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The microscopic description of nuclear double beta decay transitions is presented in 
the framework of a schematic model. The comparison between these results and the ones 
corresponding to realistic calculations shows that the physics of the double beta decay 
may be dominated by non-perturbative effects. 

1 I n t r o d u c t i o n  

Since the introduction of renormalized particle-particle interactions in the treat- 
ment of proton-neutron correlations in open shell systems [1, 2] the physical in- 
terpretation of double-beta decay transitions becomes heavily dependent upon the 
adopted values of the model parameters. The sensitivity of the two-neutrino double- 
beta decay mode upon gpp was found to be present both in schematic and in realis- 
tic models. Several methods have been proposed to cure for this severe dependence 
since it become obvious that the renormalization was needed and that physical 
values of the coupling constants were hard to obtain from first principles. The pos- 
sibility of renormalizations, originated in the ground state correlations of the initial 
and final nuclei induced by charge-conserving modes of excitations and acting upon 
single-quasiparticle occupancies, was suggested in [3]. However, these approaches 
suffer from a common disease, e.g. the violation of the Ikeda Sum Rule [4, 5]. Both 
the collapse of the QRPA [6] and the violation of the Ikeda Sum Rule can be 
interpreted in terms of a "phase-transition" rather similar to the pairing one [7] 
with the number of pn-pairs playing the role of an order parameter. In the present 
note we shall extent the similarities between the "critical" behaviour of the QRPA 
against renormalized particle-particle interactions and the more familiar concept of 
symmetry breaking. Details are given in [8]. 

2 The  H a m i l t o n i a n  

The starting Hamiltonian [9,10] is written 

H = Hp W H. + Hres, (1) 
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where 
H p =  E e v a t a p - G p S t s p ,  Hr, -- E e n a t a , , - G n S t S , - , ,  

v . (2)  
gres = 2Xf~" fl+ - 2~Pj- • P + ,  

where the operators Sp(n) are monopole pair operators, Gp(n) are the pairing cou- 
pling constants, /Y~ and P~ are particle-hole and particle-particle proton-neutron 
operators, X and ~¢ are the coupling constants of the separable proton-neutron two 
body interaction. 

This Hamiltonian was shown to produce results, for pn-excitations and double 
beta decay transition probabilities, which are similar to the ones obtained by using 
realistic interactions [10]. We shall consider the one-shell limit of this Hamiltonian 
[4]. 

After performing BCS transformations, for protons and neutrons separately, the 
single-particle and pairing terms are written as 

= . , ,  = , , ,  ( 3 )  

V¢l. la Ft"~. n 

where ep,en are the quasiparticle energies and a t a t are the quasiparticle cre- p~  rl  

ation operators [6]. The linearized Hamiltonian, neglecting the scattering terms 
( a t a n ,  atnap) which do not contribute at the QRPA order, reads 

g = H p + g n  
+ 2 x ( 2 j + l )  2 2 2 ~ 1' [(uvv, ~ + v v u , ) A  • A 

+ u v v n v v u n A t  • A t + vpunuvvnA  • A] 

2n(2j + 1) 2 2 [ ( . p . .  2 ~ t - + v v v , ) A  . A  

- u v u ,  v vvnA t  • A t - v v v n u v u n A "  A] . (4) 

Fermi excitations (J - 0) have been studied in [4] while the case of Gamow-Teller 
(J = 1) excitations have been presented in [5]. For the sake of simplicity and 
without loss of generality, we shall proceed with the case of J = 0. In this limit, 
the quasiparticle-pair operators have the form 

t 1J=O 
A' = [ 4  ® ~-JM=0. (5) 

Thus, at the QRPA order of approximation, e.g. by keeping bilinear products of A t 
and A, we arrive at the expression 

H = e C +  A 1 A t A +  A2(AtA t + A A ) ,  (6) 

where the proton and neutron quasiparticle energies have been replaced by a com- 
mon value e. The operator C and the coupling constants A1 and A2 are given by 

c = E 4m,~,,-,, + E , 4 , , , . ~ , , , , . ,  
f ' D . p  lO'l. ~ 

~, = 412 [X(@v~ + v~u~) - ~¢(u~u~ + v~v~)] , (7) 

A= = 412(X 4- n ) u p v p u n v , ,  

where 212 is the degeneracy of the shell. 
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3 Col lec t iv i ty  o f  the  m o d e s  and the  Q R P A  

The currently adopted QRPA treatment of this Hamiltonian [4] has shown that  
the collapse of the QRPA [11] is controlled by the ratio between t¢ and natural scale 
of the model (e.g. G or the quasiparticle energies). Of course, one can always refer 
the values of ~ to the value of X but, as shown in [4] X is fixed by the position of 
the resonance associated to the decay mode while t¢ is mostly responsible for the 
fragmentation of the low-lying intensities. This result, which is also found in the 
exact solution of the model, does not show-up in the renormalized QRPA treat- 
ment of refs. [3]. The collapse of the QRPA excitation energy has also been found 
in the extension of the present model to a larger group representation [5]. Since, as 
we have said before, it remains valid in more realistic shell model treatments, we 
shall attempt to understand the underlying physical mechanism from a more direct 
and simple picture where it can be featured as the signature of a phase transi- 
tion. Consequently, we shall introduce a boson representation which transforms the 
combination of fermionic degrees of freedom into bosonic ones and which preserves 
Pauli's Principle. The link with the phase-transition mechanism is established by 
introducing, in this boson basis, coherent states and an order parameter. 

