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Abstract
This paper presents the first acute toxicity data of the natural insecticide spinosad in amphibians. The sensitivity of two
neotropical sympatric anuran species, Boana pulchella and Rhinella arenarum, to spinosad-based formulation Tracer™ was
evaluated. Lethal effects are reported in tadpoles of B. pulchella stage 25 between 2.81 and 35.44 mg spinosad/L, while for the
same concentration range no lethal effects were detected in tadpoles of R. arenarum of the same stage. In addition, Tracer™
produced sublethal effects at the individual level on the swimming activity, morphology (growth and presence of abnormalities),
and development of B. pulchella from 2.81 to 5.78 mg spinosad/L, while in R. arenarum effects were only detected in the
swimming activity and growth from 2.78 and 6.22 mg/L, respectively. At the biochemical level, Tracer™ produced inhibition of
different enzymatic activities, among them, catalase activity at 2.81 mg spinosad/L, glutathione S- transferase activity from 2.81
to 2.98 mg spinosad/L, and acetylcholinesterase activity at 2.81 mg spinosad/L. These findings allow us to conclude that
B. pulchella is more sensitive than R. arenarum to spinosad-based formulation Tracer™. The effects demonstrated here are
not consistent with those expected since spinosad is supposed to be an environmental healthy alternative. This paper provides
useful and necessary information to implement regulations on the use of new compounds entering the market and its associated
risks.
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Introduction

Amphibians are among the non-target organisms affected by
pesticides. They are particularly sensitive to pollutants due to
their biological and ecological characteristics, among them, in

general terms, the presence of bare skin, exposed embryogen-
esis, fully aquatic larval phase, and reproduction in shallow
water bodies (Stebbins and Cohen 1995). In this context, they
have been proposed as bioindicators (Blaustein et al. 1994;
Blaustein and Kiesecker 2002). Numerous studies have evi-
denced the numerical decrease in amphibian populations and
proposed chemical contamination among the possible causes
(Blaustein et al. 2003, 2011; Beebee and Griffiths 2005;
Hayes et al. 2010). In addition, some studies have demonstrat-
ed the association between the decline in amphibian popula-
tions and their proximity to agroecosystems (Davidson 2004;
Peltzer et al. 2006; Smalling et al. 2015; Suarez et al. 2016). In
summary, a wide variety of effects of pesticides have been
reported on amphibian larvae, including alterations in enzy-
matic and swimming activity, alterations in feeding, inhibition
of growth and development, increased susceptibility to dis-
eases, manifestation of abnormalities, and reduction in surviv-
al (Boone and Bridges 2001; Relyea 2004; Peltzer et al. 2008;
Agostini et al. 2010; Vera Candioti et al. 2010; Bernabò et al.
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2011; Ruiz De Arcaute et al. 2012; Brodeur et al. 2014;
Attademo et al. 2017; Natale et al. 2018). However, a key
limitation is the need to know the species sensitivity distribu-
tion since some species are more sensitive than others to a
stress factor.

