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Abstract. Generalized non-holonomic mechanical systems are analyzed from a geometric
point of view. The existence and uniqueness of solutions, D’Alembert principle, Gauss
principle of minimal constraint, the non-holonomic momentum and Gibbs–Appell equa-
tions for such systems are studied in an invariant Lagrangian framework.
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1. Introduction

Restricted mechanical systems have been traditionally studied assuming the vani-
shing of the work made by the constraining force on the virtual displacements.
Nevertheless, in many interesting problems, for instance when the restriction is rea-
lized by the action of a servo mechanism [13], that assumption is not fulfilled: the
constraining force yields a null work on vectors that non-necessarily coincide with
the virtual displacements.

In order to encompass this kind of systems, Marle [13] developed, some years
ago, the theory of generalized non-holonomic systems in a series of remarkable
articles.

The analysis in [13], carried out in the Hamiltonian context, includes the proof
of existence and uniqueness of solutions, the theory of reduction when symme-
tries are present, and a clever framework for dealing with forces in hamiltonian
mechanics.

The aim of this letter is to consider some properties of these systems from the
Lagrangian point of view, by using a simple geometrical setting.

An expression for the generator of the restricted dynamics in terms of the gene-
rator of the unrestricted one, furnishing a geometric proof of the existence and
uniqueness of solutions, will be presented.

Furthermore, by means of suitable inner products defined on the tangent spaces
of the configuration manifold, we will give a version of the Gauss principle of
minimal constraint covering the generalized non-holonomic systems. As a particu-
lar case, we will recover the classical Chetaev’s result about virtual displacements
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[6,16]. Besides, the D’Alembert principle as stated in [19,20], the Gibbs–Appell
equations [1,10] and the formula for non-holonomic momentum [2] will also be
extended to the case of generalized non-holonomic systems.

We expect that the point of view adopted in this letter can contribute to enligh-
ten some aspects of the remarkable Marle’s contributions.

It is worth to note that the geometric setting presented below involves neither
covariant derivatives, nor metrics on the phase space of velocities, nor jets.

The development of this letter is as follows:
In Section 2, a summary of the invariant setting introduced in [19,20] for the

Lagrangian mechanics is presented.
In Section 3, we will give a geometric proof of the existence and uniqueness of

solutions for generalized non-holonomic systems, and its expression in terms of the
generator of the unrestricted system.

In Section 4, a version of the Gauss principle of minimal constraint encompas-
sing the generalized non-holonomic systems is introduced.

In Section 5, two possible generalizations of the Gibbs–Appell equations as pre-
sented in [12] are analyzed.

The last section aims at extending the formula of the non-holonomic momentum
[2] to the generalized case.

2. Lagrangian Mechanics in Invariant Form

In this section, we will make a summary of the framework introduced in [19,20]
for the Lagrangian mechanics.

Given a differential manifold Q, we say that a vector w ∈ T(q,v)(T Q) is vertical
if π∗(w) = 0, with π : T Q → Q the canonical projection π(q, v) = q. That is, w is
vertical when it is tangent to the fiber.

For each (q, v)∈ T Q, we will denote

V(q,v) := {w ∈ T(q,v)(T Q) s.t. w is vertical}
and τ(q,v) :Tq Q →V(q,v) the canonical isomorphism given, in any coordinate system
(qi , vi ), by

τ(q,v)

(
ui ∂

∂qi

)
=ui ∂

∂vi
.

When the point (q, v) is understood, we will write τ instead of τ(q,v).
The space of tangent vector fields on a manifold M will be denoted by X (M).
The space of vertical vector fields on T Q, i.e. vector fields taking values in V(q,v)

at each (q, v)∈ T Q, will be denoted by V(T Q).
For T (Q) :={X : T Q → T Q s.t. X (q, v)∈ Tq Q}, we will also denote by τ the iso-

morphism from T (Q) onto V(T Q) given by

[τ(X)](q, v)= τ [(X)(q, v)].
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Forces are represented by horizontal differential 1-forms on T Q, that is 1-forms
vanishing on vertical vectors. That is, if F is a horizontal 1-form, for every w tan-
gent to T Q, F(w) only depends on π∗w.

