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According to a classical result of Weil [15,1, a divisor ~ of a smooth n-dimensional 
projective variety X is homologous to zero if and only if it is the residue of a closed 
meromorphic 1-form on X. 

Griffiths proved recently [9, pp. 3-8,1 that a 0-cycle ~t of X is homologous to 
zero if and onty if it is the Grothendieck residue of a meromorphic n-form & on X 
having poles in the union of a family of complex hypersurfaces Yl . . . . .  II, of X, such 
that (~ Y~ is 0-dimensional and contains the support of ~. 

We show in this paper (Theorem 3.7) that, in fact, any q-dimensional algebraic 
cycle ~ of X, 0<  q < n, is the analytic residue of a semimeromorphic (n-q)-form 
on X, having poles in the union of a family ~ = {Y1 . . . . .  Yn-q} of hypersurfaces in 
X such that N ~ contains the support of ~. The form & is not closed, in general, 
but its differential verifies 

n--q 

(1) y 
i = 1  

where &i is semimeromorphic with poles in U (Yj:I < j  < n - q ,  j :~ i). 
If ~ is homologous to zero in X, the form t3 can be chosen meromorphic. 

Moreover, ct is algebraically equivalent to zero if and only if one can choose ~" 
such that 

n - q - t  
drY= ~ ~b i. 

i = 1  

To describe the analytic residue of ~'o, allow in principle d i m c ~ > q .  The 2q- 
dimensional residue current R~[&] I-5, 6], has support in a pure q-dimensional 
complex variety Ve(~-)C ~ -  canonically associated to ~ .  By a result of Poly 
[14-1, the current R~[&] determines, when it is closed, a unique (Borel-Moore) 
homology class c~H2q(Ve(Jr); IE) and, consequently, an algebraic q-cycle with 
coefficients in IE and support in V~(~-). We call this cycle the analytic residue of &, 
and denote it by [R~[&]]. 
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If q=O and & is meromorphic, or if q=n-1  and cb is closed meromorphic, 
[R~[~Tj]] can be identified with Grothendieck's residue cycle or with the divisor of 
t5, respectively; one refinds in this way the quoted results of Griffiths and Weil. 

These statements are equally true on Stein manifolds, replacing algebraic 
equivalence to zero of a q-cycle ~ by its homological equivalence to zero in some 
(q + 1)-dimensional subvariety of X that contains the support of a. This makes no 
difference in the projective case, by a result of Bloch and Ogus [-2, 7.3]. 

Our proofs are based in a chain level construction, already sketched in [11], of 
the Poincar6 isomorphism H~(X; r C) for a complete intersection Y 
in X, using meromorphic forms, currents and the residue-principal value operators 
of [5, 6]. 

The same method gives the following additional result (3.81 : if the q-cycle ~ is 
homologous to zero in X, it is homologous to zero in some (2q+ 1)-dimensional 
complex subvariety of X. 

Most of the results described also hold when X is a complex space, either 
holomorphically complete or projective, provided q > dimension of the singular set 
of X. We sketch in (3.9) the extension of the proofs to these cases. 

Finally, we compare in (3.10) the geometric residue defined by Atiyah and 
Hodge [1] with our notion of analytic residue. 

We would like to mention that Dolbeault [17J has results on the repre- 
sentation of divisors as residues of 1-forms, in the compact non-K~ihler case, which 
are not included by our methods. 

1. The Residual Complex of a Family of Hypersurfaces 

X will always denote a paracompact complex manifold of dimension n. 

(1.1) Let ~={Yo . . . .  , Y~} be an ordered family of s+  1 complex hypersurfaces in 
X,s>=O. 

We shall make use of the following notations: 

~-{j) = { Y/e ~ : i ~=j}, O<=j<=s. 

As= (0 . . . . .  s> is the standard s-simplex and A t is the family of t-simplexes 
T=<io, ...,it>CA~, t<s. 

Yr=U(YI : i eT)  and Y[T-j=(~(YI:ieT),  for TeA t. For each r, O<r<s, 
Y'=(~(Y~:O<i<_r) and qlr={X-Y~, O<=i<=r}, which is an open covering of 
X - Y ' .  