Around 70 years ago, crop pests began to be controlled
with organochlorine pesticides, which are toxic,
bioaccumulative, and persistent. These were replaced by less
persistent pesticides such as organophosphates, carbamates,
and pyrethroids (Casida and Quistad 1998). In the last few
years, there has been a growing interest in the design of new
generation pesticides with more specific action toward pests,
faster degradation in the environment, and low toxicity for
non-target biota (Isman 2006; Devine and Furlong 2007;
Dayan et al. 2009). Among the naturally occurring com-
pounds proposed as a replacement for synthetic pesticides is
spinosad, a macrocyclic lactone is produced by the soil acti-
nomycete Saccharopolyspora spinosa, which is toxic to in-
sects. It is composed by the natural mixture of two active
components (85% spinosyn A and 15% spinosyn D) and
two metabolites of lower importance (spinosyn B and
spinosyn K) (Mertz and Yao 1990; Kirst et al. 1992).
Spinosad was registered under the Reduced Risk Pesticide
program of the United States Environmental Protection
Agency (USEPA) and won the Presidential Green
Chemistry Challenge in 1999. It has been registered in more
than 50 countries and used in crops such as soybeans, cotton,
corn, fruits, and vegetables against pests of the orders
Lepidoptera, Thysanoptera, Diptera, Coleoptera, and is also
used for the control of Ctenocephalides sp. in dogs and cats
(Thompson and Sparks 2002). It reaches water bodies by drift
or surface runoff after the rains. Its application rate in crops
varies between 48 and 360 mg active ingredient/L depending
on the pest and the crop (Miles and Dutton 2003). Its half-life
varies between 1 and 10 days being rapidly degrade by micro-
bial action and photolysis (Saunders and Bret 1997; Sharma
et al. 2007; Adak and Mukherjee 2016). The expected con-
centration of spinosad in water is between 0.0003 and
0.00215 mg/L (USEPA 2009). It is a neurotoxic compound
that enters the insect body through contact or intake and acts at
all life stages (White et al. 2007). It is fixed on the postsynaptic
receptor, at a different site from acetylcholine, producing a
synergistic effect on its activity. It generates the continuous
entry of cations, causing hyperexcitation of the central ner-
vous system, involuntary contractions of the muscles, and
tremors followed by paralysis and death (Salgado 1998;
Watson 2001; Orr et al. 2009). It is classified as a product of
low environmental and toxicological risk, moderately or
slightly toxic to fish and almost non-toxic to birds and mam-
mals (Borth et al. 1996a, 1996b; Bret et al. 1997; Breslin et al.
2000). Although there are no contraindications or warnings
about the environmental risks, it is known that some non-
target aquatic invertebrates are sensitive to the exposure

(Deardorff and Stark 2009; Duchet et al. 2011). It has also
been reported as highly toxic for bees, with an acute LD50
of 5 × 10−5 mg/bee (Mayes et al. 2003). Among vertebrates,
lethal and sublethal effects have been reported only in fishes
(Borth et al. 1996a, 1996b; Piner and Üner 2012). There is no
further available information on the effects it may cause in
other non-target organisms.

Although amphibians have been proposed as bioindicator
species and may potentially be exposed to spinosad in the
field, no study examined its toxicity yet, to our knowledge.
In this study, the lethal and sublethal effects of spinosad-based
formulation Tracer™ were evaluated on stage 25 larvae
(Gosner 1960) of the frog Boana pulchella and the toad
Rhinella arenarum, using acute toxicity bioassays and evalu-
ating the effects at the individual level (mortality, swimming
activity, growth, development, and presence of morphological
abnormalities). In B. pulchella, biochemical effects were also
examined by the enzymatic activity of catalase (CAT), gluta-
thione S-transferase (GST), and acetylcholinesterase (AChE).

Materials and methods

Test species

B. pulchella is a tree frog with Neotropical distribution from
southern Brazil, southeastern Paraguay, Uruguay, to the prov-
ince of La Pampa in Argentina (Cei 1980; Kwet et al. 2004a).
It inhabits wetlands, flooded lowland meadows, grasslands,
and agroecosystems, near urbanized sites (Natale and Ronco
2003; Peltzer et al. 2006; Agostini et al. 2009). It reproduces
twice a year in coincidence with the rainiest seasons (March–
April and August–September) and lays their eggs, which
hatch in a week, in submerged masses associated with aquatic
vegetation (Cei 1980). The larvae reach 70 mm in length, and
are easy to maintenance in the laboratory (Natale 2006). The
species has been proposed as a good model for ecotoxicolog-
ical studies (Natale et al. 2018) since its body size and the
duration of the larval period up to 6 months allow the evalu-
ation of effects at different individual and subindividual levels
(Natale 2006; Agostini et al. 2010; Pérez-Iglesias et al. 2014,
2017).

R. arenarum is a species of toad with a wider neotropical
distribution from southeastern Brazil, Uruguay, Bolivia, and
to the south of the province of Chubut in Argentina (Kwet
et al. 2004b). It reproduces from August to April, in small
ponds with stagnant water and lagoons, being the period as-
sociated with the availability of water. It lays up to 40,000
eggs, which hatch in approximately 2 or 3 days, in long ge-
latinous cords at the bottom of the water body (Cei 1980;
Natale 2006). The larvae reach up to 25 mm in length and
are also easy to maintenance in the laboratory (Cei 1980). It
is a widely studied species at the biochemical, physiological,
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and cytogenetic level, and it is frequently used in toxicity
bioassays as a model species of ecotoxicological studies
(Ferrari et al. 2008; Pérez-Coll et al. 2008; Brodeur et al.
2009; Salinas et al. 2015; Soloneski et al. 2016; Attademo
et al. 2017).