Let us denote

H1(T Q) := {horizontal 1-forms on T Q}. (1)

The vector fields on T Q relevant for mechanics are the special ones [19,20]. A
vector field X ∈X (T Q) is special if, at each (q, v)∈ T Q, π∗(X (q, v))= v. In fact,
only special vectors fields can be tangent to the lifting to T Q of curves in Q.

The space of special vector fields on T Q will be denoted by S(T Q).

Remark 1. It is clear that S(T Q) is an affine subspace of X (T Q) and V(T Q) is
its associated vector subspace.

Let us now consider a mechanical system described by the smooth Lagrangian
function

L(q, v) : T Q → R,

where Q, its configuration space, is a n-dimensional manifold.
The equations of motion of such a system are given by the Euler–Lagrange

equations. In any coordinate patch, they read

d
dt

∂L

∂vi
= ∂L

∂qi
, i =1, . . . ,n. (2)

If an external force Fe acts on the system, the equations of motion become

d
dt

∂L

∂vi
= ∂L

∂qi
+ (Fe)i , i =1, . . . ,n. (3)

The symmetric matrix

M = (Mi j )i, j=1,...,n, (4)

with

Mi j := ∂2L

∂vi∂v j
, (5)

is assumed positive definite at every (q, v)∈T Q. Thus, for each (q, v)∈T Q, it gives
rise to a inner product 〈, 〉M(q,v) on Tq Q. Notice that, since L is C∞, 〈, 〉M(q,v)

depends on (q, v)in a smooth way.
The Lagrangian form associated to L is the 2-form ωL on T Q locally defined as

ωL :=
(

∂2L

∂qi∂v j

)
dqi ∧dq j −

(
∂2L

∂vi∂v j

)
dq j ∧dvi . (6)
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Remark 2. Note that ωL = d
(

∂L

∂v j
dq j

)
. This definition of the Lagrangian form

coincides with the one given in [20]. In [2] and [14] the definition is ωL :=
−d

(
∂L

∂v j
dq j

)

Since M is assumed positive definite at each point, ωL turns out to be symplectic
and then, it gives rise to an isomorphism

α ��� Xα (7)

from the space of 1-forms on T Q onto X (T Q), with Xα the unique vector field
on T Q such that

ωL(Xα, �)=α.

Remark 3. It is proved in [19] that

F ∈H1(T Q)⇔ X F ∈V(T Q). (8)

Straightforward computations show that, for w1 ∈V(q,v),

ωL(w1,w2)=〈τ−1w1, π∗w2〉M(q,v), ∀w2 ∈ T(q,v)(T Q). (9)

The energy function associated to the Lagrangian L is

EL(q, v) := ∂L

∂v
. v − L(q, v).

For simplicity, we will write

X L := X−dEL .

That is

ωL(X L(q, v),w)=−dEL(w) ∀w ∈ T(q,v)T Q.

It is shown in [19,20] that X L is the generator of the dynamics for the (uncons-
trained) system, i.e. X L ∈S(T Q) and a curve q(t) on Q is a solution of the Euler-
Lagrange equations (2) if and only if (q(t), q̇(t)) is an integral curve of X L on T Q.

It follows from Remark 3 and Equation (8) that X L + X F ∈ S(T Q) for any
force F .

The D’Alembert principle in the sense of [19] or [20] (see also [2] or [14]) asserts
that, if an external force Fe acts on the system, the dynamics is generated by the
unique special vector field XU satisfying

ωL(XU , ·)+dEL = Fe. (10)
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That is, a curve q(t) on Q is a solution of the Euler-Lagrange equations (3) if
and only if (q(t), q̇(t)) is an integral curve of

XU := X L + X Fe (11)

on T Q.
Now, let us consider the mechanical system restricted by the constraint

(q(t), q̇(t))∈C, (12)

with C a submanifold of T Q locally defined as the zeros of k smooth functions

φl(q, v)=0, l =1, . . . , k, (13)

such that their differential are independent at each (q, v)∈C.
Notice that the set of generators of dynamics compatible with the restrictions is

the set S(C) of special vector fields tangent to C:

S(C) := {X ∈S(T Q)/C s.t. dφl(X)=0 with l =1, . . . , k}.

The constraint is admissible if, at each (q, v)∈C,

dim
(

span
{

∂φl

∂v j
dv j (q, v)

})
=dim (span {dφl(q, v)}). (14)

It is easy to show that, for admissible constraints, S(C) is non empty (see, for
instance [19]).