For any hypersurface Y in X, s"~(,Y) and gq(*Y) denote the sheaves of 
meromorphic and semimeromorphic q-differential forms on X with poles on Y 

[12, 2.1]. , s 
c~,q=cd'.q(8,}=~,q(~ ,~,) ,  for O<_t<_s and 0=<q=<2n, is the sheaf of alter- 

nated t-cochains of Cech with values in {gq(*Yr) : TeAt} ; on an open set WCX its 
sections are : 

r(w,~,~)= I] r(w,~q(,rr)); 
T e A  t 

a section 2z F(W, ~"q) is thus represented as 

2 = (2re F(W, Sq(* Yr)) : T~ At). 
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c~.,. = ~ (c~,,q :0 < t_< s, 0 < q < 2n) is the double complex with De Rham differential 
d:r~. cg, and Cech differentia 6:rg ' rgt ,. If 2=(2T)~.(~t'q , one has 
d2 = (d2r) and, given T = (i 0 . . . . .  it + x) e At+ 1, 

k 

where T(k) =(io, ..., [k .. . . .  i~+ 1). 

~,,  _ ~ (c~,, m-t :0 < t < s), and c~. = ~ ~,,  is the total complex with differential 
m 

D = O + ( -  1)'d on ~t,.. 
~" ( t2 , )  and c~'((2.) are defined similarly, using meromorphic  instead of  

semimeromorphic differential forms. 
There are obvious inclusions c~.(O.)__}c~.(g.), Q x ~ - ( ~ 2 . ) ,  and gx~C ' (g , ) ,  all 

compatible with boundaries. For  instance, the second inclusion associates to the 
germ e ~  Ox the 0-cochain (c~, = c~, i~ A~ For  each r, 0 < r < s, we denote by r~r, the 
total complex of sheaves constructed as above with the family {Y0, ..., Y~} ; we may 
write ~ r , ( g . )  or c~,,(O.), according to the case. 

There are differential homomorphisms 

1L : ~'r~--, ~'r~ , O <= r < s , 

obtained by restriction of cochains in c~t.q(q/,) to the t-simplexes TCA,. Denote 
c~r./r,=ker(H,), and define the quotient  sheaves Qr.=c~r.(g.) /Sx.  We have a 
commutative diagram with exact lines and columns: 

0 0 0 

o - ~  e ~ - - , ~ ~ .  ~ ~ ~ . - - - , o  

(1.2) 0 --~ e x --. c ~  __. Or, ~ 0 

T T 

0 0 

We omit the proof  of the following theorem, which has been sketched in [11], and 
of Theorem (1.5), which is similar and can be recovered from Remark (1.10). 

(1.3) Theorem. Integration induces isomorphisms I, I, and I~ 

... , H=F(X, ~,)  , HmF(X, ~=)  ,HmF(X, Q.',) ~... 

(1.4) (a) '~ (c) tj. (c) L$ (a) 

... , Hm(X, IF) , H ' ( X - Y ~ , ~ )  ,H"~+I(X,r , . . .  
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from the cohomology sequence associated to the sequence 

to the local cohomology sequence of the couple (X, ys). The (c)-squares commute and 
the (a)-squares anticommute. 

(1.51 Theorem. Integration induces isomorphisms Ir,~ 

... ,Hmrcx,  ~r/~.(r , I4 - r (x ,  Q'r,) ' Hint(X, 0.;) , . . .  

(1.61 (a) ~i~,~ (c) _~$i~ (c) ~S ir (a) 

... m - -  Hy, (X, r  H"]+ '(X, •) - . . .  , Hrr_r,(X,C ) ,,+ t 

from the cohomology sequence associated to the sequence 

to the local cohomology sequence of the couple (IT', ys). The (c)-squares commute and 
the (a)-squares anticommute. 

(1.7) Corollary. Suppose that X is Stein or that X is smooth projective and each open 
X - Y i  is affine, O< i< s. The canonical homomorphisms 

Hmr(x,  (r H~r (x ,  (e~rr~=(r 
H'F(X, cg~,,(O,))--, H"F(X, (g'rs(e *)), 

m ~ O, are then isomorphisms. 

Proof One can deduce from Grothendieck's theorem [10] that 

(L8) H(ax(,v,)) = ,H'(gx(*~))-Z-~R~.(r 

for all 0 < i<s, where j : X -  Y~X denotes the inclusion. This implies that, in the 
two cases of this corollary, one has isomorphisms 

(1.9) H r ( X ,  ax(,r,)  ) =- , H r ( X ,  Sx(,r,) ) = ,H ' (X-  ~,r  

But then the homomorphism E~'(O*)--* E]"(g,) between the first spectral sequences 
of the double complexes F(X, cg~;/r~(~2*)) and F(X, rgl;/r,(g*)) is an isomorphism, 
from where the first assertion of the corollary follows. The proof of the second 
assertion is similar. 

