

the present case they can be simply obtained as follows 

E(A) 

Then 

= 'IT-~ (_l)n 
n! 

E (n) = -~ (_l)n 00 4n 
2 'IT Ii"! fO x 

r(2n +~) 

2 -x e dx 

which according to the Stirling approximation behaves 

(n - 1)! 

when n» 1. 

(11. 20) 

(11. 21a) 

(11. 21b) 

We are interested in calculating E(n) , n» 1 approximately Py general 

procedures. In this spirit, we show here two different appro;Kimations 

Method I: A simple way to compute (11.20) in an approximate manner is 

by means of the saddle point, or steepest descent method, whiCh is pre ... 

sented in a detailed form in the Appendix D. 
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Since the integral (11.20) can be written as 

f(x) 4n In x - x 2 (11.22) 

it can be approximately computed by finding the largest contribution of 

the integrand. 

We have 

f' (x ) = 0 o (2n)~ 

which is a maximum because 

(11.23) 

(11. 24) 

From Ul.23) and (11.24) we can expand f(x) around Xo in a Taylor series 

up to the second order 

2 f(x) = f(x O) - 2(x - x O) + .•. ; f(x O) = 2n In(2n) - 2n (11. 25) 

and then sUbstitute this result into (11.22) to obtain 

fOO f(x) dx - f(x ) 
f~ e -2 (x-x O) dx o e - e 0 

ef(xO) 
2 

2ef (x O) 
2 

foo e- 2y ::. 00 e- 2y dy -xO 
dy fO 

(11. 26) 

In (11.26), we have considered that x O» 1. The substitution of (11.25) 

in (11.26) accomphishes the calculation 

_~ (_I)n 
4'Jf ---

n! 

(_4)n 
(n - I)! 

This procedure to determine E(n), n» 1, is quite simple and obviously 

it can only be performed just in some particular cases. 

Method II: \ve apply here the dispersion relation (11.13). Naturally, 

we must calculate 1m E(A). 

The method to be followed is due to Zinn-Justin /23/ and is based on 

the fact that Eq. (11.13) contains the imaginary part of E along the axis 
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Re A<O where the function E(A) diverges. Then, we define the parameter 

-g ± ilT 
9 e ; 9 > 0 (11. 27) 

and continue x into the complex plane according to (11.16b) so that 

X 4 I 14 4ia ± i IT = 9 x e (11.28) 

In order to determine IrnE(A) it is necessary to compute E(A + i.O) and 

E(A - i.O) for A<O. TO this end we use the definition (11.14) with 

x-complex. Eq.(11.28) helps us to choose the appropriate paths of inte

gration. In fact, first we set 4ia ± ilT=O and 

Then, the 

c+ x 

c x = 

as shown 

integration 

Ixl e- ilT / 4 

Ixl e ilT / 4 

in Fig.4.3 

paths are 

-ilT ge ) (11.29) 

(11. 30a) 

(l1.30b) 
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Im X 

Re X 

Fig. 4.3: Inte~ration path in the x complex plane to compute ImE(A) 

for the integral (11.14). 
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The notation c± denotes the location with respect to the cut in A (see 

Fig. 4.2): c+ and c correspond to the second and third quadrants, respec

tively. Hence, 

7T-~f 
2 4 

E (A + i. 0) e-(x + Ax )dx 
c+ 

2 4 
E (A - i. 0) 7T -~f e-(x + AX )dx 

c 

(11.31a) 

(11. 31b) 

NOw, we apply the saddle point method to compute the integrals (11.31). 