In any coordinate patch, the equations of motion are now given by

d
dt

∂L

∂vi
= ∂L

∂qi
+ (Fe + Fc)i , i =1, . . . ,n. (15)

with Fc the force exerted by the physical realization of the constraint in order the
restriction to be satisfied.

Consequently, the generator of the dynamics is the unique vector field X R on C
satisfying

ωL(X L(q, v),w)+dEL(w)= (Fe + Fc)(w) ∀w ∈ T(q,v)(C).

It is equivalent to say

X R := XU + X Fc . (16)

Remark 4. We consider Lagrangians and constraints independent of time just for
simplicity: the analysis for time-dependent ones is completely analogous.
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The space of virtual displacements is, at each (q, v)∈C (see, for instance [18]),

D(q,v) := {u ∈ Tq Q s.t. dφl(q, v).τ (u)=0, l =1, . . . , k}. (17)

If, at each (q, v)∈C, the force Fc does a null work on the virtual displacements,
the constraint is usually called ideal.

It is proved in [20] that, for ideal and admissible constraints, there exists a
unique Fc such that X R = XU + X Fc ∈S(C). This X R is the unique vector field on
C generating the dynamics of the restricted system.

In this case, the equations of motion can be written as (D’Alembert principle for
non-holonomic systems) [2,14,20]: X R is the unique special vector field on C such
that X R ∈S(C) and

ωL(X R(q, v),w)+ d EL(w)= Fe(w), (18)

∀w ∈ T(q,v)(T Q) with π∗w ∈D(q,v).

3. Generalized Non-holonomic Systems

As quoted in Section 1, for the generalized non-holonomic systems, at each (q, v)∈C
the constraining force Fc is known to vanish on a subspace of Tq Q, which can be
different from D(q,v).

We will call W(q,v) that space and assume that it depends smoothly on (q, v).
Henceforth, all the maps between manifolds are assumed to be smooth.
Let us denote

W := {X :C → T Q s.t. X (q, v)∈W(q,v)}.
We will assume that W(q,v) depends smoothly on (q, v) and

Tq Q =D(q,v) ⊕W⊥
(q,v), ∀ (q, v)∈C, (19)

with W⊥
(q,v) the 〈, 〉M(q,v)-orthogonal complement of W(q,v) in Tq Q.

It is obvious that, in particular, this property holds in the classical non-
holonomic case W(q,v) =D(q,v). In fact, decompositions similar to (19) have already
been considered in this case (see, for instance [7] or [12]).

The projections from Tq Q onto D(q,v) and onto W⊥
(q,v) associated to this direct

sum will be denoted by �D and �W⊥ , respectively.
Let us define

W0 := {F ∈H1(T Q)/C s.t., at each (q, v)∈C, F/W(q,v)
≡0},

W⊥ :={X :C → T Q s.t. X (q, v)∈W⊥
(q,v), ∀(q, v)∈C},

D := {X :C → T Q s.t. X (q, v)∈D(q,v), ∀(q, v)∈C}.
In order the dynamics to satisfy (q(t), q̇(t))∈C or, equivalently X R ∈S(C), the force
Fc ∈W0 must satisfy

X R = XU + X Fc ∈S(C). (20)
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Our proof of the existence and uniqueness of a force Fc ∈W0 with this property
will be based on the following two simple lemmas:

LEMMA 1. For admissible constraints, the space S(C) is a non empty affine sub-
space of X (C). Its associated vector subspace is τ(D).

Proof. As quoted above, S(C) is non-empty for admissible constraints.
On the other hand, if X, Z ∈S(C), then X − Z is vertical and

dφi (X − Z)≡0.

So, according to definition (17), τ−1(X − Z)∈D.

LEMMA 2. Let F belong to H1(C). Then

F ∈W0 ⇔ τ−1(X F )∈W⊥. (21)

Proof. Due to Remark 3, X F is vertical. Then, for each w ∈ T(q,v)T Q such that
π∗(w)=u, we have from Equation (9)

F(q, v)(u)=ωL(X F (q, v),w)=〈τ−1(X F (q, v)),u〉M(q,v).