(1.10) Remark. Let X be a complex space and ~ ' =  {Yo,-.., Ys} a family such that 
Y~ 3 sX = singular set of X, 0 < i ~_ s. Suppose thatX is holomorphically complete, or 
that X is projective and each X -  Y~ is affine, for 0 < i <  s. Then one still has 
isomorphisms 

L,'H'r(x,  ~~, r.(a,))--,HT~ ~.,(x, r j " / - -  

i: H'r(X, ~'r,(a ,))-+ H'(X - P, r 
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for all m >0. Toprove  it in the first case, for instance, consider the standard double 
Cech complex c~,./r~(6e" ) with values in the sheaf .90" of differentiable cochains on 
X ,  = X - s X ,  the associated total complex ~'r./y,(6 ~) and the homomorphism 

f(X, (~'~r/ys(~'~*))--'} f(X, (~'yr[~s(~)) 

given by integration�9 
Grothendieck's theorem (1.8) is still true in the present case, thanks to the 

condition sXC Y~, so that we still have (1.9) and, as in the proof of (1.7): 

--~ ~ m H~r(x, ~r,/y,(C~*)) > tier(X, ~'y,jr=(~)) - Hr,_ r=(X, r  

where the last isomorphism can be obtained by standard methods. 

2. Poinear6 Duality 

The purpose of this section is to give a chain level construction of the Poincar6 
isomorphism between the bottom sequence in (1.6) and the exact sequence of 
Borel-Moore homology with closed support and coefficients in IE: 

... ~H2,_r,(Y r -  Yg--*H2,,_ ~_ ,(Y~)~H2,_m_ I(Y')~ . . . .  

(2.1) Residual Currents. Denote by '~..x the sheaf complex of currents on X with 
differentials b.T(~)=(-1)P+lT(d~t), for each TeF(W,~'p,x) and c~eFc(W, gP), W 
open set in X. 

Let . ~ =  {Yo ..... Yt}, 0<  t<_n-1, be an ordered family of complex hyper- 
surfaces in X�9 We do not impose for the moment any restriction on the dimension 
of the variety ~ ~-. The t-residue-principal value operator 

Rp~ : lr(x,  a2"-~-'(.U,~))-~ r(x, '~p.x, 
( a  ~ RP~ [6] 

has the following local definition [5, 6]: suppose that the hypersuffaces Yj are 
given by equations ~bfi (9(W), O<=j<t, on an open set WCX: then 

RP~[Co](c O=lim y ~^c~. 

ct~ Fc(W, 8~), where D~(~b) is the tube (IqSol = J o . . . . .  J~b,_ 11 = 6~_ 1, ]~bt] > cSt} with an 
adequate orientation, and where 6 =(6o, ..., cSt)e lR~+ + ~ tends to zero in a convenient 
way. 

The (t + D-residue 

�9 r(x , ,~ , ' -~- ' -  9 - ~ r ( x , ' ~ . ~ )  
R~ "{r ~R~[tD] 

is defined as 

R~[&](a)=l im j" ~ ^ a ,  
, ~ o  T6(r 

~ Fc(IV,, 8~), where Td~ ) = { kbol = 6 o .. . . .  ]~b,] = 6t} is oriented similarly. 
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The following properties of the RP operators will be of importance for us : 

(2.2) The support of R~[~]  is contained in a complex variety Ve(~-)C ~ ~-~, the 
essential intersection of ~-, which has pure codimension t + 1 or is empty. The 
support of RP~ [ch] is contained in a complex variety l)e(~-) C 0 (Y~ :0 < j  < t) which 
has pure codimension t or is empty. 

(2.3) b. RP~[~] + ( -  1) t + 1RP~[d~] = R~[~]  

and 

b. R~[tS] = ( -  1) '+ ~Ry[d(o], 

~o~ r(x, ~(* :)). 
We will say that (o~F(X,g'(,~)) is regular on Y j ~  if c79EF(X,g'(*Y~j))), 

where ~'q) = { Y~ ~ ~" : i +j}. 
Suppose now that ~ satisfies the complete intersection conditions: 

(2.4) d i m r  and d i m e n ~ ( t ) = n - t .  

We can state in this case the following additional properties 1-6, 1.7.7(2), 1.7.7(3)] : 

(2.5) If & is regular on the surface Yj, 0 < j  < t, one has 

RP:~[ffg] = R~ [~] = O. 

(2.6) If if9 is regular on Yt, one has 

RP~[(o]=R~(t)[(o ] and R~[cb]=0.  

(2.7) R~- and RP~ are alternating functions of the order of ~ and ~(t), 
respectively. 

(2.8) V~(~-)= ~ ~ and ~'e(~) = (-] ~(t) .  

We do not know if properties (2.5) and (2.6) are true when (2.4) is not satisfied; 
property (2.7) certainly fails in this case. For this reason, we are not able to prove 
Lemma (2.11) below without imposing condition (2.10) 

(2.9) Construction of Poincar~ Duality. From this moment on we consider a family 
= {Yo ..... Y,}, 0 < s _ < n -  1, of hypersurfaces in X such that 

(2.10) d imeYoC~ . . . nY t~n - t -1 ,  O<t<s.  