The analysis of the function f(x) = _(x 2 + Ax4) allows us to find three 

stationary points 

o (11. 32a) 

-(-2A) -~ 

o , >, < 0 (11.32b) 

with the following second derivatives 

4 (11. 33) 

Then, f(x) has a maximun at the origin and two equidistant minima on 

the real x axis. On the basis of these results, f(x) can be expanded in 

a Taylor series around the extrema: 

f (x) 2 x ~ o = s3 (11.34a) = -x 

f(x) 1 + 2(x + (-2>, ) -~ 2 x ;:. (11.34b) "IT ) sl 

f(x) = l + 2 (x - (-2A) -~ 2 (11. 34c) 
4A 

) x - s2 

Taking into account that from Eq. (11.31) rmE can be written 

rmE 
2 4 

{f e-(x + x ) dx 
c+ 

(11.35) 

then the contribution of s3 in (11.35) is null when we apply the saddle 

point method. Therefore, there remains the contribution of sl and s2 

(which are different). 
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In order to compute them it is necessary to distort the integ~ation 

so that they touch such poits as shown in Fig.4.3. (path C1 and c 2). 

Hence, Eq. (11.35) can be rewritten as 

I:nE 
-~ 2 4 

~-- {f e-(x + x ) dx + 
2i c 1 

2 4 
f e-( x + x ) dx} 
c 2 

(11. 36) 

The first integral is computed by means of (11.34b) and it is seen 

that there is only a significant contribution around sl' so that (see 
Fig.4.3) : 

f(x)d -e x ~X e 

In a similar way we have 

(; ef(x) dx 
2 

-R,/2 2 
f e-2y 

R,j2 

, HO 

and finally we get the desired result (Eg. (11.~6»: 

IrnE(X) = -2~ e~X HO 

(11.37) 

(11.·:3B) 

(11. 39) 

Since the largest contribution to the integral (11.13) COMes from 

X 0:0, we can obtain the desired result by introducing (11.-39) into 

(11.13) : 

E(n) = 1 
11 

ImE (X) 
--..,.. dX 

X n+1 

/4 (_4)n 
e-y dy ~ (n-1)! X-

dX 

(11.40) 

This result coincides with (11.21) and the computation is made with 

the help of Method I. The procedure described thus far is basically one 
of the most frequently employed up to now in order to study the asymp
totic behavior of the perturbation coefficients when n"» 1. The method 

reveals the close connection between the asynptotic behavior and the 
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discontinuity of the function on the real negative axis of the A plane. 

When applying the procedure to other problems, the main difficulty to 

overcome is to determine ImE. the Method II described above can be 

generalized to analyse other systems particularly interesting in field 

theory and quantum mechanics /32-.35/. Brizin et a1. applied it to di

fferent ph~sical quantities within the context of the path integral 

/36/ and Zinn-Justin discussed the anharmonic oscillator model /23/. 

The generalization made by these authors has been quite fruitful and 

exciting in several respects but it is not the only one. The first 
approximation to calculate the asymptotic behavior of E(n) has been due 

to Bender and WU /8/ via semiclassical methods. From a different, more 

rigorous point of view, it was proved that Bender and Wu's results are 

totally correct /9/. The JWKB is certainly simpler than those procedures 

based on the path integral but it only applies to quantum-mechanical 

problems. We devote the remain of this paragraph to illustrate in detail 

the application of the JWKB to the study O··f the divergence of the RSPT 

for same anharmonic oscillators. 

First of all, we need the following result: 

Lemma 11.1 Let us consider the stationary 10 Schrodinger equation 

-'!''' + V(x) 'I' = E'!' (11. 41) 

Defining the quantum current density J(x) as /37/ 

J(x) 1 = 2i{ 'I' '1"* - 'I'*'I"} = Im'l' '1"* (11.42) 

we have 

ImE J(x) / IX I'!'(x) I 2 dx' (11.43) 
-00 

Proof: 

It is immediate from the consideration of Eq. (11.41) that 

'1'* '1''' (11.44a) 

'I' 'I' "* = (V - E*) I 'I' I 2 V V* (11. 44b) 
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and so 

'¥ '¥ ,,* - '¥* '¥" d dx ('¥ '¥ '* - '¥* '¥ ') 

(11. 45) 

Finally, the integration of (11.45) gives us the desired result (11.43). 