Source of organisms

The eggs were collected from a temporary pond located on the
outskirts of the city of La Plata, Buenos Aires, Argentina (34°
59′ 14′′ S, 57° 51′ 9′′ W), with low degree of anthropogenic
disturbance and no detected pesticides in sediment (Sansiñena
et al. 2018). For each bioassay, 10% of different clutches (n =
4 per species) were collected in order to guarantee the repre-
sentativeness of the samples, and transferred to the laboratory
in polyethylene bags with water from the site. The rest of the
clutches were left in the pond for conservation purposes. Once
in the laboratory, the eggs were acclimatized under controlled
conditions (25 °C ± 1, photoperiod 16L: 8D) in trays with
dechlorinated tap water (pH = 7.6–8.3, hardness = 155 mg
CO3Ca/L) and continuous aeration until reaching Gosner
stage 25 (Gosner 1960). Tadpoles were fed with commercial
fish flakes twice a week. Egg masses were collected under a
license from the Direction of Flora and Fauna of the Province
of Buenos Aires (File 22500-41820/17). All procedures for
the care and use of laboratory animals agree with local guide-
lines for vertebrate animal welfare (Protocol No. 023-22-15)
as well as with US Public Health Service and/or European
Union policy.

Experimental design

All tests were performed under controlled laboratory condi-
tions previously mentioned and following USEPA recom-
mendations to accomplish with test procedures (USEPA
2002; ASTM 2007), with minor modifications proposed by
Natale (2006) which were implemented several times for both
test species (Nikoloff et al. 2014; Natale et al. 2018). Glass test
chambers of 1000 ml were used, in which 500 ml of test
solution and five 25-stage larvae were placed. The bioassays
were semi-static and without food, with renewal of the media
every 24 h. The different endpoints were recorded prior to the
renewal and dead organisms were removed.

Three acute 96-h experiments were carried out: two exper-
iments (experiments I and II) to assess lethal and sublethal
effects at the individual level in B. pulchella and
R. arenarum tadpoles at stage 25; the third (experiment III)
was conducted only with B. pulchella tadpoles due to the
greater sensitivity observed in previous bioassays, so as to
examine biochemical effects, namely the enzymatic activity
levels of CAT, GST, and AChE. All experiments include two
negative control groups (dechlorinated tap water).
Experiments I and II were performed by quadruplicate with

9 and 12 different concentrations ranging between 5 and
500 mg/L of spinosad for B. pulchella and R. arenarum, re-
spectively. At the end (96 h), tadpoles were anesthetized with
MS 222, fixed and stored in 10% formaldehyde to later ex-
amine growth and morphological abnormalities. Experiment
III was performed with eight replicates and eight different
concentrations of spinosad ranging between 5 and 500 mg/L
of spinosad. After 96 h of exposure, tadpoles were anesthe-
tized with MS 222 and individually preserved at − 80 °C until
enzymatic determinations were performed.