For each r, O<r<s, we define homomorphisms 

.ICr~ (g,)-F(X,%, (g,)) F(X,~p,x) 

where a(t)=t(t+l)/2, ):~F(X, Cg"2"-P-'(@,8*)) and ~ = { Y o  ..... Y~}. We observe 
that only the value of 2ton the particular simplex (0, ..., t) gives a contribution to 
V,. It is clear also that V, can be defined in the sheaf level. 
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(2,11) Lemma. 

b. ~[2]  _ ~/r[Dj.] _- (_  1 ~o(')p r,~r 3 l " '~rL'~<O . . . . .  r>-I ' 

Proof Let L= f i  ) t t e I ' ( X , C ~ z n - P ( 8 * ) ) .  By (2.5) 
z = O  

(2.12t b.~',[2]= ~ ( -  1)~("b.RP~,[2~0 ..... t>] 
t = O  

= ~ (--1)t+'m)RP~,[d2t<o ..... t>] 
, = 0  

+ Z (-1)~ ..... ,>l. 
t = O  

On the other hand D2 = ~ ( -  1)td)J + ~ b(J,'- 1), SO that 
t = O  t = l  

~.D[2] = fi  (-I)'+"(')RP~,[d2 '] 
t = O  

+ ~, ( -  1)'*(')RP~fO(2 '-1)< 0 ..... ,>]' 
t = l  

The general term of the last summation is, by (2.5) 

(-1)a(t)Rp~,Ij~= ~ (-1)J2}o,t...,;,...,,>] 

= ( -  t ) -" )ne~, [ ( -  i ) '~ ;  i...,,_i >]; 

according to (2.6), this last expression is equal to: 

( - -  I ) t  + a(t)R~:t_ 1 [ ~ ; I . . . ,  t _ I  ) l  

so that we finally obtain 

(2.13) ~D[2]= ~ (-l)'+"mRP~,[dZ<o . . . . .  ,>] 
t = O  

r - 1  
+ Y~ ( -  11 '+ 1 +o(,+ ~m r~, 1 "'.J~t k'~< 0 . . . . .  OJ 

t = O  

Since t + 1 + a(t + 1)= a(t)(mod. 2), we deduce from (2.12) and (2.13) that 

b. ~ [2 ] -  ~D[}L] =(-l)~(')R~r[2}o ..... o], 

as wanted. 
(2.14) Given any closed set F CX, denote '@.v, the sheaf of currents on X with 
supports contained in F, with the differential b. induced by that of'~.,x. We quote 
here for further reference the following result of Poly [14] (cf. also Darchen [7]): 
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(2.15) Theorem. Let  F be a semianalytic set in the paracompact real analytic 
manifold X .  There are canonical isornorphisms 

Hm(F,~?)~H,f(X,'~.,v=), re>O, 

which can be obtained by associatin9 to each semianalytic chain ~ in F ( c f  [-3]) its 
integration current I[~] on X.  

(2.16) For each r, O < r < s ,  we have the inclusions of complexes 

'~.,~r~)~ C '~.,(r,)~ C'~.,x ; 

we denote by 

and 

'~.,<x/r,)+ ='~-,x/'~.,<r,> = 

the quotient complexes. 
By (2.2), (2.8), and (2.11), V, :c~2~"-'~'~.,x induces differential homomorphisms 

(2.17) V, : c~2," - ' +'~.,(x/r,)~ , O<_r<s. 

V 2 n - .  The restriction of V, to c~r,/r,(g*) (1.2) gives currents in ~.,(r-)= by (2.2) and (2.8). 
By (2.7) again, ~ induces differential homomorphisms 

(2.18) v . ~ 2 n - .  , Vr, s .C~yr /ys (g*)  ''9 ~. ,(yr/ys)oo, O~-r~-~s .  

Consider now the sheaf homomorphisms 

R . : ~ 2 n - 1 - .  r.~ r . '~yr  ~ =~2.,(y~)~ 

defined for any open set W C X  by 

R,[~] =(-  1)~ ...... >], 

,~= Y, , v e r ( w , ~ " -  ~- ). 
t=O  

It is clear that R, is zero on the subsheaf g j  of c~,,, so that we obtain 
homomorphisms 
(2.19) :'~'~r.R o 6 2 n - l - - ' - - c ~ 2 n - l - - ' ( g S e ) ] / g 2 " - l - - - ~ ' ~ . , ( y r )  ~ _ =  

which, up to signs, are compatible with boundaries, by (2.3) and (2.5). The 
homomorphisms 1~,,~, R,, and R,, O ~ r < s ,  give mappings from the terms of the 
upper sequence in (1.4) into the terms of the long exact sequence of homology 
associated to the exact sequence 

0-~'~.,(r,)~ ~'*~.,(r,)~ ~'~.,(r-/r~)~-*0. 