The Lemma 11.1 shifts the problem of determining IIDE to the query of 

obtaining the current density J(x). The determination of J requires 

studying a problem of penetration through potential barriers, and for 

this reason we resort to the JWKB method presented in §.6. 

Let us consider the anharmonic oscillator 

H(Z,A) 22m 
p + Zx + AX 2 

P (11. 46) 

and let E(A) be one of its eigenvalues. The dispersion relation (11.13) 

demands the computation of ImE for At O. so that, taking into conside

ration Le~a 11.1, we must determine J for At O. If m> 2 in (11.46), 

then for A >0 we have a problem without bound states, there is tunnelling 

through the barries, and J~ O. In what follows we consider some illus

trative examples. 

Example I: If m=3 in (11.43), there are no bound states since the po

tential is not bounded from below when x+ -00. Instead there are reso

nances € , ... hich can be written as 

€ = E + ~ r (11.47) 

with E the resonance position and r the resonance width. It has been 

proved that (11.47) is an eigenvalue in some sheet of the complex plane 

of the Hamiltonian (11.46) analytically scaled /38/. The RSPT provides 

an asymptotic divergent power series for E (the real part of the 

resonance)/39/. 

To compute E (n) we must have J (A to). The potential function for A > 0 

is shown in Fig. 4.4 
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v (X) 

E -
I 

x 

Fig. 4.4: Determination of the RS coefficients asymptotic behavior: 

resonances problem associated with the cubic anharmonic oscil
lator. 

H p2 + V V = x2 - gx3 ; g= -A >0 (11.48) 

It is quite clear from Fig. 4.4 that J arises from tunneling towards 

zone IV. This state of affairs is the same as that discussed in §.6 and 

shown in Fig. 2.3. According to the results in §.6~ is given by (see 

Eq.(6.4S»: 

J = I m {'I' IV (x) 'I' I IV * } 3 
- 21T (11.49) 

where A2 is the coefficient for the asymptotic wave function in Zone III 

(Eq. (6.39»: 

'1'111 (x) + _ei1T / 6 ( __ 3_)~ A e T e-1w' I 
21Tq 2 

(11. 50) 

T = fX 2 (V(x) - E)~ dx (11. Sla) 

X 

IW' I = f (V(x) - E)~ dx (11. Slb) 
Xl 

The classical turning points Xl and x 2 are shmm in Fig. 4.4. To 
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obtain A2 

must behave 

we proceed as follows: when A=O and x+oo the function (11.50) 

asymptotically as '1'(0) , i.e. the zero -order eigenfunction 
n 

H(A=O) 'I' (0) = E(O) E (0) 
n 

2n + 1 ; n= 0, 1 , 2 , ••• (11. 52) 
n n 

where n is the number of zeros of the wave function. 

In order to obtain the asymptotic behavior of (11.50) as a function 

of x, we must know T and w'. To this end we first compute the turning 

points: 

2 3 
x - gx -E = 0 

If g '" 0, then 

X :::. -E~ o 

The third turning point is obtained by considering that 

when g + 0: 

(11.53) 

(11.54a) 

x »E~ 
2 

(U.54b) 

The integral T is computed by application of the method proposed in 

Ref. /38/ , Le. 

f 1 / g (x 
2 3 - E)~ dx T - gx T1 + T2 

E~ 
(11. 55a) 

fR (x 2 3 - E)~ dx T = - gx 
1 E~ 

(11. 55b) 

f 1 / g (x 2 g)C'3 - E)~ dx T = -2 R 
(11.55c) 

where R satisfies the condition E~ « R « l/g. When g + 0 we have for 

the integral (11.55b): 