The existence and uniqueness of Fc ∈W0 such that X R = XU + X Fc ∈S(C) and
its expression in terms of XU is a direct consequence of the following geometric
result:

PROPOSITION 1. If condition (19) holds and the constraint is admissible, then

∀X ∈S(T Q)/C , ∃!F X ∈W0 s.t. X + X F X ∈S(C).

If X0 is any fixed element of S(C),

X F X =−τ(�W⊥(τ−1(X − X0))). (22)

Proof. Let us choose any fixed vector field X0 ∈ S(C). (Recall that S(C) is non
empty for admissible constraints).

It is obvious that, for X F X as in Equation (22), τ−1(X F X )∈W⊥. So, the previous
lemma implies F X ∈ W0. (Note that we can take τ−1(X − X0) because X − X0 is
vertical.)

Now we have

(X + X F X )= X0 + (X − X0)− τ(�W⊥(τ−1(X − X0)))

= X0 + τ(�D(τ−1(X − X0)))

Thus, from Lemma 1 we have X + X F X ∈S(C).
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On the other hand, if F̃ ∈W0 and X + X F̃ ∈S(C) then, again from Lemma 1 we
obtain τ−1(X F X − X F̃ )∈D. But, from the previous lemma, since F X − F̃ ∈W0, we
have τ−1(X F X − X F̃ )∈W⊥. Condition (19) yields (X F X − X F̃ )=0. So, F̃ = F X .

Notice that the characterization (22) of F X is clearly independent of the choice
of X0 ∈S(C).

Remark 5. On the hamiltonian side, via the Legendre transform, condition (19)
becomes the condition under which the existence and uniqueness of solutions for
generalized non-holonomic systems is shown in [13]: the constraining force must
belong to the symplectic complement in Tξ (T ∗Q), with respect to the canonical
form on T ∗Q, of (π̃∗)−1(D), where π̃ : T ∗Q → Q is the canonical projection.

Thus, the previous proposition can be seen as a geometric version, in the
Lagrangian context, of that Marle’s result.

It is worth to notice that we are only considering first order constraints (i.e when
just q(t) and q̇(t) are involved in them). Extensions of Marle’s results to higher
order constraints have been carried out in [3–5] and applied to pneumatic tyres
and other models.

Remark 6. Lemma 2 and Proposition 1 enlighten the physical sense of condition
(19): in order to determine the acceleration of the restricted system, we need n
independent equations; Fc ∈ W0 implies τ−1(X Fc ) ∈ W⊥ and condition (19) gua-
rantees that this amounts for n −k equations, independent of the k equations deri-
ved from the constraint XU + X Fc ∈S(C).

COROLLARY 1. Under the assumptions of the previous proposition, X R is the
unique special vector field on C such that

τ−1(X R − XU )∈W⊥. (23)

Proof. It is a direct consequence of the previous proposition and Lemma 2.

The previous result can be rewritten in the following way:

D’Alembert principle for generalized non-holonomic systems: For admissible cons-
traints, if condition (19) holds and Fc ∈ W0, then the generator of the dynamics
for the restricted system is the unique X R ∈S(C) such that, at each (q, v)∈C,∀w∈
T(q,v)(T Q) s.t. π∗w ∈W(q,v),

ωL(X R,w)+dEL(w)= Fe(w). (24)

In fact, since ωL(XU ,w) = Fe(w), ∀w ∈ T(q,v)(T Q), Equation (24) yields ωL(X R −
XU ,w)=0, ∀w∈T(q,v)(T Q) s.t.π∗w∈W(q,v). So, from Remark 3, τ−1(X R − XU )∈W⊥.



ON GENERALIZED NON-HOLONOMIC SYSTEMS 23

EXAMPLE. Two particles with masses m1 and m2, and the same electrical charge
e, are jointed by a spring and move on a straight line l. At time t , their positions
on l are given by q1(t) and q2(t) with q1 <q2.

Under the action of a time dependent electric field E(t), parallel to l and with
(unknown) strength E(t) constant on l, their velocities satisfy

q̇2 = A(q1,q2) q̇1, (25)

with A a function such that

A(q1,q2) �= m1

m2
, for q1 <q2. (26)

In order to apply the previous results for writing down the equations of motion
of the system, we think about (25) as a constraint, and consider the force exerted
by the electric field E(t) on the particles as the constraining force Fc(t).