Test chemical and quality controls

The test substance employed was the commercial formulation
Trace r™ , wh ich i s p roduced and so ld by Dow
AgroSciences®. The formulation Tracer™ is a suspension
concentrate and contains spinosad in a proportion of
44.20%, equivalent to 480 g spinosad/L. A stock solution of
1000 mg spinosad/L was prepared by mixing 2.2711 g of
product in 1 L of water from which test solutions were made.
Samples of 2 ml of test solutions (n = 7) from experiments I
and II (from 5 to 500 mg/L) were taken by triplicate immedi-
ately after preparation (0 h) and after 24 h of exposure. They
were stored at − 20 °C until analyzed by analytical methods.
Samples were filtered by 0.45 μm and the concentration of the
water-soluble fraction was analyzed by LC-MS. An Agilent
model 1100 liquid chromatograph coupled to an Agilent
quadrupole mass spectrometer model VL was used. A C18
Zorbax Agilent column was used for the analytical separation,
with a gradient of acetonitrile and ultrapure water both with
0.1% formic acid at 0.5 ml/min. A source of electrospray
(ESI) was used in positive mode with nitrogen as a drying
gas at 350 °C. The energy of the fragmenter was set at
150 eV in full scan mode. The extraction of the ionic chro-
matograms (EIC) was applied at m/z 128, 142, 718, 732, and
746 corresponding with molecular ions of the different iso-
mers of spinosyn (A, D, K, and B) (Benincasa et al. 2011).
Their chromatographic responses were summed for quantifi-
cation and did not show significant differences from the stan-
dard. The Tracer ™ formulation extracted by sonication in
methanol was used as a standard to develop a 1 mg/ml stock
solution, from which intermediate dilutions were made in
methanol and water. The limit of quantification was 0.5 mg/
L and no matrix effect was observed in the samples as ionic
suppression (Taylor 2005).

Evaluated endpoints

Mortality

Mortality (M) was determined every 24 h. Individuals were
considered dead when immobility and rapid decomposition of
the body were corroborated by visual observation. Also,
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absence of cardiac activity was complementary checked under
a Wild Heerbrugg M8 binocular stereoscope. Dead individ-
uals were registered, extracted from the test chamber, and
fixed in 10% formaldehyde for later examination of possible
abnormalities and growth/development inhibition.

Effects on swimming

Swimming alterations were evaluated every 24 h after gently
swirling the water with a glass rod and observing swimming
activity of each individual tadpole for 1 min. The effects on
swimming were classified according to the descriptions made
by Brunelli et al. (2009) with minor modifications as sug-
gested by Agostini et al. (2010) and Bach et al. (2016) in three
categories: (1) regular swimming (RS), which corresponds to
normal swimming; (2) irregular swimming (IS), correspond-
ing to delayed normal swimming after stimulation; and (3)
immobility (IN) which is illustrated by body twisting and
convulsions, or complete stillness with slight movements
which are observed after gently prodding each tadpole with
a glass rod.

Effects on growth, development and morphology

Growth was assessed at the end of acute (96 h) exposure by
measuring total length (TL), body length (BL), and body
width (BW) after digital photograph with the ImageJ® pro-
gram version 1.46r (Rasband, USA), with a precision of
0.01 cm. Photographs were taken with a digital camera
Samsung WB850F. The inhibition of development and the
presence of morphological abnormalities were also assessed
at the end of acute exposure (96 h) by visual observation under
an Ahecro ZTX-3EI stereoscopic binocular microscope. The
stage of development was determined according to the classi-
fication proposed by Gosner (1960). Morphological abnor-
malities were classified after the categories proposed by
Bantle et al. (1996).

Biochemical effects

Enzymatic activities of CAT, GST, and AChE were mea-
sured. Those activities respectively serve as biomarkers of
oxidative stress, activation of pesticide biotransformation,
and alteration of acetylcholinesterase (Brodeur et al. 2011;
Colin et al. 2016). They were measured in whole tadpoles
(Brodeur et al. 2011, 2017) as follows: four tadpoles from
the same concentration treatment (one from each replicate)
were processed jointly in order to achieve detectable levels
of enzymatic activities (= 10 replicates per concentration).
Briefly, tadpoles were homogenized in ice-cold 50 mM tris
(hydroxymethyl) aminomethane buffer (pH 7.4) containing
1 mM ethylenediaminetetraacetic acid and 0.25 M of su-
crose using a Teflon-glass Potter-Elvehjem homogenizer.

Homogenates were centrifuged at 12,000 g for 5 min at
4 °C to remove debris, and the resulting supernatant was
used for enzymatic determinations.