T1 :::' fR (x2 - E)~ dx = ~ { X(x2 -E)~ - E In(x + (x2 - E)~)} [R ~ =: 
E~ E 

2 E~ 
{R + Eln [2R1} =: 1 

2" 
E 

- "4 + .• , R » E~ (11. 56) 
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~o the purpose of computing (11.55c) it is suitable to re-write the in~ 

tegral as 

f l/g 
R 

x (1 - gx)~ [1 - E ]~ dx 
(1 - gx) x 2 

since x » E~, we know that 

E 

2 
(1 - gx) x 

« 1 

(11. 57) 

(11.58) 

On expanding the integrand of (11.57) up to the first order, we have 

Z f 1/9 x(l - gx)~ dx E 
R - "2 

The first integral yields 

f l/g 

R 

dx 

x (1 - gx)!Oj 

f l/g x(l - gx)~ dx 
R 

2 3/ 2 
15g2 (2 + 3gR) (1 - gR) 

R2 
-""2 + 0 (g) 

In a similar way we have /40/ 

f l/g 
R 

dx 

x (1 - gx) ~ 

_ In [ 1 - (1 - gR)~~l ~ 
1 + (1 - gR) .. 

The integral 12 follows from (11.59)-(11.61) 

4 R2 E (gR/4) 12 
1592 -""2 + "2 In 

so that 

4 E ~ E ;:: + In (~) 1 2 "2 - "4 
15g 8 

(11.59) 

(11.60) 

(11.61) 

(11. 62) 

(11.63) 
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It is worth noticing that the final result does not depend upon R. 

This fact is hardly surprising since such parameter is arbitrary. 

When g ->- 0 and E « x « l/g, the computation of I w' I yields in 

Eq. (11.56) up to the same number of terms as 

I w' I :::. f (x2 - E)~ dx 1 2 E ~ =2 { x (1 - 2) 
E~ x 

- E In (x + x (1 - ..!..)~ 
2 ) + Eln E!..z } '" 

:::. 1 
2 

x 

{X2 [1 - ~] - Eln 2x + ~2 In E} 
2x2 

E E 2 In 2x + 4 (In E - 1) (11. 64) 

In order to determine the asymptotic behavior of (11.50) we must 
study e - I w' I for x »E~. Eqs. (11. 64) and (11. 52) allow us to obtain 

2 
e-x /2 

2 (n + ~) e] (n + ~) } ~ 
{[2il+l 

which holds for all n values. 

2 
e-x /2 (11.65) 

It seems to be necessary to point out that the result (11.65) does 

not depend on the anharmonic degree m of the'Harniltonian (11.46), 

because to obtain (11.65) we have started from (11.64) and the limit 

condition g+O. In this last equation there are just those terms corres

ponding to the harmonic oscillator since only the turning point at 

x I = E~ appears. 

Considering that for x » Xl' Eq. (ll.51c) reduces to 

(11. 66) 
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we can easily express the asymptotic behavior (g~O, x~oo) of (11.50). 

In fact, the sUbstitution of Eqs. (11.65) and (11.66) in Eq. (11.50) 

yields 

(11.67) 

Then, it only remains to identify Eq. (11.67) with the asymptotic be

havior of ~(O) (Eq. (11.52)) in order to assure the correct behavior 
n 

of the semiclassical wave function when g~ O. 

The asymptotic behavior of the normalized zero order wave function 

/37/: 

~ (0) 
n (2n n! 7f~) -~ 

2 
H (x) e-x /2 

n 
(11. 68a) 

2 
d n 2 

Hn(X) (-1) n x -x 
e e 

dxn 
(11.68b) 

is easily found to be 

Hn(X) (-2) n n 
~ x (11. 69a) 

~(O) [~l~ 
2 

(x) (-1) n n e-x /2 .... x n n! 7f 

(11. 69b) 

Therefore, it follows from equating (11.69b) and (11.67) that A2 is 

given by 

(_l)n + 1 

and consequently 

1 
fiT 

[n + ~l (2n + 1)/4 
2e 

-T 
e 

-i7f/6 
e 

(11. 70) 

(11. 71) 



J 
1 - ---

(21T) ~ 

e -21 n + ~ (n + ~) 
11! [ --e-1 
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(11.72) 

It follows from the discussion above that (11.72) is a general tunnell

ing expression for any Hamiltonian of the form (11.46) when \ to. 

