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Abstract. In recent years, Internet of Things (IoT) has become extremely popu-
lar because of its ability of sensing information from the environment and pro-
cessing it in the cloud. Edge and Fog Computing are new paradigms that aim to 
localize some of the processing near the sensors, helping to cope with high 
communications latencies and bandwidth bottlenecks. As Wireless Sensor Net-
works (WSN) and Fog nodes are prone to failure, affecting system reliability 
and performance, the implementation of resilience strategies becomes essential 
to ensure reliable delivery of data and system availability during interruptions 
or in the presence of faults. In this article, we present three lines of research in 
progress: Redundant Image Processing, Integration of a WSN with an IoT Plat-
form for Intelligent Control and Resilient Monitorization and Control of Ro-
bots. We aim to incorporate resilience mechanisms to platforms that integrate 
Edge, Fog and Cloud Computing, and to evaluate the proposed solutions in 
terms of the coverage achieved, processing and communication times and pow-
er consumption. 

Keywords: Edge Computing, Fog Computing, Cloud Computing, Resilience, 
Internet of Things, Wireless Sensor Networks. 

1 Introduction/Motivation 

In recent years, the Internet of Things (IoT) has gained a lot of attention because of its 
characteristic of typically enabling the connection of a significant number of sensor 
devices that sense information from the environment and share it to a cloud service 
for processing [1]. This has been extensively used to develop smart applications, such 
as traffic management, smart houses, monitoring of natural events and human health 
[2]. Due to the growing popularity of the IoT, the number of Internet-connected de-
vices has increased significantly. As a result, a huge amount of network traffic is gen-
erated, which may lead to bottlenecks, and eventually generate limitations in terms of 
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communication latency with the cloud and network bandwidth [3], so the traditional 
cloud-based infrastructures are not enough for the current demands of IoT applica-
tions [4]. To deal with these issues, in recent years, the paradigms of Fog computing 
and Edge computing were proposed to alleviate these limitations, by moving some 
processing capabilities closer to the network edge and away from the central cloud 
servers [1]. This allows to  distribute the computations of the IoT data, and to reduce 
the communication latency [3]. 

In IoT systems, data are acquired by wireless sensor networks (WSNs), which are 
deployed in harsh environments where weather and other factors can cause node fail-
ure. In addition, the IoT devices and the nodes in WSNs are heterogeneous, highly 
distributed, reliant on wireless communications and generally powered by batteries, 
which are prone to failure [2]. All of this makes the recovery of devices, and the crea-
tion of a  pattern for Fault Tolerance in IoT, especially difficult [4]. 

In the Fog layer, some of the computing nodes may be unreliable and fail unex-
pectedly, affecting the system’s reliability. For this reason, mechanisms for handling 

node failures become essential but are also especially challenging, because when a 
Fog node fails, moving the computations to neighbor nodes (or to the cloud) may 
increase the communication latency, and thus affect the system performance [3]. Con-
sequently, the design of an effective fault tolerance mechanism is crucial to ensure 
reliable delivery of data and to warrant the system availability during interruptions of 
any kind, or in the presence of faults [2].  
    Resilience can be introduced at different architectural layers because a fault can 
occur at any of the layers. Either sensors and actuators, network, or computation and 
storage nodes, can perform erroneously in their layers [5].  

2 Main goals 

Our main goal in this project is to incorporate mechanisms aimed at obtaining a cer-
tain degree of resilience on a platform that integrates sensor networks with levels of 
Edge, Fog and Cloud Computing (see Fig. 1). 

To do this, we propose to evaluate different scenarios of communication failures 
on such a 3-tier architecture. The end nodes are sensors connected to microcontrol-
lers, robots, drones, or other devices that can perform tasks remotely controlled by a 
server. 

Faced with possible communication failures between the different levels of the ar-
chitecture, it is planned to redundantly process information in each of the layers, so 
that the system can maintain a degree of responsiveness. Through the measurement of 
response times and energy consumption, we hope to obtain criteria to evaluate the 
convenience of carrying out the processing at a specific level, but also of having the 
alternative of transferring it to another layer in presence of a communication failure, 
in order to provide fault coverage.  

In the case of communication failures between robots (or end devices) and servers, 
validating the status is proposed. This validation can be either periodical or event-
driven (like the fulfillment of partial objectives or the reaching of intermediate posi-
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tions), by exchanging round trip messages with the server. Therefore, the device could 
return to the last consistent state and wait for the link to restore. For this, the valid 
states must be stored in the final device, so that the recovery can be autonomously 
made. 