CAT activity was determined by measuring the de-
crease in absorbance resulting from hydrogen peroxide
(H2O2) consumption using a molar extinction coefficient
of 43.6 M−1 cm−1. The reaction mixture consisted of
300 μL of PBS (100 mM, pH 7), 10 μL of 10% H2O2,
and 10 μL of diluted sample. The change in absorbance
was recorded at 240 nm and 25 °C. GST activity was
measured in a reaction mixture containing 300 μL of
PBS (100 mM, pH 7) with added reduced glutathione,
10 μL of 1-chloro-2,4-dinitrobenzene (0.1 M), and
10 μL of diluted sample. The change in absorbance was
recorded at 340 nm and 25 °C. Enzymatic activity was
calculated using a molar extinction coefficient of
9.6 mM−1 cm−1. Protein concentrations were measured
by the method of Lowry et al. (1951) using bovine serum
albumin as a standard. Finally, AChE activity was deter-
mined by the method of Ellman (Ellman et al. 1961). The
reaction mixture consisted of 200 μL of phosphate-
buffered saline (PBS) (100 mM, pH 8), 10 μL of
acetylthiocholine iodide (1 mM), 10 μL of 5,5 ′-
dithiobis-(2-nitrobenzoic acid) (0.5 mM), and 100 μL of
diluted sample. The change in absorbance was recorded at
25 °C and 412 nm. Enzymatic activity was calculated
using a molar extinction coefficient of 14,150 M−1 cm−1.

Statistical analysis

Homogeneity of variances and normality were corroborat-
ed with Bartlett’s and Shapiro-Wilk’s test, respectively. In
cases where the assumptions were not fulfilled, a non-
parametric Kruskal-Wallis test was carried out followed
by Dunn’s posteriori test. A paired t test was performed
to compare the concentrations of the solutions immediate-
ly after preparation (0 h) and after 24 h. A Wilcoxon test
was performed to compare nominal and real (= measured)
concentrations. With the data of nominal and water-
soluble fraction concentrations from experiments I and II
(5–500 mg/L), a simple linear correlation analysis and a
regression analysis were performed to predict the concen-
trations of the treatments in which no measurements were
made. The LC50/EC50 and 95% confidence limits for
mortality and swimming alterations were obtained by
Probit analysis version 1.5 and following the method of
linear intersection to estimate concentration-response
curves. The highest non-observable effect concentrations
(NOEC) and lowest observable effect concentrations
(LOEC) were estimated by the LC/EC-1 and LC/EC-10,
respectively. The NOEC and LOEC values for growth and
morphological abnormalities were calculated by ANOVA
followed by Dunnett’s test.
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Results

Quality controls

No significant differences (t = 0.17; p = 0.864) were found
between spinosad concentrations at 0 h (initial time) and
24 h of exposure (maximum time before renewal of the me-
dia). However, significant differences were found between
nominal and soluble fraction concentrations (Z = 2.26;
p < 0.05). Since data showed a positive and very highly sig-
nificant correlation (r = 0.9970; p < 0.005), all nominal con-
centrations were corrected with the concentrations predicted
by the regression line equation: 2.4901 + 0.0659 × X (r2 =
0.9941; p < 0.005).

Lethal effects

Table 1 shows the results of Tracer™ lethal effects on the
larvae of B. pulchella and R. arenarum. Mortality of
B. pulchella increased significantly with the increment of the
time of exposure. Tadpoles of R. arenarum, for their part,
showed absence of lethal effects at the maximum tested con-
centration (= 35.44 mg spinosad/L).

Sublethal effects

Swimming activity

The three categories of swimming alterations (RS, IS, IN)
were considered as a single one (effects on swimming activity,
ES) since they behaved complementary and one was depen-
dent on the other. Table 1 shows the results of Tracer™ sub-
lethal effects on the swimming activity of B. pulchella and