(2.20) Theorem. The diagram so obtained: 

. . . .  n ~"-~- ~r(x, 'e~,/r,('~*)) --" x4~"-~- i t (  x ,  a~,) --" H~"-~ - ~ r(x, .~'~.) . . . .  

(2.2t) l #"'" (b) 1"" (a) 1"" (c) 
... --* H~+ IF(X,'~..crvr,)| ---* HaF(X,'~.ar,)~) -+ HaF(X,'~..tr,)~) . . . .  
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is commutative, and isomorphic up to signs to the Poincard duality diagram (with 
coefficients in IE ) : 

H E n _  q _  l ( X )  a 2 n - q  2 n - q  H E n - q  t Y ~  - - 'Hp  (X)--~Hr~ (X)--~ r._r.,..,--+ �9 � 9  ~ y r -  y s  . �9 �9 

(2.22) ,L -~ ,~ -~ ~, -~ ~ -~ 

...--,H~+I(Y'-Y~)& Hq(r9 ---, HqIY9 ~HgY"-Yg--,. . .  

In particular, ~,~, Rs, and R r in (2.21) are all isomorphisms. 

Proof. Commutativi ty of (a): 

Let 2 =  L ,~.tEZF(X,~En-q-l~'~r~ ,, by (2.3) 
t = 0  

R,[2] = ( -  l)*(')R<0 ...... > E2~:o ...... >] 

= ( -  1)*<%-R<o ...... -~>P~[~-~o ...... >] 

+ ( -  1)~(~) +~+ 1R<o ...... - l>P,[dE~o ...... )] .  

Since Z is a cycle, we have 

( -  1)~d~,~= - a ( ~ - ~ ) =  - Y. ( -  1)J;%,'...,; ...... >, 
j =o  

so that by (2.5) and (2.6) 

l~a(s )+s+  a R s ( -  , <o ...... - l>P,[dE<o ...... >] 

= ( -  1)"(~)R<o ...... -I>P~[( - 1)'2~o,t...,, - 1>] 
s--1 = ( -  IV (s- ')R<o ...... - t>[2<o ...... - i>], 

and 

R,[2I = ( -  1) ~(s- 1)R<o ...... -1 > E'~o,'...,s - , >] 

+ ( -  1)~(%" R<o ...... - 1 >P~[2~o ...... >]" 

Iterating the method one obtains 

R,[2]  = ( -  1 }'(~)R< o ...... > [2~o ...... >] + b. T. 

T =  L ( -  D~~ p r)J F(X,'~q ! <0 ..... j - - l >  jL <0 ..... />]e -l,(Y,')~) 
j = r + l  

so that R , [ 2 ] -  R~[H,2] e BF(X, '~q.(r~)~), which implies the commutativi ty of (a). 
To  show commutativity of (c), denote by D r and D s the boundaries of (~r~ and 

Or-, respectively. If a cycle 2zZF(X,02~ -~- ' )  is represented by a cochain 

2 = L 2,  then 
t = 0  

O ~  = O,7, + a,~" = ~z~  z r ( x ,  ~ " , - 9  
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and 

 r,,EDjl- , - v,,,[6~ ] 

= ( -  1) #~'+ 1)R<o ...... >P,+ 1 [(62')<o ...... + 1>] 
( -  l~a ( r+  1 ) + r +  1 ~  F~] r 1 

~:  " ' ( 0  ..... r > k " ( O  ..... r ) J ,  

by (2.5) and (2.6), so that one obtains ~,s[Ds2l=R,[f<]; as wanted. The com- 

mutativity of (b) is obvious, since a cycle 2 = 2'~ ZF(X,~Tr,/r. ) verifies 
t=O 

b. V[2] =Rs[2], by (2.11). This proves the first assertion of (2.20). 
As for the isomorphism between diagrams (2.21) and (2.22), the top sequences 

have already been identified in (1.3). To identify the bottom sequences, we 
represent each homology class in Hq(Y s) by a semianalytic cycle ~ of YS, and 
associate to this class the integration current on ~ [3]. We proceed in the same way 
with Y'. Similarly, classes in Hq(Y ' -  ys) are represented by semianalytic chains in 
Y~ whose boundaries lie in YS; we also associate to such chains their integration 
currents. One can see that this method defines a mapping between the bottom 
sequences of (2.21) and (2.22). By the result of Poly (2.16) this mapping is an 
isomorphism. 