4 Boson-mapp ing  techniques  a n d  t h e  Q R P A  and RQI%PA 

The Dyson's mapping of the Hamiltonian is performed by replacing the quasiparticle- 
pair operators by 

( b'b  
A t ~ b  t 1 -  212)' A---.b, C~2btb.  (8) 

~. 

The operators b t and b are boson creation and annihilation operators, which obey 
exact boson-commutation relations. The number of bosons nb is restricted by the 
condition nb _< 2/2. This restriction guarantees that spuriousities due to non- 
physical states with a larger number of bosons will not be present in the basis. 

The transformed Hamiltonian is written 

H =  (2e+ ,~ l )b tb -  b t2b2+,~2 1 -  b t2 

)~2 ( l -  2~)  btabh- 4~zbt4bg q- )~,b~ [2 (9) 

5 Unders tanding  the  results  as a critical  p h e n o m e n a  

The meaning of the QRPA collapse as a phase transition is better illustrated 
with the help of coherent states [12] 

cx 1 Ia) = No~_,T. bt 10), (101 
I=0 
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where s is a complex parameter  and No is a normalization factor. Expecta t ion  
values of products of boson creation and annihilation operators in the coherent 
state Is > are given by the general expression 

(slbtnlb.2 i s  ) = So,,~+n:~e-i,~(-~--2) (11) 

and with them the expectation value of the transformed Hamiltonian,  Eq. (9), 
gives the potential  energy surface in terms of the order parameter  s .  Different 
regimes of the solution will therefore be determined by non-trivial values of the 
order parameter.  

The trial-function (10), when only even values o f / a r e  considered, reduces to the 
more familiar (quadratic) set of states used, for instance, to minimize the QRPA 
equations of motion. Concerning the present discussion the removal of one-boson 
components  of (10) does not alter significantly the results, as shown next. 

6 P o t e n t i a l  e n e r g y  s u r f a c e s  

The  potential-energy surface E ( s ) ,  i.e. the expectat ion value of H on the co- 
herent state, was minimized as a function of the order parameter  s .  Then  the 
dependence of s with the coupling constant ~, at the minimum, was determined.  
The results are shown in Figure 1, for the case of Np = Nn = 4. This  behaviour  
demostrates tha t  a sudden change of correlations occurs around some critical value 
of the coupling constant ~ (~c). The  onset of the phase transit ion is observed at 
values of ~ just  before the point where 2~ -t- A1 - 2A2 vanishes. 
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Fig. 1. The real part of the order pa~rameter, a, as a function of the coupling constant ~, 
for a fixed value of X = 0.04 and for N .  = Np = 4. 

170 Czech. J. Phys. 48 (1998) 



Comparative studies of  the 2 u~/3 decz*y 

A > 4  
:E 

3 
td 

i i w i 

-'4 -2  0 

, , 3 

0 

-1 

2 4 
ct¢ 

- 4  - 2  

i | | 

o 2 4 
ao 

Fig. 2. Real part (E,) of the energy, as a function of the order parameter a, for ~ < ~¢ (a) 
and for ~ > ~¢ (b). The results correspond to the ca~e N,~ = Np = 4 and X = 0.04 MeV. 

The critical behaviour of the potential-energy surfaces is well demostra ted by 
the results shown in Figure 2. The upper box shows the harmonic dependence 
of the energy, as a function of a0. This is the domain of validity of the QRPA 
harmonic expansion around the minimum corresponding to cr0 = 0. For the example 
shown Fig. 2a we have used the value K -- 0.02 MeV. Figure 2b where the value 

= 0.06MeV is used, shows the characteristic shape of a double-well potent ia l  
with symmetric minima located at non-zero values of a0. This is a clear evidence of 
the symmetry  breaking induced by the renormalized particle-particle interactions 
passed the critical value of ~. 

7 C o n c l u s i o n s  

In the above examples the interesting analogy existing between symmet ry  break- 
ing mechanisms, either spontaneous like the breaking of the number  of particle 
symmetry  by the BCS vacuum or dynamical like the breaking of the isospin by the 
residual particle-particle interactions, can be established. Own to this analogy, the 
non-perturbative nature of the expansions around the critical point  in the para- 
metric space where the QRPA collapses, indicates that  efforts to correct it based 
on perturbat ive methods can yield to non-physical solutions. By the other  side, the 
double well shape of the potential  energy surfaces for coupling constants passing 
by the critical point indicates that  other methods,  like the BRST t rea tment  [13] 
may be in order to calculate perturbat ively the wave functions and mat r ix  elements 
involved in nuclear double beta decay transitions. 
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