R. arenarum larvae. When comparing EC50 values at 96 h,
B. pulchella is 5.42 times more sensitive than R. arenarum.

Growth, development, and morphological abnormalities

Tracer™ showed highly significant growth inhibition in both
species (B. pulchella: F(4, 145) = 16.49; p < 0.05;
R. arenarum = F(9; 190) = 3.44; p < 0.05) with NOEC and
LOEC values for B. pulchella of < 2.81 and 2.81 mg
spinosad/L, respectively, and NOEC and LOEC values for
R. arenarum of 4.46 and 6.44 mg spinosad/L, respectively.
The LOEC value also showed that B. pulchella is 2.3 times
more sensitive than R. arenarum. Tracer™ showed no effects
on the development of both species and caused no morpho-
logical abnormalities in R. arenarum, while in B. pulchella it
caused tail flexure (a bending generated from the bottom or in
the middle region of the tail bymoving it side; F(4, 43) = 6.83;
p < 0.005), absence of keratodonts (a significant lack of
keratodonts of at least ten consecutive pieces, in one or more
rows; F(4, 43) = 74.18; p < 0.005), and displaced intestine (an
abnormal bowel, without the normal spiral shape; F(4, 42) =
196.63; p < 0.005) at 96 h of exposure (Fig. 1). Tail flexure
was observed at 3.47 mg spinosad/L with 19% of affected
individuals. Absence of keratodonts and displaced intestine
were observed between 2.81 and 5.78 mg spinosad/L with
97% of affected individuals.

Sublethal effects at the biochemical level in B. pulchella

Catalase activity levels were significantly inhibited only in
larvae exposed to 2.81 mg spinosad/L, with 28.6% lower ac-
tivity than the control group (Fig. 2a). GST activity was sig-
nificantly inhibited in larvae exposed from 2.81to 2.98 mg
spinosad/L, with 25% lower activity than the control group
(Fig. 2b). Finally, acetylcholinesterase activity was signifi-
cantly inhibited in larvae exposed to 2.81 mg spinosad/L, with
an activity 40% lower than the control group (Fig. 2c).

Discussion and conclusions

This study is the first to report acute toxicity data of spinosad
in amphibians. Lethal and sublethal effects of the spinosad-
based formulation Tracer™ are reported in larvae of two na-
tive species of anurans, R. arenarum and B. pulchella, show-
ing significant differences in their sensitivity. While
R. arenarum demonstrated tolerance to Tracer™ ,
B. pulchella proved to be sensitive to lethal and sublethal
effects at the individual level. This sensitivity was also re-
vealed when evaluating biochemical endpoints (CAT, GST,
and AChE activity) at low concentrations. Considering the
toxicity categories proposed by USEPA (Carey et al. 2008),
spinosad can be classified as moderately toxic for B. pulchella

Table 1 Effects of spinosad-based formulation Tracer™ on mortality
and swimming activity of Boana pulchella and Rhinella arenarum
tadpoles

Boana pulchella Rhinella arenarum

Mortality

LC50-96 h 3.5 (3.21–3.78)a > 35.44

NOEC 1.99 > 35.44

LOEC 2.56 > 35.44

Swimming activity

EC50-96 h 1.709 (0.26–6.27)b 9.26 (6.7–18.3)b

NOEC 0.37 0.64

LOEC 0.76 2.13

a LC50, lethal concentration 50 and their 95% confidence limits. Values
are expressed in mg spinosad/L
bEC50, effect concentration 50 and their 95% confidence limits

NOEC highest non-observable effect concentration; LOEC, lowest ob-
servable effect concentration
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(acute LC50 between 1 and 10 mg/L) and slightly or almost
non-toxic for R. arenarum (acute LC50 between 10 and
100 mg/L or > 100 mg/L, respectively). The magnitude of
the different sensitivity of both species is particularly impor-
tant in the context of current ecotoxicology, especially for the
environmental risk assessment of pesticides. It should also be
considered when selecting test species for the evaluation of
the toxicity of any substance, before authorizing its commer-
cialization, and at the time of choosing native indicator
species.

There are several factors which are responsible for the var-
iability of the evaluated endpoints, among them breeding con-
ditions, food type, source of organisms, and characteristics of
the water (Rand 1995; ASTM 2007). This study eliminated
those sources of variation using the same experimental condi-
tions and performing the tests by the same operator. In addi-
tion, the organisms share the source and the ecological attri-
butes: species are sympatric, cohabit the same ecosystem, and
use the same reproductive site. All this allowed us to propose
genetic distance as the factor that influences the differential
sensitivity of both species (phylogenetic hypothesis proposed
by Hammond et al. 2012).