We will accept the fact that the interior squares between diagrams (2.21) and 
(2.22) are, up to signs, commutative. The proof is similar to that given in 
[12, No. 5] for the case of one hypersurface in X. This implies that (2.21) and (2.22) 
are isomorphic. 

(2.23) We want to compare the cohomology sequences associated to the sequences 

and 

O--* '~.,(r,)~--~ '~. x--~ '~.,tx/y~)~--*O. 

Denote V : g ~ " - ' ~ ' ~ . , x  the mapping co-oV[co], where V[~o] is the current 
~ o  A a, for ~9~F(X,g 2"-p) and ~@p(W), W open in X. 

We omit the proof of the following theorem, which is similar to that of (2.20) 
[113: 

(2.24) Theorem. In the following diagram: 

. . . ~  H 2 - - , r ( x , # j )  ~ H 2 " - ~ r ( X , ~ p )  ~ H2"-Pr(x ,~ 'y , )  ~ . . .  

& v (c) -~ ~ v. (c) -~ $ (a) 

... --, HpF(X, '~ x) ~ HpF(X, '~. ~x/y~}oo) ---" Hp_ ~ F(X, '~ r --*... 

the (c)-squares commute and the (a)-squares antieommute. Moreover, this diagram is 
isomorphic, up to signs, to the Poinear~ duality diagram 

._,, H Z n - v ( S )  ~ H 2 n - v ( X  - ys) ~ I.IZn-p+ l ( y ]  
�9 -- ~ y s  ~,x! ~ - , .  

...--~ Hv(X) -* H v ( X - Y  S) --~ Hp_1(Y" ) --.~... 
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3. Cycles as Residues 

(3.1) The Analytic Residue. Let X be a paracompact complex manifold of 
dimension n. Choose a family ~ = {Y~ . . . . .  Y~_q} of hypersurfaces in X, without 
restriction on dim n~-, and a form doe F(X, 8~-q(. U ~')). If Rs~[do ] is closed, this 
current defines a class (2.15) 

{R:  [do] } e H 2qF(X, '~., v ~t~)~) ~- H2a(V~(~) ; ~). 

According to Borel and Haefliger [4], the top dimensional homology class 
{Ra:[&]} of the q-variety V~(~) determines an analytic q-cycle [R~[&]] with 
support in Ve(~), which we call the analytic residue of &. 

(3.2) Proposition, In these conditions, suppose that do is closed. Then Rs[do ] is 
closed and the analytic q-cycle [Rs~[do]] is homologous to zero in the (q + 1)-variety 
re(:) 
Proof. According to (2.3) the condition ddo=0 implies first that Rs~[do ] is closed, 
and secondly that b.RP~[do]=Rs~[do ]. By (2.20), this implies that IRa,[doll 
bounds in Ve(~) = support of RPs~[do ]. 

(3.3) Remark. Suppose in particular that q = 0  and do is meromorphic, so that 
ddo=0. Then [Ra~[do]] ~0  in X, a result first proved by Griffiths [9] with the 
condition dimr~o~ =0. 

(3.4) Proposition. Suppose that o~ = { Yp ..., Y,_q} verifies 

dimzc~o~= q and d i m ~ : c ~ ( n - q ) = q +  1, 

and choose do e F(X, 8~- q( , U ~ ) ). Then 
a) denote ~(i)={Yjeo~ :j4=i}. I f  

ddo = 2(doti) : 1 _<i _< n - q), 

where do(i)eF(X,8}-q+l(*U~(i))), one has b.Rs~[do]=0, so that the analytic 
residue [Rs~[do]] can be defined. 

b) I f  ddo = ~,(do(i): 1 N i<  n-q) ,  [Ra~[do]] is homologous to zero in OaJ(n-q ) .  

The proof follows immediately from (2.3), (2.5), and (2.6). 

(3.5) Corollary. I f  X is smooth projective and ~ verifies 

dimec~o~= q and d i m e n , ~ ( n - q ) = q +  l ,  

the analytic residues Jorms doe F(X, #~r-q(*U o~)) satisfying (3.4b) are algebraically 
equivalent to zero. 

Proof. According to Bloch and Ogus [2, 7.3] the q-cycles of X algebraically 
equivalent to zero are exactly those homologous to zero in some (q+l)-  
dimensional subvariety of X. 