By doing so, we have:

Q ={(q1,q2) s.t. q1 <q2}
and

C ={(q1,q2;u, A(q1,q2)u) s.t. (q1,q2)∈ Q}.
At each (q, v)= (q1,q2;v1, v2)∈C,

S(C)(q,v) ={(v1, v2;w, A(q1,q2)w +b(q, v)}, (27)

with

b(q, v)=
(

∂A

∂qi
vi

)
v1 (28)

and

D(q,v) ={(u, A(q1,q2)u)}. (29)

The Lagrangian of the unrestricted system (i.e., disregarding the field E(t)) is

L : Q × R2 �→ R (30)

L(q1,q2;v1, v2)= 1
2
(m1|v1|2 +m2|v2|2)−U (q1,q2), (31)

where

U (q1,q2)= 1
2
κ(q2 −q1 −a)2 + k e2

q2 −q1
(32)

whit k the constant of Coulomb, a the equilibrium length of the spring and κ its
elasticity constant;
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Since E(t) is independent of q and the particles are identically charged, then

W(q,v) ={(u,−u)}. (33)

Given that

M ≡
(

m1 0
0 m2

)
, (34)

the 〈, 〉M(q,v)-orthogonal complement of W(q,v) is

W⊥
(q,v) =

{(
u,

m1

m2
u

)}
. (35)

It is easy to see that condition (19) is equivalent to assumption (26).
We now calculate X Fc . A straightforward computation shows that the projec-

tions �D and �W⊥ are given by

�D(u1,u2)=
(

m2u2 −m1u1

m2 A −m1
, A

m2u2 −m1u1

m2 A −m1

)

(36)

�W⊥(u1,u2)=
(

m2(Au1 −u2)

m2 A −m1
,

m1(Au1 −u2)

m2 A −m1

)
.

According to Equation (27), we can take X0(q, v)= (v1, v2;0,b(q, v)) with b as in
(28). If

XU (q, v)= X L(q, v)= (v1, v2;Y 1
U ,Y 2

U ),

Proposition 1 and Equation (36) yield

X Fc =−τ

(
m2(AY 1

U − (Y 2
U −b))

m2 A −m1
,

m1(AY 1
U − (Y 2

U −b))

m2 A −m1

)
. (37)

The equations of motion of the system are given by X R = XU + X Fc .

From Remark 3, we have that, if X Fc = Xi
Fc

∂

∂vi
, then Fc = Fc

i dqi , with Fc
i =

Mi j X j
Fc . So,

Fc
i = m1m2(AY 1

U − (Y 2
U −b))

m2 A −m1
.

Consequently,

E(t)= 1
e

m1m2(AY 1
U − (Y 2

U −b))

m2 A −m1
.
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4. The Gauss Principle of Minimal Constraint

The classical Gauss principle of minimal constraint (see, for instance [11]) asserts
that Fc vanishing on the virtual displacements is equivalent to characterize the
generator X R of the restricted dynamics as being the only vector field in S(C) such
that, ∀(q, v)∈C,

‖τ−1(X R − XU )(q, v)‖M(q,v) = inf
X∈S(C)

‖τ−1(X − XU )(q, v)‖M(q,v), (38)

with ‖.‖M(q,v) the norm associated to 〈., .〉M(q,v).
In order to establish a generalized Gauss principle of minimal constraints

encompassing the generalized non-holonomic systems, we will consider for each
(q, v)∈C a inner product [., .](q,v) on Tq Q, depending smoothly on (q, v), such that
the subspaces D(q,v) and W⊥

(q,v) are [., .](q,v)-orthogonal.
It is clear that, if condition (19) holds, then there exist inner products [., .](q,v)

with these properties. For instance, we could take, for u1,u2 ∈ Tq Q,

[u1,u2](q,v) = 〈�D u1,�D u2〉M(q,v) +〈�W⊥u1,�W⊥u2〉M(q,v). (39)

Obviously, �D and �W⊥ turn out to be orthogonal projections for [., .](q,v).
We will write [., .] instead of [., .](q,v) when no confusion can arise.
The norm on Tq Q associated to [., .](q,v) will be denoted by ‖ .‖[,](q,v).
We now introduce a generalized version of Gauss principle:

PROPOSITION 2. (Generalized Gauss principle of minimal constraint) If condi-
tion (19) holds and the constraint is admissible, then X R is the unique special vector
field on C such that

‖τ−1(X R − XU )(q, v)‖[,] = min
X∈S(C)

‖τ−1(X − XU )(q, v)‖[,], ∀(q, v)∈C. (40)

Proof. At each (q, v)∈C,

τ−1(X − XU )(q, v)= τ−1(X − X R)(q, v)+ τ−1(X R − XU )(q, v).