The differential response of both species exposed to other
insecticides is consistent with the results reported here, being
B. pulchella more sensitive than R. arenarum when consider-
ing lethal effects of endosulfan (Agostini et al. 2009; Svartz
et al. 2014), chlorpyrifos (Liendro et al. 2015; Barreto et al.
2020), cypermethrin (Agostini et al. 2010; Svartz et al. 2016),

and pirimicarb (Vera Candioti et al. 2010; Natale et al. 2018).
Although R. arenarum is the most frequently used test species
in Argentina, reported data indicate that it is not the most
sensitive one. In that sense, this paper provides evidence in
favor of the usefulness of B. pulchella as a test species when
assessing effects on aquatic ecosystems. Considering that
there is no ecotoxicological information about more than
87% of the native anuran species, this study promotes the
ecotoxicological investigation of native species with the inten-
tion of classifying them in terms of their sensitivity, either for
use in bioanalytical tests or as indicator species.

If we compare the LC50 values available for aquatic organ-
isms exposed to spinosad with those obtained in this study
(Table 2), the sensitivity of the larvae of B. pulchella is in
the 60th percentile. Despite the less sensitive response of this
species compared with cladocerans, it is the most sensitive
vertebrate species. In addition, a group of very tolerant species
can be distinguished, not being able to determine the LC50: >
35.44 mg spinosad/L for R. arenarum, > 202 mg/L for
Poecilia reticulata and Xiphophorus maculatus, and >
500 mg/L for Oncorhynchus kisutch.

Detecting sublethal effects at low concentrations is of great
relevance since they can cause negative effects on the individ-
ual fitness and compromise the survival of larvae and adults.
Several studies have reported alterations in swimming activity
in larvae of B. pulchella and R. arenarum exposed to different
pesticides such as azinphos methyl, carbaryl, cypermethrin,
and pirimicarb (Ferrari et al. 2009; Agostini et al. 2010;

Fig. 1 Morphological
abnormalities in tadpoles of
Boana pulchella. a Normal
tadpole without morphological
abnormalities; b lateral flexure of
the tail; c displaced intestine; d
absence of keratodonts
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Svartz et al. 2016; Sansiñena et al. 2018). An individual pre-
senting an alteration of swimming activity will have difficul-
ties in finding and obtaining food (Horat and Semlitsch 1994),
and will be more vulnerable to predation (Lehman and
Williams 2010; Denoël et al. 2012). In addition, several stud-
ies have reported growth inhibition in larvae of both species
exposed to azinphos methyl, chlorpyrifos, pirimicarb, and
cypermethrin (Agostini, Natale and Ronco, 2010; Ferrari
et al. 2011; Sotomayor et al. 2012; Natale et al. 2018).
Growth inhibition during the larval period causes individuals
to reach metamorphosis with a smaller size, and small juve-
niles to have a decreased fitness and consequently less
chances of survival (Semlitsch et al. 1988; Boone and
Bridges 2001; Altwegg and Reyer 2003).

Regarding morphological abnormalities reported here, tail
flexure, the absence of keratodonts, and displaced intestine
have been detected in larvae of B. pulchella and

R. arenarum exposed to azinphos methyl, carbaryl, chlorpyr-
ifos, cypermethrin, pirimicarb, and sediments from a pesticide
use zone (Ferrari et al. 2009; Agostini et al. 2010; Lascano
et al. 2011; Liendro et al. 2015; Natale et al. 2018; Sansiñena
et al. 2018). Tail flexure has a negative effect on swimming
and reduces the possibility of efficiently escaping from pred-
ators. It also affects the ability to search for food, decreasing
the probability of survival as stated by Sansiñena et al. (2018).
Alterations in the oral disc reduce feeding efficiency (Venesky
et al. 2010; Tolledo et al. 2014) negatively, influencing
growth and development. Intestine alterations may be associ-
ated with hypertrophy or hyperplasia, may be part of a defense
response to pollutants, and may contribute reducing the entry
of toxic substances into the epithelial cells (Barja-Fernández
et al. 2013). We can conclude that the evaluated insecticide
induces the expression of morphological abnormalities that
have severe consequences on the individual survival.

Fig. 2 Enzymatic activity (mean ± S.E.) of individuals of Boana
pulchella exposed to Tracer™. a Catalase activity (CAT), b glutathione
S-transferase activity (GST), and c acetylcholinesterase activity (AChE).