Our purpose is now to obtain a converse to (3.4). We omit the proof of the 
following property, which can be obtained from standard results in the projective 
case [16, 1.6] or can be deduced easily, in the Stein case, from arguments in [8]. 
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(3.6) Lemma. Let X be a complex manifold of dimension n, and let F C Y be 
subvarieties of X of pure dimension q and q', respectively, with q <q'. Then 

(a) I f  X is Stein, there exists a family ~ = { Yp ..., Yn-q}, of hypersurfaces in X 
such that 

(a~) dimn(Y~:l < j < i ) = n - i ,  l < i < n - q ;  
(a2) FC Y~-q= N(Yj :1 < j < n - q ) ;  and 
(a 3) Y C Y n - r  
(b) I f  X is projective, the family ~ can be chosen such that (~L1), (az), and (a3) 

hold, toyether with: 
(bl) the sets X -  Y~ are affine, for 1 < i < n - q .  

(3.7) Theorem. Suppose that X is Stein or smooth projective. Let ~ be an analytic 
q-cycle in X. There exists then a family ~-~ = { I:1 . . . . .  Y~_q} of n -  q hypersurfaces in 
X and a form ~o~ F(X, ~ - q ( * ~ ) )  such that 

(a) dimfYlc~ . . . ~ Y i = n - i ,  l <_i<_n-q; 
(b) the support of ct is contained in N ~ ; 
(c) dt~ = ~(&(i) : 1 < i -< n - q), where ~(i)e F(X, ~"-q+ 1(, U ~(i)) ; 
(d) ct is the analytic residue of •. 

Moreover : 
(e) I f  ~ is homologous to zero in X, ~o can be chosen meromorphic: 

~,Er(x,~n-~(*U ~)). 
(f) I f  ~ is homologous to zero in some (q + 1)-dimensional variety of X, ~o can be 

chosen in addition such that 

d & = ~ ( & ( i ) : l < i < n - q ) ,  

where &(i)~F(X, t2 ~-q+ 1( ,~  ~(i)). 

Proof. The q-cycle ~ can be represented by a couple I-F, c], where F is a pure 
q-dimensional variety and c~H:q(F; ~). 

Let ~ = { I:1 . . . . .  Y~_ q} be a family of hypersurfaces in X that satisfies properties 
( a l )  , (a2) , and (bl) of (3.6) with respect to F, according to the case. If ct is 
homologous to zero in some (q + 1)-dimensional variety Y of X, we demand (a3) to  
be also satisfied with respect to I:. 

We now apply Theorem (2.20), renumbering ~,~ = { Yo . . . . .  Y~}, s = n -  q - 1, and 
setting r = s - 1 .  The mapping i, :H2~(F;C)--+H2q(YS; if?) is injective, since 
dimF=dimY~=q. The cycle c~ can then be represented by the couple [Y',c'], 
c '=  i,(c). By (2.20), there is a cycle 

,~= ~ ~.t'En-Eq-t-t~F(X (~2n-- 2q- I l 

t=O 
such that R~[2]=R~[(-1)'(~)2~o ...... >] is homologous in F(X,'~., tr,:)  to the 
integration current l[Y~,c']. If we set r~=(-1)'(~)2~o ..... ~>, the assertions (a)-(d) 
above are verified. 

Suppose now that ct is homologous to zero in a (q+l)-variety Y. By 
construction, YC Y" and the image of c' in H2~(Y'; C) is zero, which implies 
C'=aC", e"eH2~+ I(Y r -  ys;  C). 

By (2.20) and (1.7), there exists a cycle/~ = ~ # t ,  2~-~)-t- ~ in F(X, r~2t"-~)- ~ ,  o ~  
such that V,,s(/0 and the integration current I[c"] are homologous in 
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F(X, '@ 2q + 1.trr/r,)~). Their boundaries 

b. ~, ~[#] = ( -  l)~(')Ra~[p~o ...... >] 

and 

b. 1[c"3 =IEac" ] = I[c'] 

cobound then in F(X,'@2q,<r,)=), so that ct=[Y*,c '] is the analytic residue of 
(5 = ( -  1)'~*)/~o ...... >. Finally 

d#{o ...... > = ( -  l)*(a# *- ~)(o ...... > 

= ( - -  I) 2 ~ (-- l)J#~o,'...,/, ..... >, 
j=0 

where p~o, 1. .... - 1,~> =0  since the restriction of/~ to ~ .  is zero. This proves property 
(f) above. 

Property (e) can be obtained in a similar way. If ~ is homologous to zero in X, 
Theorem (2.22) and Corollary (1.7) assure the existence of a cycle 
2 e F(X, ~2~,- q)- 1(. f2)), 2 = ~(2 '  : 0 < t < s), such that b. ~[2]  and the integration 
current I[~] are homologous in F(X, '~2q, o',)=). 