In order to determine ImE, it is just necessary to consider that 

x » 1 (11.73) 

from which we conclude that Eq. (11.72) represents ImE according with 

Lemma 11.1. 

In particular, using (11.63) we have 

( 1) ~ -(2n + 1) L 
[g 2n + 1 en + ~ 

8 

which when introduced into 

IraE (g) 
-8/15g2 

_e'--__ _ 

(21T) ~ 

-(2n + 1) 
9 

n! 

2 
e- 8/ 15g 

9 -I- 0 

(11. 74) 

(11.75) 

Making the appropriate change of variables, it is verified at once 

that Eq. (11.75) agrees with th~ result reported by Yaris et a1. /38/. 

Now, we are able to calculate the asymptotic form of the k-th coefficient 

of the RS perturbation series by \olay of the dispersion relation (11.13). 

It is necessary to take into account that since InE(g) has been computed 

for 9 -I- 0 it is then convenient to re-write (11.13) in terms of g=-\ , 

i.e. : 

J''' o 
ImE(g) 

k + 1 
9 

dg 

If (11.75) is introduced into (11.77) we have 

(11.76) 



(-1) k 32n + ~ 

(21T3)~ n! 

(_l)k + 1 32n + ~ 

(2 1T3)~ 2(n!) 

I'D 
o 
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- 3y2/ l5 
e 

15 (k + 2n + 1)/2 
(S) 

The result for the J.m'7est resonance n: o is 

E (k) -
n 

15 (k+l)/2 
(S) [~ 

2 

dy 

where the following notation is used: r (a + 1) a!. 

(11.77) 

(11. 78) 

~le deem it meaningful to point out that in order to calculate E(k), 

it is only necessary to calculate ImE(g) for g i O. This contribution 

is dominant in the integral only if k » 1, so that our procedure gives 

us the asymptotic behavior of the coefficients E(k) for k » 1. 
n 

Example I I :' Now we consider the quartic anharmonic oscillator (i. e. 

m ~ 4 in Eq. (11.46)) which was the first system studied with regard 

to the asymptotic behavior of the RSPT. Krieger /41/ gerformed a primary 

simplified analysis, but the first complete results are due to Bender 

and Wu /8/ and Simon /9/. Here we apply the procedure followed in 

Example I, which is practically the same as that used in Ref. /42/. 

It is necessary to calculate the discontinuity of E(A) through the ne

gative A axis. In this region the potential function is 

V(x) = x 2 4 - gx g > 0 

which is shown in Figure 4.5. 

(11. 79) 
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v (Xl 

X 

Fig. 4.5: Determination of the RS coefficients asymptotic behavior: 

resonances problem associated with the quartic anharmonic 
oscillator. 

The potential is even and in this case there is tunneling towards zone 

IV. Obviusly, the contribution to the probability current density in 
both zones is the same. 

The procedure to be folloWed is the same as that described in Example 

I. If J denotes the flux through one of the barriers, then Lemma 11.1 

and Eq. (11. 73) allow us to write in this case 

1m E(A) 2 J(A) (11.80) 

Hhere J is given by (11. 72). Evidently, the main difference between both 
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problems rests upon the analytical form of T. 

