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Abstract. During dialogue, speakers have to rapidly represent different 
aspects of speech in order to respond and continue engaged. In particular, 
acoustic aspects indicate different intentions or emotions. Understanding 
how the brain represents those characteristics, both spatially and tem
porally, is important for developing better interactive systems. In this 
work, we analyse electroencephalography (EEG) data and audio record
ings from ten participants engaged in a dialogue during a collaborative 
task. We aim to better understand how the envelope of the previous in
stants of the speech is encoded in the brain. Our results showed a good 
performance in predicting EEG signals, in particular in frontal electrodes. 
Moreover, our findings suggest that the brain encodes the speech enve
lope information with a latency between 0 and 100ms. These results are 
widely consistent between participants and also with previous work. The 
present work paves the way for studying brain representations of speech 
in natural scenarios with EEG.
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1 Introduction

Cognitive neuroscience had a great boost in recent years, mainly driven by 
the amount and complexity of the available data, together with methods and 
computational power to analyse it. Experimental protocols moved from highly 
controlled stimuli to more natural scenarios [14]. This helps to understand the 
complex brain mechanisms behind everyday behaviours, such as communicating 
through spoken language [4,14,19,20,27]. Moreover, on one hand, this knowledge 
could improve the naturalness of current spoken dialog systems by exploring the 
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exact timing of the turn-taking cues in the brain [2]. On the other hand, it will 
open new paths for exploring brain-computer interfaces [23,28]. Those scenarios 
require new analysis methods capable of dealing with larger, more complex and 
often incomplete or unbalanced data [14,17]. Encoding models are multivariable 
predictive models that take different features of the stimuli to predict some mea
surement of the brain activity. Among them, ridge regression is widely used for 
predicting EEG signals in state-of-the-art research [6,8,10,15,24].

Previous work has studied how certain attributes of the speech signal, such as 
sound envelope, phonemes or pitch level, are represented in the brain [7,18,21,3,16]. 
These studies used mainly intracranial electrocorticogram (ECoG) recordings 
and prerecorded stimuli such as isolated sentences or radio monologues. In this 
work, we aimed to explore the possibility of detecting markers of these repre
sentations in non-invasive electroencephalography (EEG) signals and in more 
natural scenarios, such as participants engaged in a natural dialogue.

2 Materials and Methods

2.1 Data description

Tasks and Participants. The experimental task involves two participants 
engaged in dialogue while playing a series of instances of the Objects Games 
[12]. Each session contains 15-30 of such instances. A total of 10 native speakers 
of Argentine Spanish (4 female, 25.3±5.7 y.o.) participated in the study and 
agreed to join by signing a consent form. This is a subset of a larger study 
designed to study turn-taking cues in brain activity.

EEG recording and preprocessing. EEG activity was recorded at 128 posi
tions on a standard 10-20 montage at 1024 Hz, along with the electrooculogram 
(EOG) and the linked mastoids reference, using a BioSemi Active-Two system. 
The signals were band-pass filtered between 0.1 and 100 Hz, and a notch filter 
was applied between 49 and 51 Hz. The intervals between trials were removed 
and an Independent Component Analysis (ICA) was applied to the remaining 
data, mainly for removing ocular and muscular artifacts, and noisy channels. 
Artifactual components were selected using EyeCatch [1], ADJUST plugins [22] 
and supervised by an expert. The preprocessing of the EEG signal was performed 
using EEGLAB toolbox in Matlab [5]. Finally, the EEG signal was bandpass fil
tered between 0-40 Hz using a simmetric linear-phase FIR non-casual filter 
from MNE python library, then scaled to [0,1] and downsampled to 128 Hz for 
the present analysis [11].

Audio registration and preprocessing. The audio was recorded on sepa
rate channels by a TASCAM DR-100 digital recorder (at 44.1 kHz, 16 bits), 
using a Rode HS-1 head-mounted close-talking microphone for each participant. 
The recorded audio signal was later downsampled to 16 KHz and automatically 
synchronised with the EEG signal. This procedure was carried out by recording
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a low-resolution copy of the audio signal in the EEG recordings, as analogue 
inputs, and then finding the time offset that maximizes the cross-correlation 
between the two audio copies. For the present analysis, we focus on the speech 
envelope which was computed using scipy's implementation of the Hilbert trans
form followed by a 3rd order Butterworth low-pass filter of 25 Hz [26,6,24,7]. It 
was then downsampled taking the average in non-overlapping windows of 125 
samples and scaled between [0,1]; resulting in a 128 Hz signal, whose time-points 
matched those of the EEG. Audio and EEG intervals were semi-automatically 
labeled according to who was speaking/listening.

2.2 Analysis

Ridge regression. The rationale of our experiment is to predict the values 
of the EEG signal (time-points) of one participant, given the envelope of the 
preceding speech signal of the other. Ridge regression is particularly useful in 
this scenario because the independent variables in our model are highly corre
lated between each other. By adding a degree of bias to the regression estimates 
(L2 regularization parameter), ridge regression will shrink the model weights, 
therefore preventing multicollinearity. We generate and fit a model for each 
EEG channel independently (Fig. 1A) using sklearn implementation of Ridge 
regression [25,24,15,6]. As the input matrix is dense, the algorithm first applies 
Cholesky decomposition and then computes the regression using scipy [26].