Now, since X, X R ∈S(C), then τ−1(X − X R)(q, v)∈D(q,v) (Lemma 1).
On the other hand, from Corollary 1 we have τ−1(X R − XU )(q, v)∈W⊥

(q,v).
For W⊥

(q,v) is the [., .](q,v)-orthogonal complement of D(q,v) in Tq Q,

‖τ−1(X − XU )‖2[,] =‖τ−1(X − X R)‖2[,] +‖τ−1(X R − XU )‖2[,].

It is clear that the first term in the r.h.s in this equation vanishes only for X = X R .

Remark 7. It is obvious that we can take [., .](q,v) =〈, 〉M(q,v) if and only if W(q,v) =
D(q,v) at each (q, v)∈C and that we would obtain the classical Gauss principle of
minimal constraint if we had [., .] = 〈, 〉M(q,v) in the equality (40). Then, from the
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previous proposition we can directly recover the well known Chetaev’s result: for
the (classical) Gauss principle of minimal constraint to hold, the constraining force
has to make a null work along each u ∈D(q,v), ∀(q, v)∈C, even if the restrictions
are non-linear in the velocity variables.

EXAMPLE. In the example of the previous section, we can also determine X R by
means of the Gauss Principle:

If we take the inner product

[u,w](q,v) =〈�D u,�D w〉M(q,v) +〈�W⊥u,�W⊥w〉M(q,v),

then X R is the unique vector field belonging to S(C) such that

‖τ−1(X R − XU )‖[,] = inf
X∈S(C)

‖τ−1(X − XU )‖[,]. (41)

But we have seen that the minimum of

‖τ−1(X − XU )‖2[,] =‖�D(τ−1(X − XU ))‖2
M(q,v) +‖�W⊥(τ−1(X − XU ))‖2

M(q,v),

is reached when the first term in the r.h.s vanishes.
Thus, from (27) and (36), we have

X R(q, v)= (v1, v2;YR(q, v), AYR(q, v)+b(q, v))

with YR = m1Y 1
U +m2(b −Y 2

U )

m1 −m2 A
.

5. Gibbs–Appell Equations

The Gibbs–Appell equations were introduced independently by Appell [1] and
Gibbs [10] in the nineteenth century. A renewed attention has been payed to them
in the last years (see, for instance [8,12] or [15]), in particular by their relation with
Kane’s method [9].

With our notations, the Gibbs–Appell function for classical non-holonomic sys-
tems [12] can be written as

G : S(T Q)/C ×C → R
(42)

G(X)(q, v)= 1
2

‖τ−1(X − XU )(q, v)‖2
M(q,v),

where, as above, XU is the generator of the unrestricted dynamics.
The vector field X R ∈S(C) generating the restricted dynamics is the solution of

the Gibbs–Appell equation

DX G(X R)(τY )=0, ∀Y ∈D, (43)
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where

DX G(X R)(τY )(q, v) := d
dε

[G(X R + ε(τY ))(q, v)]ε =0.

For a generalized non-holonomic system with Fc ∈ W0, we can consider the
same function G, or we can define another Gibbs–Appell function GW besides the
one defined by Equation (42):

GW : S(T Q)/C ×C → R

GW (X)(q, v)= 1
2

‖τ−1(X − XU )(q, v)‖[,],

Both functions allow us for writing down equivalent Gibbs–Appell equations deter-
mining X R , the generator of the restricted dynamics.

PROPOSITION 3. Let us assume that condition (19) holds and that the constraint
is admissible.

The vector field X R is the unique in S(C) satisfying

DX G(X R)(τY )=0, ∀Y ∈W, (44)

or the equivalent requirement

DX GW (X R)(τ Z)=0, ∀Z ∈D. (45)

Proof. At each (q, v)∈C and ∀u ∈ Tq Q,

DX G(X R)(τY )(q, v)=〈τ−1(X R − XU )(q, v),Y (q, v)〉M(q,v).