The classical turning points for g + 0 approximately are 

-1/2 g (11. 31) 

as shown in Fig. 4.5. The computation of T is straightforward and the 

results are 

f g - 1 / 2 X(1_gx2 )1/2 11-
R 

E 
2 2 x (l-gx ) 

(11. 82a) 

(11. 82b) 

11/2 dx 

(11. 82c) 

The result for (11. 32b) when g + 0 is given by Eg. (11. 56) . The 

second integral is 

-1/2 21/2 E -1/2 dx 
T2 /g x(1-gx) dx - 2" f g 

x (J-gx 2 ) 1/2 
(11.83) 

R R 

The two terms in (11.33) can be approximated by 

-1/2 2 1/2 
f g x(l-gx) dx 
R 

-1/2 
jg 

R 

dx 
(1 2)1/2 x -gx 

2 1/2 
In 1 1+(1-gR) I 

Rg1/2 

1 R2 
3g - "2 + Oeg) (1l.84a) 

(11.84b) 
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Introducing (11.84a) and (11.84b) into (11.83) and adding up (11.56) 

we have 

r - 1 
3g 

E 
+ "4 In (~) - ~4 + ... 

16 
(11. 85) 

The insertion of (11.85) into (11.72) gives for (11.80) the result 

IljlE(g) _ (~) ~ 1 
7T n! 

-2/3g 
e (11. 86) 

The asymptotic form of the RSPT coefficients in obtained by introducing 

(11.86) into (11.76), which yields 

E(k) (_1)k + 1 (~)~ 8n + ~ 
J~ 

k + n - ~ -2y/3 d - ;; 
n 3 n! 

y e y 
7T 

- 2 (_1)k + 1 (~)~ 8n 
(1) k + n r(n + k + ~) (11. 87) - liT 3 2 

7T 

Once again, after an appropriate change of units we are led to the 

result published in Refs. /8,42/. Particularly importat for the rest 

of the book is the analytical asymptotic form of the RS coefficients 

for the ground state of the quartic anharmonic oscillator (n = 0): 

(_ 1) k 
2 (k - ~)! (11.88) 

The analysis presented in this section is especially relevant to 

understand the properties of the perturbation expansions. Let us remark 

that in the examples I and II and the function (11.4) analysed previous

ly we have found power series with a zero convergence radius and 

coefficients increasing approximately as the factorial of the perturba

tion order. This sort of situation is quite general and the majority of 

perturbation series arising in eigenvalue problems of interest in Physi

cal Chemistry, field theory, statistical mechanics, etc. have this 

feature. 
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It is not our aim to find the asymptotic form of the RS coefficients 

for mere awkward problems, since the cOMputation is truly cOMplicated. 

The intention is to present some illustrative examples in order to 

introduce the large order PT summation methods. 

We close this section with the result for the asymptotic coefficients 

of two problems to be treated later on: 

i) Zeeman effect for the hydrogen atoM: the perturbation corrections for 

the ground-state energy of 

H 
f1 

- "2 

behave asymptotically (n » 1) as /43-45/: 

E(n) ->- (_1)n + 1 (~) 5/2 (~)n (2n + l:i) 
2 

ii) Analogously, for 

H 
1 
r 

we have /46/ 

18 

3 
TIe 

+ Ar 

n n! 

TI 

(_ 1) n 
2 

(11.89) 

(11.90) 

(11.91) 

(11. 92) 

Eqs. (11.90) and (11.92) have been obtained by Means of techniques 

which represent variations or generalizations of the two methods pre

sented in this pharagraph: the contour integral and the JWKB method. 

There are other interesting systems having similar behaviors as those 

discussed here, and they will be analysed afterwards in succeeding chap
ters of this book. 
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It is important to point out a feature shared by all the exam~les 

presented so far: the k-th coefficient posses the general ex~ression 

(11.93) 

where a, band c are real numbers. 

The knowlwdge of the general forn of the RS coefficient for k » 1 

has a remarkable inportance to tackle the remaining central problem: 

to extract useful info~ation from the divergent power series, in such 

a way that one can calculate E(A) for all A-values. 

The study of this fundamental problen(more precisely, the perturbation 

series) is the aim of practically the rest of this book. 
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