A single asterisk indicates significant differences between treatments and
control group. Values are expressed in mg spinosad/L
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Concerning the effects at the biochemical level, some stud-
ies have reported that the exposure of anuran larvae to endo-
sulfan, chlorpyrifos, and glyphosate-based herbicides causes
inhibition in the activity of CAT (Pandey et al. 2001) and GST
(Lajmanovich et al. 2010; Sotomayor et al. 2015), while
others reported an increased activity in CAT (Sotomayor
et al. 2015) and GST (Pandey et al. 2001; Ferrari et al. 2009;
Ezemonye and Tongo 2010). Also, some studies demonstrat-
ed inhibition of GST activity in brain and liver of
Oreochromis niloticus (Orden Perciformes) exposed to
75 mg spinosad/L (Piner and Üner 2011, 2013). It should be
noted that an inhibition of GST activity causes a failure in the
detoxification system that involves modulating the conjuga-
tion of GSH with an electrophilic compound and its subse-
quent elimination (Hayes and Pulford 1995; Hayes et al.
2005). On the other hand, an inhibition of CAT generates an
imbalance of the cellular redox state by not being able to
hydrolyze H2O2 and causing cellular damage (Gil et al.
1987). For their part, AChE is involved in nerve impulse
transmission. Several studies have reported their inhibition
in larvae exposed to chlorpyrifos, lambdacialotrin, and diazi-
non (Colombo et al. 2005; Attademo et al. 2014). Piner and
Üner (2012) reported inhibition in the liver and brain of
O. niloticus exposed between 25 and 75 mg of spinosad/L.
Its inhibition causes an accumulation of acetylcholine in the
synaptic cleft, and consequently a continuous nerve transmis-
sion (Xuereb et al. 2009). Although spinosad’s mode of action
does not involve AChE as a site of action, this study shows an
inhibition of its activity. Thereby, the entry of cations would
be prolonged and generate the consequent hyperexcitation.

The study of a battery of biomarkers is an important tool for
detecting exposure to environmental pollution, with the ef-
fects evaluated being early warning signals (Shugart et al.
1992). This allows detecting the problem caused by certain
substances before the damages are irreversible. In the present
study, effects on the activity of CAT, GST, and AChE were
detected at the lowest concentrations tested; therefore, we con-
sider them to be very useful as biomarkers.

This paper provides useful and necessary information to
implement regulations on the use of new compounds entering
the market, and the evaluation of the ecotoxicological risks
associated with their use. These precise data may also be use-
ful when discussing the selection of sensitive species as
bioindicators. Although the spinosad entered the world market
in 1997 as a replacement for those highly toxic,
bioaccumulative, and persistent insecticides, this study repre-
sents the first report of lethal and sublethal effects of this
compound on amphibians. The effects demonstrated here are
not consistent with those expected since spinosad is supposed
to be an environmental healthy alternative.
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Table 2 Spinosad LC50 values
reported for different aquatic
species

Species name LC50 (mg spinosad/L) Authors

Daphnia magna 0.0005a Duchet et al. (2011)

Daphnia pulex 0.0005a Duchet et al. (2011)

Ceriodaphnia dubia 0.0018a Deardorff and Stark (2009)

Daphnia magna 0.0048a Deardorff and Stark (2009)

Daphnia pulex 0.129a (Stark and Banks 2001)

Daphnia pulex 0.129a Deardorff and Stark (2009)

Boana pulchella 3.5b This study

Cyprinus carpio 5b Borth et al. (1996)

Lepomis macrochirus 5.9b Borth et al. (1996)

Cyprinodon variegatus 7.9b Borth et al. (1996)

Oncorhynchus mykiss 30b Borth et al. (1996)

Rhinella arenarum > 35.44b This study

Poecilia reticulata > 202b Pereira et al. (2016)

Xiphophorus maculatus > 202b Pereira et al. (2016)

Oncorhynchus kisutch > 500b Deardorff and Stark (2009)

LC50, lethal concentration 50
a LC50 at 48 h
b LC50 at 96 h
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