So, requirement (44) is equivalent to τ−1(X R − XU )(q, v)∈W⊥
(q,v) ∀(q, v)∈C.

Thus, as a consequence of Corollary 1, X R is the generator of the restricted
dynamics if and only if it belongs to S(C) and satisfies (44).

On the other hand,

DX GW (X)(τ Z)(q, v)=[τ−1(X − XU )(q, v), Z(q, v)](q,v)

implies that condition (45) is equivalent to τ−1((X R − XU )(q, v)) ∈ D⊥[,]
(q,v), the

[., .](q,v)-orthogonal complement of D(q,v) in Tq Q.
But [., .](q,v) was chosen so as to have W⊥

(q,v) =D⊥[,]
(q,v). Then, requirements (44)

and (45) are equivalent.

EXAMPLE. We now write down the Gibbs–Appell equations associated to G and
GW for the example considered in the previous sections.

If

XU (q, v)= (v1, v2;Y 1
U (q, v),Y 2

U (q, v)) and

X (q, v)= (v1, v2;Y (q, v), AY (q, v)+b(q, v))∈S(C),
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the extended Gibbs–Appell functions read

G(X)(q, v)= 1
2

∥∥∥(Y (q, v)−Y 1
U (q, v) , AY (q, v)+b(q, v)−Y 2

U (q, v)

∥∥∥2

M(q,v)

and

GW (X)(q, v)= 1
2

∥∥∥(Y (q, v)−Y 1
U (q, v) , AY (q, v)+b(q, v)−Y 2

U (q, v)

∥∥∥2

[,] .

Remark 8. The results presented hitherto could be rewritten in terms of any metric
on T Q coinciding with [τ−1, τ−1](q,v) when restricted to V(q,v), ∀(q, v)∈C.

If we can define [., .](q,v) only depending on q, for instance when W = D and
the restrictions are linear in v, these inner product give rise to a metric g on Q.
In this case, we could take on T Q the Sasaki’s extension gS [17] of g.

6. The Generalized Non-holonomic Momentum Map

We now consider the action of a Lie group G on Q. The Lagrangian L is assumed
to be invariant by the lifting of the action to T Q. We will see that an equation for
the non-holonomic momentum map, similar to the one obtained in [2] for classical
non-holonomic systems, can be deduced for the generalized case.

We will denote g the Lie algebra of G and, for each (q, v)∈C,

gW(q,v)
:= {ξ ∈g s.t. ξQ(q)∈W(q,v)},

where ξQ ∈X (Q) is the infinitesimal generator of the action on Q associated to ξ .
Let gW be the bundle over C whose fiber at (q, v) is given by gW(q,v)

and [gW ]∗
its dual bundle.

The non-holonomic momentum map J nh is the section of [gW ]∗ defined by

J nh(q, v)(ξ) := Dv L(ξQ(q)).

For classical non-holonomic constraints (i.e., W =D), it is shown in [2] that, if ξ

is a section of the bundle gD and q(t) is a trajectory of the constrained system,
the following momentum equation holds:

d
dt

[J nh(ξ(q(t), q̇(t)))]= Dv L

([
d
dt

(ξ(q(t), q̇(t)))

]
Q

)
(46)

For the generalized non-holonomic systems we have

PROPOSITION 4. Let us assume that the Lagrangian L is invariant by the lifting
to T Q of the action of the Lie group G on Q. Then, for every trajectory (q(t), q̇(t))
of the restricted system and for any section ξ of the bundle gW , it holds

d
dt

[J nh(ξ(q(t), q̇(t)))]= Dv L

([
d
dt

ξ(q(t), q̇(t))

]
Q

)
. (47)
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Proof. Just take gW(q(t),q̇(t)) instead of gD(q(t),q̇(t)) in the proof of Theorem 4.5
of [2].

The main applications of the non-holonomic momentum formula appear in the
theory of reduction (see, for instance [2]). Although that theory has not been
considered in this letter, the previous proposition was included just to present one
more equation where the space W plays, in the generalized non-holonomic case,
the role played by the space D in the classical non-holonomic systems.
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