Fig. 1.  3-layer architecture 

Accordingly, in both cases, we aim to improve the integrity of the system, allowing 
it to maintain some basic functionality in the presence of communication failures, or 
at least to remain in a safe state, by adopting the most appropriate strategy for each 
case, similar to that explored in [6]. The deliberate provocation of communication 
failures will allow us to evaluate the robustness of the proposed solutions. 

3 Works in progress 

3.1 Redundant Image Processing in 3-layer architecture 

In this line of research, the focus is on the conceptual integration of resilience aspects 
in an architecture with Edge, Fog and Cloud Computing levels. 

In the 3-layer platform that we propose, the Edge level consists of a node built 
from an ESP32-CAM [7], which takes pictures when movement is detected. The pic-
tures are transmitted to a Fog server, which can pre-process them and, in turn, trans-
mit them to the Cloud to be able to take a concrete action from the Internet. As each 
of the three levels has a computational capacity, certain data processing tasks can be 
performed alternatively in any of them. This makes it possible to implement resilience 
strategies based on redundancy.   

There are two possible scenarios: in normal operation, our goal is to evaluate pro-
cessing times and communication latencies, in order to decide where to process the 
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images to detect people or objects. However, in the presence of communication fail-
ures, we aim to take advantage of the computing power, whether in the Fog server or 
in the sensor node itself, to redundantly process the images to maintain functionality. 
As a consequence, we will be able to characterize the system performance in terms of 
processing times at each level, coverage obtained against failures and energy con-
sumption. 

3.2 Integration of a WSN with an IoT Platform for Intelligent Control of 
Classrooms 

In this line of research, we are studying the deployment and configuration of the IoT 
platform ThingsBoard [8], to be integrated with a Wireless Sensor Network (WSN) 
built with CO2 sensors and energy consumption measurement and control nodes, in 
the context of a university building with classrooms that are monitored and remotely 
controlled [9]. 

The CO2 sensors in each classroom are connected via WiFi to a Raspberry Pi 
(which is at the Fog level) that reads the data (via HTTP), and makes some pre-
processing before transmitting them to the ThingsBoard server. This Fog server can 
maintain centralized monitorization of the CO2 levels across the whole building, and 
activate alerts in case of undesired values.  

The energy consumption measurement and control nodes in each classroom are di-
rectly connected via WiFi to the Fog ThingsBoard server, publishing information in 
MQTT [10] topics. The server can maintain centralized monitorization of power con-
sumption and take concrete actions, such as remotely turning off lights or air condi-
tioning equipment when the classroom is not being used. 

3.3 Resilient Monitorization and Control of Robots 

Our goal in this line of research is to incorporate resilience to a system that uses Lego 
Mindstorms EV3 robots [11] to perform specific tasks controlled by a server. We aim 
to develop an application that controls the functions of the robots through resilient 
communications.  

Currently, we are exploring 3 alternative strategies, in the attempt to maintain the 
consistency of the system in the presence of failures. Each of them has particular 
characteristics as regards to detection latency, coverage and workload to be rerun. 

1. The server communicates the whole information of the task to be performed or
the path to be followed. The robot must store the path and follow it autonomously, 
communicating with the server upon completion. If the connection is lost during 
the trajectory, the task cannot be validated. The only resilience strategy is to restart 
from the beginning if the final point does not match with the expected one. This 
variant minimizes communication load but maximizes the detection latency.  
2. The server communicates partial information of the task or the path. The robot
must store the partial path and communicate with the server when reaching the tar-
get point, which in turn validates the completed chunk. If the connection is lost, the 
robot has to use the stored information to return to the starting point, which is the 
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last valid one. Compared with the previous variant, this one involves more com-
munications but improves the detection latency. 
3. The server communicates partial information of the task or the path. In addition,
a periodic keepalive signal is transmitted via an independent socket or a different 
MQTT topic. The robot must store the partial path and communicate with the serv-
er when reaching the target point, which in turn validates the completed chunk. In 
the meanwhile, the status of the connection is monitored with periodical messages. 
Consequently, if the connection is lost, the robot has to use the stored information 
to return to the last valid point. This latter alternative involves frequent messages 
but minimizes the detection latency. 

4 Conclusions 

Although the research is in an incipient stage, this work proposes to implement mech-
anisms to provide robustness to a system against communication failures, and to de-
termine the performance of the different resilience strategies in terms of the coverage 
achieved, processing and communication times and power consumption. 
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