Since b. ~[2]  =(-1)~('~R~[2~o ...... >], the result follows taking 
(5=(--  1)"t~),;I,} o ...... > 

Observe moreover that 2 '=0  if 2 ( n - q ) -  t -  1 >n, and 

2(n -q)  - 1 

IP[2] = E ( -  l)~(t)R<o ..... ,-,>P,[2~o ..... t>]. 
t = n - - 2 q - i  

This current has support in the (2q + 1)-variety T = Yon... ~ Yn- 2q- 2, and b. ~'[).] 
is homologous to I[~] in /*(X,'~2q,(y~)~ ). One deduce from these two facts and 
Theorem (2.20) that ~ bounds in T. Finally, given any q'-dimensional variety T' in 
X that contains the support of ~, with q =< q '<  2q + 1, one can always suppose that 
T3 T', by (3.6). We have proved then the following: 

(3.8) Corollary. Suppose that X is Stein or smooth projective and consider an 
analytic q-cycle ct homologous to zero in X. Given any q'-dimensional variety T' of  X 
that contains the support of ~t, q < q' <2q + 1, there exist a (2q + 1)-variety T such 
that T3  T' and ~ is homologous to zero in T. 

(3.9) The Singular Case. We want to make a few remarks about the way our results 
can be extended to the case where X is a complex space either holomorphically 
complete or projective. We refer to [6, 12] for the definitions of meromorphic 
forms on spaces. 

(a) The operators RP~ and R~ still exist in this case, for any locally principal 
family ~-, and they verify properties (2.2)-(2.8) [6]. Poly's theorem in no longer 
available now, but may be replaced by the canonical splitting 

HF(X,'~.,r=)~- H.( Y ; C.)| A 

described in [12, Sect. 4] which is valid for any semianalytic set YCX. 
Consequently, one can still define, as in (3.1), as in (3.1), the analytic cycle 
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associated to a meromorphic  form & on X with closed residue R~[&] ,  by 
projecting the class of  R~[&]  into H . ( Y ;  ~), where Y =  Ve(~- ) contains the support  
of R ~ [ ~ ] .  

Proposi t ions (3.2) and (3.4) are now true without  any change in the proofs. 
(b) In L e m m a  (3.6) we add the hypothesis q > dimsX, where sX is the singular 

set of X. The family a~ = { Y1, " . ,  Y,-~} can then be chosen such that  all conditions 
of the lemma are verified, and besides 

Y~DsX, l < j < n - q .  

According (1.10), we still have isomorphisms 

H'r(x, - -  . s ( X  ; r  --- _ m( Y '  - y s  ; r  

where we use the notat ions of  No. 1 with respect to the renumbered family 
~ = { Y 0  . . . . .  Y~-q-1}; observe that  Y~3sX. 

If we consider an analytic q-cycle ~ of X homologous to zero in some (q + 1)- 
dimensional subspace Y of X, and q>dimsX, we can always suppose that  the 
support  of  ~ is Y~ and that  a ~_ 0 in 1I", r = s -  1. The p roof  of  (3.70 applies without 
change, and (3.7a-d) will be verified. One obtains (3.7e) and (3.8) in the same way. 

In particular,  these results can be applied taking Y as the ambient  space of ~, 
obtaining the following s ta tement :  There exist a closed meromorphic form 
(oeF(Y, Y2~(*A)), where the hypersurface A contains sX and the support of ~, such 
that RA[(o ] = or. 

We don ' t  know if the s tatement  of  Theorem (3.7) abou t  cycles not homologous  
to zero are still true, when X is singular. 

(3.10) Forms of the Second Kind. It  may  be useful to compare  the analytic residue 
defined in (3.1) with the geometric  residues and related definitions of Atiyah and 
Hodge  [1]. 

Let X be a smooth  projective variety and c79~ F(X, O2~-P(. Y)) be a closed form 
with poles on a hypersurface Y; ~ defines a class [~]~H2~-p(.X - Y; C). The 
geometric residues of ~ are the periods of  [~b] on the cycles in X - Y that  bound in 
X. The form cb is of  the second kind if there exists a hypersurface W 3  Y such that 
the geometric residues of  & on X -  W are all zero (cf. [1, p. 84, Definition C]). This 
is equivalent to demand that  the restriction of  [~ ]  to X -  W be in the image of 
H2n-p(X ; r H2n-p(x - W; r 

I f  we consider Theorem (2.22), with s = 0, y0 = W, we see that  & is of  the second 
kind if and only if Rw[(O ] bounds in F(X, '~ .  w| ), where Rw[(b ] is the residue 
current associated to the family i f =  {W}. If in part icular  2n-p= 1, & is of  the 
second kind if and only if the analytic residue of ch is zero. 
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