The EEG time-points were selected in the periods where the participants were 
listening and not speaking (model targets). On average, we obtained Ntimepoints = 
54277 per participant (range: [19403 to 74347]). For each EEG time-point, the 
previous 530 ms of the envelope signal (time delays) were taken as inputs based 
on previous results [15,13,7]. We excluded the 3 ms that the sound wave takes to 
reach the 1 m apart interlocutor by dropping the most recent envelope sample. 
As the sample rate from both the audio and EEG is 128 Hz, this results in an 
input segment of 523 ms long (Ndeiays = 68). These time delays represent the 
inputs of our model (X), a Ndeiays x Ntimpoints matrix. The model weights w 
are obtained by minimizing the eq. 1.

|Y - Xw|2 + a|w|2 (1)

where Y is a 1 x Ntimepoints corresponding to the EEG amplitude for each 
time-point (Fig. 1A). The obtained w represent the importance of the informa
tion from the envelope at each time delay. The regularization parameter a was 
set to 1000 for all channels and participants.

The training and test set were taken from each participant separately, and 
the model was used in such a way that the results were first obtained for each 
individual, and then averaged across participants. A 5-fold cross-validation was 
performed without shuffling the data. Furthermore, as the only hyper-parameter 
in the model was set, no validation set was used.
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Fig. 1. A. Data analysis pipeline. B. Pearson correlation values per electrode for one 
participant. Absolute values of the correlation obtained for all folds with randomised 
(orange) and real (blue) stimuli. The dots show the mean correlations between folds 
for channels that did (orange) and did not (blue) present significant differences in all 
5 folds.

Statistical tests. To validate that the information obtained from the envelope 
signal is relevant to predict the EEG signal, a permutation test was performed 
by training the model on 3000 random permutations of the input matrix. The 
Pearson correlation between the EEG signal and the one predicted by the model 
trained on real stimuli was compared with the empirical null distribution of corre
lations obtained with the randomized stimuli. The process was repeated for each 
electrode in each fold of the cross-validation procedure. The threshold p-value 
was set at 5% and corrected using the Bonferroni criteria (0.05/128 « 0.0004). 
Figure 1B shows the range of the absolute values of the correlation obtained with 
real stimuli for the 5 folds (blue), and the range of the absolute values of the 
empirical distributions for all the permutations in the 5 folds (orange), for each 
channel of one participant as an example. The dots correspond to the average 
of the real absolute values of the correlation for every channel. Only channels 
that were significant (p-value < 0.0004) in all folds were considered significant 
for each participant, and are marked as orange dots.

3 Results
Briefly, we aimed to predict the brain activity of participants engaged in dialogue 
from the envelope of the preceding half second of speech signal. We estimate the 
importance of the information from the envelope at a certain time delay as the 
weights of a regression fit to each channel. The weights are obtained for each par
ticipant and then averaged across participants. They presented a ramp towards 
0ms with a small negative peak at 101 ms (Fig.2A). The spatial distribution of 
the weights at 0 and 101 ms had a similar wide frontal distribution. Importantly, 
the weight's curve patterns held when artificially adding delays from after 0ms. 
These curves were smooth due to the correlation of contiguous time-samples of 
the envelope, but rapidly decreased after 0ms.

The absolute values of the correlation between the real and the estimated 
signal presented a broad spatial distribution, with the higher values distributed
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Fig. 2. A. Time-course of the weights (w) averaged across participants for all electrodes 
(in colours) and across electrodes (black dashed line). Spatial distributions of w at the 
positive and the negative peaks. B. Participants average of the absolute values of the 
correlation between the predicted and the original EEG signal (top) and the spatial 
distribution of the number of participants that had significant results for a given chan
nel (bottom). C. Correlations between participant’s average weights across channels 
with each other (lower triangle) and with the global average across participants (black 
dashed line in A) (diagonal).

in anterior regions (Fig. 2B, top panel). The correlation varies from 0.075 to 
0.105, which is comparable with previous literature [6,7,13,15,24]. Moreover, the 
maximum value for a single participant resulted as high as 0.2 (averaged across 
folds). We calculated the number of participants in which each channel was 
significant (Fig. 2B, bottom). This also presented a broad distribution, with 
a maximum of 7 in central locations. Furthermore, ws presented quite similar 
patterns among participants, as shown by the high correlation values of the 
time-courses between them (Fig. 2C). This clearly indicates that results across 
participants are highly robust.

4 Conclusions

Altogether, the analysis here presented shows consistent results, supported by 
different measures such as the similarity across participants and the conservative 
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criteria applied to the results, as is the Bonferroni correction among channels, 
where a significant number of electrodes passed the test in all folds.

Correlation values between the predicted and the real EEG signals (0.094 ± 
0.019) were comparable with the values obtained in other studies for the enve
lope with EEG (between 0.01 and 0.1) [6,7] and ECoG (between 0.01 and 0.25) 
[24,15,13], which is a technique that is expected to be more sensitive and less 
prone to muscular artifacts. Moreover, we presented evidence that the envelope 
of the speech signal is encoded within a maximum delay of 100ms in the frontal 
regions of the brain, suggesting that its processing occurs with a latency of less 
than 100 ms.

These results are of great importance for understanding the precise timing in 
which the envelope, or other turn-taking cues, are processed in the brain in the 
context of a natural dialogue, which might help improve Spoken Dialog Systems, 
as it provides useful information concerning processing times that could be used 
by the system. Furthermore, it would be possible to carry out a similar analysis 
considering speech instead of listening time intervals, aiming to identify EEG 
signals when pronouncing speech with different intentions or emotions, which 
could find application in speech oriented Brain Computer Interfaces.

The present work paves the way for studying brain representations of speech 
in ecological scenarios with EEG. Future work will focus on expanding the 
speech feature space explored, including acoustic -as the pitch, the jitter, or 
the shimmer-, phonological, or pragmatic characteristics of the speech. These 
last set of characteristics, such as the speech act, are largely unexplored with AI 
methods [2,9]. Furthermore, we will aim to narrow the brain representations of 
these features not only in space and time, but also in the frequency domain.
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